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Abstract. Local consistency has proven to be an important concept in
the theory and practice of constraint networks. In this paper, we present
a new de�nition of local consistency, called relational consistency. The
new de�nition is relation-based, in contrast with the previous de�nition of
local consistency, which we characterize as variable-based. It allows the
uni�cation of known elimination operators such as resolution in theorem
proving, joins in relational databases and variable elimination for solving
linear inequalities. We show the usefulness and conceptual power of the
new de�nition in characterizing relationships between four properties
of constraints| domain tightness, row-convexity, constraint tightness,
and constraint looseness|and the level of local consistency needed to
ensure global consistency. As well, algorithms for enforcing relational
consistency are introduced and analyzed.

1 Introduction

Constraint networks are a simple representation and reasoning framework. A
problem is represented as a set of variables, a domain of values for each variable,
and a set of constraints between the variables. A central reasoning task is then
to �nd an instantiation of the variables that satis�es the constraints.

In general, what makes constraint networks hard to solve is that they can
contain many local inconsistencies. A local inconsistency is a consistent instan-
tiation of k � 1 of the variables that cannot be extended to a kth variable and
so cannot be part of any global solution. If we are using a backtracking search
to �nd a solution, such an inconsistency can lead to a dead end in the search.
This insight has led to the de�nition of conditions that characterize the level
of local consistency of a network [17, 20] and to the development of algorithms
for enforcing local consistency conditions by removing local inconsistencies (e.g.,
[3, 7, 11, 17, 20]).

In this paper, we present a new de�nition of local consistency called relational
consistency, introduced recently [24]. We show the usefulness and conceptual



power of the new de�nition in generalizing results for binary networks to non-
binary networks on the relationships between four properties of constraints|
row-convexity, domain sizes, constraint tightness, and constraint looseness| and
the level of local consistency needed to ensure global consistency. As well, algo-
rithms for enforcing relational consistency are introduced and analyzed.

The virtue of the new de�nition of local consistency is that, �rstly, it allows
expressing the relationships between the properties of the constraints and local
consistency in a way that avoids an explicit reference to the arity of the con-
straints. Secondly, it is operational, thus generalizing the concept of the composi-
tion operation de�ned for binary constraints, and can be incorporated naturally
in algorithms for enforcing desired levels of relational consistency. Thirdly, it uni-
�es known operators such as resolution in theorem proving, joins in relational
databases, and variable elimination for solving equations and inequalities. In
particular it allows the formulation of an elimination algorithm that generalizes
algorithms appearing in each of these areas. Finally, it allows identifying those
formalisms for which consistency can be decided by enforcing a bounded level of
consistency, like propositional databases and linear equalities and inequalities,
from general databases requiring higher levels of local consistency. For space
considerations almost all proofs are omitted.

2 De�nitions and Preliminaries

De�nition1 constraint network. A constraint network R is a set X of n
variables fx1; . . . ; xng, a domain Di of possible values for each variable, and a
set of relations RS1 , . . . , RSt, each de�ned on a subset of the variables S1; . . . ; St,
respectively. A constraint or relation RS over a set of variables S = fx1; . . . ; xrg
is a subset of the product of their domains (i.e., RS � D1 � � � � �Dr). The set
of subsets fS1; . . . ; Stg on which constraints are speci�ed is called the scheme
of R. A binary constraint network is the special case where all constraints are
over pairs of variables. An instantiation of the variables in X, denoted XI , is an
n-tuple (a1; . . . ; an), representing an assignment of ai 2 Di to xi. A consistent
instantiation of a network is an instantiation of the variables such that the con-
straints between variables are satis�ed. A consistent instantiation is also called
a solution.

The notion of a consistent instantiation of a subset of the variables can be
de�ned in several ways. We use the following de�nition: an instantiation is con-
sistent if it satis�es all of the constraints that have no uninstantiated variables.

De�nition2 consistent instantiation of subsets of variables. Let Y and
S be sets of variables, and let YI be an instantiation of the variables in Y . We
denote by YI [S] the tuple consisting of only the components of YI that correspond
to the variables in S. An instantiation YI is consistent relative to a network R
i� for all Si in the scheme of R such that Si � Y , YI [Si] 2 RSi . The set of all
consistent instantiations of the variables in Y is denoted �(Y ). One can view
�(Y ) as the set of all solutions of the subnetwork de�ned by Y .



De�nition3 operations on constraints. Let R be a relation on a set S of
variables, let Y � S be a subset of the variables, and let YI be an instantiation
of the variables in Y . We denote by �YI (R) the selection of those tuples in R

that agree with YI . We denote by �Y (R) the projection of the relation R on
the subset Y ; that is, a tuple over Y appears in �Y (R) if and only if it can
be extended to a full tuple in R. Let RS1 be a relation on a set S1 of variables
and let RS2 be a relation on a set S2 of variables. We denote by RS1 1 RS2

the join of the two relations. A tuple t is in the join of RS1 and RS2 if it can
be constructed by the following steps: (i) take a tuple r from RS1 , (ii) select a
tuple s from RS2 such that the components of r and s agree on the variables
that RS1 and RS2 have in common (that is, on the variables S1 \ S2), and (iii)
form the tuple t by combining the components of r and s, keeping only one copy
of components that correspond to variables that the original relations RS1 and
RS2 have in common. The resulting relation is on the set of variables given by
S1 [ S2.

A binary relation Rij between variables xi and xj can be represented as a
(0,1)-matrix with jDij rows and jDj j columns by imposing an ordering on the
domains of the variables. A zero entry at row a, column b means that the pair
consisting of the ath element of Di and the bth element of Dj is not permitted;
a one entry means that the pair is permitted.

Four properties of constraints central to this paper are domain-tightness,
row-convexity, constraint tightness, and constraint looseness.

De�nition4 k-valued domains. A network of constraints is k-valued if the
domain sizes of all variables are bounded by k.

De�nition5 row convex constraints. A binary constraint is row convex if
in every row of the (0,1)-matrix representation of the constraint, all of the ones
are consecutive; that is, no two ones within a single row are separated by a zero
in that same row. A binary constraint network is row convex if all its binary
constraints are row convex.

De�nition6 m-tight binary constraints. A binary constraint is m-tight if
every row and every column of the (0,1)-matrix representation of the constraint
has at most m ones, where 0 � m � jDj � 1. Rows and columns with exactly
jDj ones are ignored in determining m. A binary constraint network is m-tight
if all its binary constraints are m-tight.

De�nition7 m-loose binary constraints. A binary constraint is m-loose if
every row and every column of the (0,1)-matrix representation of the constraint
has at least m ones, where 0 � m � jDj � 1. A binary constraint network is
m-loose if all its binary constraints are m-loose.

De�nition8 row convex, m-tight, and m-loose general constraints. An
r-ary relation R on a set S of variables fx1; . . . ; xrg is row convex (m-tight, m-
loose, respectively) if for every subset of r � 2 variables Y � S and for every



instantiation YI of the variables in Y , the binary relation �(S�Y )(�YI (R)) is row
convex (m-tight, m-loose, respectively).

Example 1.We illustrate the de�nitions using the following network R over
the set X of variables fx1; x2; x3; x4g. The network is 3-valued. The domains of
the variables are Di = fa,b,cg and the relations are given by,

RS1 = f(a,a,a), (a,a,c), (a,b,c), (a,c,b), (b,a,c),
(b,b,b), (b,c,a), (c,a,b), (c,b,a), (c,c,c)g,

RS2 = f(a,b), (b,a), (b,c), (c,a), (c,c)g,
RS3 = f(a,b), (a,c), (b,b), (c,a), (c,b)g,

where S1 = fx1; x2; x3g, S2 = fx2; x4g, and S3 = fx3; x4g. The set of all solutions
of the network is given by,

�(X) = f(a,a,a,b), (a,a,c,b), (a,b,c,a), (b,a,c,b),
(b,c,a,c), (c,a,b,b), (c,b,a,c), (c,c,c,a)g.

Let Y = fx2; x3; x4g be a subset of the variables and let YI be an instantiation
of the variables in Y . The tuple YI = (a,c,b) is consistent relative to R since
YI [S2] = (a,b) and (a,b) 2 RS2 , and YI [S3] = (c,b) and (c,b) 2 RS3 . The tuple
YI = (c,a,b) is not consistent relative to R since YI [S2] = (c,b), and (c,b) 62 RS2 .
The set of all consistent instantiations of the variables in Y is given by,

�(Y ) = f(a,a,b), (a,b,b), (a,c,b), (b,a,c), (b,c,a), (c,a,c), (c,c,a)g.

If we order the domains of the variables according to the natural lexicographic
ordering, the (0,1)-matrix representation of the binary constraint RS2 between
x2 and x4 is given by,

RS2 =

"
0 1 0
1 0 1
1 0 1

#
:

For example, the entry at row 3 column 1 of RS2 is 1, which states that the
tuple (c,a) corresponding to the third element of D2 and the �rst element of
D4 is allowed by the constraint. It can be seen that the constraint is 2-tight,
1-loose, and not row convex. It can also be veri�ed that the other constraints
are 2-tight and 1-loose, and therefore the network is 2-tight and 1-loose. As a
partial veri�cation of the ternary constraint RS1 , let Y = fx1g and let YI =
(a) in the de�nition. Then, �YI (RS1 ) = f(a,a,a), (a,a,c), (a,b,c), (a,c,b)g, and
�(S1�Y )(�YI (RS1 )) = f(a,a), (a,c), (b,c), (c,b)g, which is a 2-tight and 1-loose
binary relation.

3 Local Consistency

Local consistency has proven to be an important concept in the theory and
practice of constraint networks. In this section we �rst review previous de�nitions
of local consistency, which we characterize as variable-based. We then present
new de�nitions of local consistency that are relation-based and present algorithms
for enforcing these local consistencies.



3.1 Variable-based consistency

Mackworth [17] de�nes three properties of networks that characterize local con-
sistency of networks: node, arc, and path consistency. Freuder [11] generalizes
this to k-consistency.

De�nition9 k-consistency; Freuder [11, 12]. A network is k-consistent if
and only if given any instantiation of any k � 1 distinct variables satisfying all
of the direct relations among those variables, there exists an instantiation of any
kth variable such that the k values taken together satisfy all of the relations
among the k variables. A network is strongly k-consistent if and only if it is
j-consistent for all j � k.

Node, arc, and path consistency correspond to one-, two-, and three-consisten-
cy, respectively. A strongly n-consistent network is called globally consistent.
Globally consistent networks have the property that any consistent instantia-
tion of a subset of the variables can be extended to a consistent instantiation
of all of the variables without backtracking [5]. It is frequently enough to have
a globally consistent network along a single ordering of the variables as long as
this ordering is known in advance.

De�nition10 globally solved. We say that a problem is globally solved if it is
consistent, and if there is a known ordering of the variables along which solutions
can be assembled without encountering deadends. An algorithm globally solves
a problem if it generates a globally solved network.

3.2 Relation-based consistency

In [25], we extended the notions of arc and path consistency to non-binary re-
lations, and used it to specify an alternative condition under which row-convex
non-binary networks are globally consistent. The new local consistency condi-
tions were called relational arc- and path-consistency. In [24] we generalized re-
lational arc- and path-consistency to relational m-consistency. In the de�nition
of relational-consistency, the relations rather than the variables are the primi-
tive entities. This allows expressing the relationships between properties of the
constraints and local consistency in a way that avoids an explicit reference to
the arity of the constraints. In this section we revisit the de�nition of relational
consistency and provide algorithms for enforcing such conditions.

De�nition11 relational arc, and path-consistency. Let R be a constraint
network over a set of variables X, and let RS and RT be two distinct relations
in R, where S; T � X. We say that RS is relationally arc-consistent relative to
variable x i� any consistent instantiation of the variables in S � fxg, has an
extension to x that satis�es RS ; that is, i�

�(S � fxg) � �S�fxg(RS):



(Recall that �(A) is the set of all consistent instantiations of the variables in
A.) A relation RS is relationally arc-consistent i� it is relationally arc-consistent
relative to each variable in S. A network is relationally arc-consistent i� every
relation is relationally arc-consistent. We say that RS and RT are relation-
ally path-consistent relative to variable x i� any consistent instantiation of the
variables in (S [ T ) � fxg, has an extension to x that satis�es RS and RT

simultaneously; that is, i�

�(A) � �A(RS 1 RT );

where A = (S [ T ) � fxg. A pair of relations RS and RT is relationally path-
consistent i� it is relationally path-consistent relative to each variable in S \ T .
A network is relationally path-consistent i� every pair of relations is relationally
path-consistent.

Note that the de�nition of relational path-consistency subsumes relational
arc-consistency if in the above de�nition we do not assume distinct pairs of
relations. For simplicity, we will assume that relational path-consistency includes
relational arc-consistency.

De�nition12 relational m-consistency. Let R be a constraint network over
a set of variables X, and let RS1 ; . . . ; RSm�1 be m � 1 distinct relations in R,
where Si � X. We say that RS1 ; . . . ; RSm�1 are relational m-consistent rela-
tive to variable x i� any consistent instantiation of the variables in A, where
A =

Sm�1
i=1 Si � fxg, has an extension to x that satis�es RS1 ; . . . ; RSm�1 simul-

taneously; that is, if and only if

�(A) � �A(1
m�1
i=1 RSi):

A set of relations fRS1 ; . . . ; RSm�1g is relationally m-consistent i� it is relation-

ally m-consistent relative to each variable in
Tm�1
i=1 Si. A network is relationally

m-consistent i� every set of m � 1 relations is relationally m-consistent. A net-
work is strongly relational m-consistent if it is relational i-consistent for every
i � m. Relational arc- and path-consistency correspond to relational two- and
three-consistency, respectively.

De�nition13 directional relational consistency. Given an ordering of the
variables, a network is m-directional relational consistent i� for every set of
relations fRS1 ; . . . ; RSm�1g it is relationally m-consistent relative to the largest

indexed variable in
Tm�1
i=1 Si.

Example 2. Consider the constraint network over the set of variables fx1,
x2, x3, x4, x5g, where the domains of the variables are all D = fa, b, cg and the
relations are given by,

R2;3;4;5 = f (a,a,a,a), (b,a,a,a), (a,b,a,a), (a,a,b,a), (a,a,a,b) g,
R1;2;5 = f (b,a,b), (c,b,c), (b,a,c) g.



The constraints are not relationally arc-consistent. For example, the instantia-
tion x2 = a, x3 = b, x4 = b is a consistent instantiation as it satis�es all the
applicable constraints (trivially so, as there are no constraints de�ned strictly
over fx2; x3; x4g or over any subset), but it does not have an extension to x5 that
satis�es R2;3;4;5. Similarly, the constraints are not relationally path-consistent.
For example, the instantiation x1 = c, x2 = b, x3 = a, x4 = a is a consistent
instantiation (again, trivially so), but it does not have an extension to x5 that
satis�es R2;3;4;5 and R1;2;5 simultaneously. If we add the constraints R2 = R3

= R4 = fag and R1 = R5 = fbg, the set of solutions of the network does not
change, and it can be veri�ed that the network is both relationally arc- and
path-consistent.

When all of the constraints are binary, relational m-consistency is identical
(up to minor preprocessing) to variable-based m-consistency; otherwise the con-
ditions are di�erent. The virtue in our de�nition (relative to the one based on
the dual graph [14]), is that it can be incorporated naturally into algorithms for
enforcing desired levels of relational m-consistency, it allows a simple generaliza-
tion of local consistency relationships, and it uni�es several operators of variable
elimination.

One disadvantage is that verifying relational m-consistency can be expo-
nential even for relational arc-consistency, if the arity of the constraints is not
bounded. In general, however, we will never be interested in verifying relational
consistency, but rather in enforcing that condition. Below we present algo-
rithm Relational-Consistency or RCm, a brute-force algorithm for enforc-
ing strong relationalm-consistency on a network R. Note that RA stands for the
current unique constraint speci�ed over a subset of variables A. If no constraint
exists, then RA is the universal relation over A.

Relational-Consistency(R;m)

1. repeat

2. Q R

3. for every m � 1 relations RS1 ; . . . ; RSm�1 2 Q

and every x 2
Tm�1
i=1 Si

4. do A 
Sm�1
i=1 Si � fxg

5. RA  RA \ �A(1
m�1
i=1 RSi)

6. if RA is the empty relation
7. then exit and return the empty network
8. until Q = R

We call the operation in Step 5 extended m-composition, since it generalizes
the composition operation de�ned on binary relations. AlgorithmRCm computes
the closure of R with respect to extended m-composition.

Algorithm RCm is clearly computationally expensive though it can be im-
proved in a manner parallel to the improvements of path-consistency algorithms
[18]. Such improvements are not of much interest since enforcing relational con-
sistency is likely to remain exponential for m � 3, unless the constraints are



binary. We will see that even for m = 3, RC3 solves the NP-complete problem
of propositional satis�ability.

As with variable-based local-consistency, we can improve the e�ciency of en-
forcing relational consistency by enforcing it only along a certain direction. Be-
low we present algorithmDirectional-Relational-Consistency or DRCm,
which enforces strong directional relational m-consistency on a network R, rel-
ative to a given ordering o = x1; x2; . . . ; xn. We call the network generated by
the algorithm the directional extension of R, denoted Em(R).

Directional-Relational-Consistency(R;m; o)

1. Initialize: generate an ordered partition of the constraints, bucket1, . . . ,
bucketn, where bucketi contains all constraints whose highest variable is xi.

2. for p n downto 1

3. do (simplify bucketp:) for every Si; Sj 2 bucketp, s.t. Si � Sj

do RSi  RSi \ �Si(RSi 1 RSj )

4. j  minfcardinality of bucketp, m � 1g

5. for every j relations RS1 ; . . . ; RSj in bucketp,

6. do A 
Sj

i=1 Si � fxpg

7. RA  RA \ �A(1
j
i=1 RSi )

8. if RA is not the empty relation
9. then add RA to its appropriate bucket
10. else exit and return the empty network
11. return Em(R) =

Sn

j=1 bucketj

Step 3 of simplifying each bucket is optional. It ensures that there is no relation
in a bucket whose variables are contained in another relation's subset.

Although algorithm DRCm enforces extended m-composition only, it gener-
ates a strong directional relational m-consistent network in the following sense.

Theorem14. The closure under DRCm along ordering o = x1; :::; xn, is a net-
work such that all the relations in the same bucket are strong directional rela-
tional m-consistent.

Like similar algorithms for enforcing directional consistency, the worst-case
complexity of Directional-Relational-Consistency can be bounded as a
function of the topological structure of the problem via parameters like the
induced width of the graph [7], also known as tree-width [1].

De�nition15 width, tree-width. A constraint network R can be associated
with a constraint graph, where each node is a variable and two variables that
appear in one constraint are connected. A general graph can be embedded in
a clique-tree namely, in a graph whose cliques form a tree-structure. The in-
duced width w� of such an embedding is its maximal clique size and the induced
width w� of an arbitrary graph is the minimum induced width over all its tree-
embeddings.



It is known that �nding the minimalwidth embedding is NP-complete [1], never-
theless every ordering of the variables o, yields a simple to compute upper bound
denoted w�(o) (see [8]). The complexity of DRCm along o can be bounded as a
function of w�(o) of its constraint graph. Speci�cally [8],

Theorem16. The time complexity and size of the network generated by DRCm

along ordering o is O(exp(mw�(o))). In particular, the time complexity of DRC3

is O(exp(w�(o) + 1)).

The complexity of DRC2 is polynomial.

Lemma17. The complexity of DRC2 is O(n � e2 � t2) when e is the number of
input relations, and t bounds the number of tuples in each relation.

Example 3. Crossword puzzles have been used experimentally in evaluating
backtracking algorithms for solving constraint networks [13]. We use an example
puzzle to illustrate algorithmDRC3 (see Figure 1). One possible constraint net-
work formulation of the problem is as follows: there is a variable for each square
that can hold a character, x1; . . . ; x13; the domains of the variables are the al-
phabet letters; and the constraints are the possible words. For this example, the
constraints are given by,

R1;2;3;4;5 = f(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T), (S,N,A,I,L), (S,T,E,E,R)g

R3;6;9;12 = f(H,I,K,E), (A,R,O,N), (K,E,E,T), (E,A,R,N), (S,A,M,E)g

R5;7;11 = f(R,U,N), (S,U,N), (L,E,T), (Y,E,S), (E,A,T), (T,E,N)g

R8;9;10;11 = R3;6;9;12

R10;13 = f(N,O), (B,E), (U,S), (I,T)g

R12;13 = R10;13

1 2 3 4 5

6 7

8 9 10 11

12 13

Fig. 1. A crossword puzzle

Let us perform three iterations of DRC3 with the ordering of variables o =
x13; x12; . . . ; x1. Processing bucket1 adds the relation,



R2;3;4;5 = �2;3;4;5(R1;2;3;4;5)

= f(O,S,E,S), (A,S,E,R), (H,E,E,T), (N,A,I,L), (T,E,E,R)g,

to the bucket of variable x2 which is processed next. The bucket for x2 contains
the single relation R2;3;4;5. Processing bucket2 adds the relation,

R3;4;5 = �3;4;5(R2;3;4;5)

= f(S,E,S), (S,E,R), (E,E,T), (A,I,L), (E,E,R)g,

to the bucket of variable x3 which is processed next. The bucket for x3 contains
the relations R3;4;5 and R3;6;9;12. Processing bucket3 adds the relations,

R4;5 = �4;5(R3;4;5)

= f(E,S), (E,R), (E,T), (I,L), (E,R)g,

R6;9;12 = �6;9;12(R3;6;9;12)

= f(I,K,E), (R,O,N), (E,E,T), (A,R,N), (A,M,E)g,

R4;5;6;9;12= �4;5;6;9;12(R3;4;5 1 R3;6;9;12)

= f(E,S,A,M,E), (E,R,A,M,E), (E,T,A,R,N), (I,L,R,O,N), (E,R,A,R,N)g,

to the buckets of variables x4 (relations R4;5 and R4;5;6;9;12) and x6 (relation
R6;9;12). Continuing in this manner, at iteration 10 the empty relation is derived
and thus the algorithm can stop and report that the network is inconsistent. It
can be shown that crossword puzzles can be globally solved by DRC3.

Finally,we propose algorithmAdaptive-Relational-Consistency (ARC)
which is the relational counter-part of algorithm adaptive-consistency [7]. Like
algorithm DRCm, it process the buckets in order from last to �rst. When pro-
cessing the bucket of xj, it applies extended composition relative to xj to all the
relations in that bucket, and then places the resulting relation in its appropriate
bucket. It can be shown that ARC can globally solve any constraint network.

Adaptive-Relational-Consistency(R; o)

1. Initialize: generate an ordered partition of the constraints, bucket1, . . . ,
bucketn, where bucketi contains all constraints whose highest variable is xi.

2. for p n downto 1

3. do for all the relations RS1 ; . . . ; RSj in bucketp,

4. do A 
Sj

i=1 Si � fxpg

5. RA  RA \ �A(1
j
i=1 RSi )

6. if RA is not the empty relation
7. then add RA to its appropriate bucket
8. else exit and return the empty network
9. return Eo(R) = bucket1 [ bucket2 [ � � � [ bucketn

Theorem18. Algorithm Adaptive-Relational-Consistency (ARC) glob-
ally solves any constraint network. The complexity of the algorithm when pro-
cessed along ordering o is bounded by O(n � exp((n+ e) �w�(o))), where e is the
number of relations in the input network.



4 Variable Elimination Operators

The extended m-composition operator uni�es known operators such as resolution
in theorem proving, joins in relational databases, and variable elimination for
solving equations and inequalities. It is easy to see that pair-wise resolution is
equivalent to extended 3-composition.

4.1 Variable elimination in propositional CNF theories

We denote propositional symbols, also called variables, by uppercase letters
P;Q;R; :::, propositional literals (i.e., P;:P ) by lowercase letters p; q; r; :::, and
disjunctions of literals, or clauses, by �; �; :::. A unit clause is a clause of size 1.
The notation (� _ T ) is a shorthand for the disjunction (P _ Q _ R _ T ), and
� _ � denotes the clause whose literal appears in either � or �. The resolution
operation over two clauses (� _ Q) and (� _ :Q) results in a clause (� _ �),
thus eliminating Q. A formula ' in conjunctive normal form (CNF) is a set of
clauses ' = f�1; :::; �tg that denotes their conjunction. The set of models of
a formula ', denoted models('), is the set of all satisfying truth assignments
to all its symbols. A Horn formula is a CNF formula whose clauses all have at
most one positive literal. Let ECQ(RA; RB) denote the relation generated by
extended 3-composition of RA and RB relative to Q, Q 2 A \B.

Lemma19. The resolution operation over two clauses (�_Q) and (�_:Q), re-
sults in a clause (�_�) satisfying:models(�_�) = ECQ(models(�);models(�)).

Incorporating resolution into DRC3 results in algorithm Directional Resolu-
tion which is the core of the well known Davis Putnam algorithm for satis�ability
[4, 10]. As is well known, and as will follow from our theory, the algorithm glob-
ally solves any CNF theory.

Directional-Resolution ('; o)

1. Initialize: generate an ordered partition of clauses to buckets.

2. for i n downto 1

3. do resolve each pair f(�_Qi); (�_:Qi)g � bucketi. If 
 = �_� is empty,
return Eo(') = fg, the theory is not satis�able; else, determine the
index of 
 and add it to the appropriate bucket.

4. return Eo(') 
S
i bucketi

It is easy to see that DRC2 with the simpli�cation step, when applied to CNF
theories is a slight extension of unit-resolution. It allows resolution involving non-
unit clauses as long as the variables appearing in one clause are contained in the
other clause. Consequently,

Lemma20. Algorithm DRC2 decides the satis�ability of Horn theories.



4.2 Variable elimination in linear inequalities

Let us now consider the class of linear inequalities over �nite subsets3 of the
integers and let a constraint between r variables or less be a conjunction of linear
equalities and inequalities of the form

Pr

i=1 aixi � c, where ai, and c are integer
constants. For example, the conjunction (3xi+2xj � 3)^ (�4xi+5xj < 1) is an
allowed constraint between variables xi and xj. A network with constraints of
this form can be formulated as an integer linear program where each constraint is
on r variables and the domains of the variables are �nite subsets of integers that
may be restricted by unary linear inequalities. It can be shown that the standard
operation of eliminating variables between pairs of inequality is almost equivalent
to extended 3-composition. Let us denote by sol(�) the �nite set of solutions
over the integers of one inequality �. sol(�) is the relational representation of
the inequality. We de�ne the elimination operation as follows:

De�nition21 linear elimination. Let � =
P(r�1)

i=1 aixi + arxr � c, and � =P(r�1)
i=1 bixi + brxr � d. Then elimr (�; �) is applicable only if ar and br have

opposite signs, in which case elimr(�; �) =
Pr�1

i=1 (�ai
br
ar

+ bi)xi � �
br
ar
c+ d. If

ar and br have the same sign the elimination implicitly generates the universal
constraint.

Lemma22. sol(elimr (�; �)) � ECr(sol(�); sol(�))

Proof. Assume now that ar and br contain opposite signs. Multiplying � by
� br

ar
and summing the resulting inequality with � yields the inequality

r�1X
i=1

(�ai
br

ar
+ bi)xi � �

br

ar
c+ d:

In other words, any tuple satisfying this inequality can be extended to a real
value of xr in a way that satis�es both � and �. It is unclear, though, that there
is an integer extension to xr which is the reason for partial containment. 2.

Incorporating linear elimination into DRC3 results in algorithm Directional
Linear Elimination (abbreviated DLE) which is the well known Fourier elimina-
tion algorithm (see [16]). It was shown that the algorithm decides the solvability
of any set of linear inequalities over the Reals.

Directional-Linear-Elimination ('; o)

1. Initialize: generate an ordered partition of the inequalities into buckets.

2. for i n downto 1

3. do for each pair f�; �g � bucketi, compute 
 = elimi(�; �). If 
 has no
solutions, return Eo(') = fg, the theory is not satis�able; else, add

 to the appropriate bucket.

3 Our treatment can be extended to non-�nite domains. However to simplify we will
assume that the domains are integers bounded between [-M,M] for very large M,
whenever other bounds are not explicitly given.



4. return Eo(') 
S
i bucketi

If DLE is processed over the relational representation of the linear inequali-
ties, (in which case it becomes DRC3), we will be able to bound its complexity
using the notion of induced width. However, when DLE uses inequality rep-
resentation only (the only option for in�nite domains) its complexity may be
worst-case exponential even when the induced width w�, is bounded. The rea-
son is that an exponential number of inequalities may be recorded, even on one
or two variables. We cannot \intersect" two inequalities and replace them by
one. Even for binary inequalities the algorithm may be exponential, unless we
use relational representation and DRC3. In summary,

Theorem23. Algorithm DLE is exponential even for binary inequalities and
even for bounded induced width. For �nite domains DRC3 is applicable and its
complexity is polynomial for binary constraints and bounded induced width.

Propositional CNFs as well as linear inequalities share an interesting syntac-
tic property: It is easy to recognize whether applying extended-3-composition
relative to variable xi results in a universal constraint. Both resolution and lin-
ear elimination relative to xi are e�ective only when the variable to be eliminated
appears with opposite signs. This leads to a simple-to-identify tractable class for
both these languages. If there exists an ordering of the variables, such that in
each of its bucketi, xi appears with the same sign, then the theory is already
globally solved relative to that ordering. We called in [10] such theories as \zero
diversity" and we showed that they can be recognized in linear time.

5 From Local to Global Consistency

Much work has been done on identifying relationships between properties of
constraint networks and the level of local consistency su�cient to ensure global
consistency. This work falls into two classes: identifying topological properties of
the underlying graph of the network and identifying properties of the constraints.

For work on identifying topological properties, Freuder [12] identi�es a rela-
tionship between the width of a constraint graph and the level of local consis-
tency needed to ensure a solution can be found without backtracking. Dechter
and Pearl [7] provide an adaptive scheme where the level of local consistency
is adjusted on a node-by-node basis. Dechter and Pearl [8] generalize the re-
sults on trees to hyper-trees which are called acyclic databases in the database
community [2].

For work on identifying properties of the constraints, Montanari [20] shows
that path consistency is su�cient to guarantee that a binary network is globally
consistent if the relations are monotone. Dechter [5] identi�es a relationship
between the size of the domains of the variables, the arity of the constraints,
and the level of local consistency su�cient to ensure the network is globally
consistent. These results were extended recently by van Beek and Dechter to
the property of tightness and looseness of the constraint networks [24, 23]. Van



Hentenryck, Deville, and Teng [26] show that arc consistency is su�cient to test
whether a network is satis�able if the relations are from a restricted class of
functional and monotone constraints. These properties were generalized recently
to the property of row-convexity [25].

Finally, for work that falls into both classes, Dechter and Pearl [9] present
e�ective procedures for determining whether a constraint network can be formu-
lated as a causal theory and thus a solution can be found without backtracking.
Whether a constraint network can be so formulated depends on the topology of
the underlying constraint graph and the type of the constraints.

In this section we show the power of relational consistency in generalizing
some recently identi�ed relationships between properties of the constraints and
the level of local consistency su�cient to ensure that a network is globally con-
sistent. This formulation leads to a characterization of classes of problems that
can be solved by a restricted level m of DRCm. The general pattern we will see
is as follows. We present a su�cient condition showing that a network satisfying
a property p, and having a corresponding level of local consistency l(p), is glob-
ally consistent. This implies that whenever the property p is maintained under
extended l(p)�composition, those networks (satisfying p) can be globally solved
by DRCl(p). Furthermore, it is su�cient for condition l(p) to hold only relative
to the particular ordering on which the algorithm is applied.

5.1 Domain tightness and global consistency

In [5], we have shown that:

Theorem24. [5] If R is a k-valued binary constraint network that is k+1 con-
sistent then it is globally consistent. If R is a k-valued r-ary constraint network
that is k(r � 1) + 1 consistent then it is globally consistent.

We now show that by using the notion of relational consistency the above
relationship for r-ary networks (as well as its proof), are simpli�ed. Moreover,
the implied algorithm can be stated more coherently.

Theorem25. A k-valued constraint network R, that is k+1-relational-consistent
is globally consistent.

Since the domains do not increase by extended (k + 1)-composition we get:

Theorem26. Any k-valued network R can be globally solved by DRCk+1.

Example 4. From Theorem 26, bi-valued networks can be globally solved
by DRC3. In particular, propositional CNFs can be globally solved by DRC3.
As we have seen, in this case, the operator of extended 3-composition takes the
form of pair-wise resolution yielding algorithm directional resolution [10].



5.2 Row-convexity and global consistency

In [22], we have shown that:

Theorem27. [22] Let R be a path-consistent binary constraint network. If there
exists an ordering of the domains D1; . . . ; Dn of R such that the relations are
row convex, the network is globally consistent.

The result for binary networks was generalized to constraints of arbitrary
arity, using relational path consistency.

Theorem28. [25]. Let R be a relational path consistent constraint network. If
there exists an ordering of the domains D1; . . . ; Dn of R such that the relations
are row convex, the network is globally consistent.

We can conclude that:

Theorem29. If R is a network whose closure under extended 3-composition is
row convex then R can be globally solved by DRC3.

Example 5. Consider a set of linear equalities and inequalities over �nite
subsets of integers of the form:

Pr

i=1 aixi � c where ai; c are integers. It can be
shown that the (0; 1)matrices of such relations are row convex and, when the con-
straints are binary, their row-convexity is invariant to extended 3-composition.
It is also easy to see that any bi-valued relation is row-convex. Cosequently,

Theorem30. A set of linear inequalities over �nite set of integers can be glob-
ally solved by DRC3. A CNF formula can be globally solved by DRC3.

Two special cases are a restricted and discrete version of Dechter, Meiri, and
Pearl's [6] continuous, bounded di�erence framework for temporal reasoning and
a restricted and discrete version of Vilain and Kautz's [27] qualitative framework
for temporal reasoning. Another known class that can be shown to be row-convex
is implicational constraints [15]. For more details see [25].

5.3 Constraint tightness and global consistency

For some networks, Theorem 24 is tight in that the level of local consistency
speci�ed by the theorem is really required (graph coloring problems formulated
as constraint networks are an example). For other networks, Theorem 24 overes-
timates. In [24], we re�ned that relationship by extending the notion of tightness
to the constraints themselves.

Theorem31. [24]. If a binary constraint network R is m-tight, and if the net-
work is strongly (m + 2)-consistent, then the network is globally consistent.

Theorem32. [24] If a general constraint network R is m-tight, and relationally
(m+ 2)-consistent, then the network is globally consistent.



Theorems 31 & 32 always specify a level of strong consistency that is less
than or equal to the level of strong consistency required by Theorem 24. The
level of required consistency is equal only when m = d � 1 and is less when
m < d� 1. As well, the theorem can sometimes be usefully applied if d � n� 1,
whereas Theorem 24 cannot.

Example 6. Nadel [21] introduces a variant of the n-queens problem called
confused n-queens and uses it to empirically compare backtracking algorithms.
In [24], we use Theorem 31 to show that these problems are quite easy (as they
require a low level of local consistency to ensure global consistency) and that
any empirical results on these problems should be interpreted in this light.

5.4 Constraint looseness and local consistency

In [23], we presented a simple su�cient condition that estimates the inherent
level of strong k-consistency of a binary constraint network.

Theorem33. [23] If a binary constraint network R is m-loose and all domains

are of size d or less, then the network is strongly
�l

d
d�m

m�
-consistent.

We now generalize the result to networks with constraints of arbitrary arity.

Theorem34. If a general constraint network R is m-loose and all domains are

of size d or less, then the network is relational
�l

d
d�m

m�
-consistent.

Theorems 33 & 34 provide a lower bound on the actual level of inherent local
consistency of a constraint network. Graph coloring problems provide examples
where the bound is exact, whereas n-queens problems provide examples where
the bound underestimates the true level of local consistency [23].

5.5 Acyclic and causal networks and global consistency

Relational consistency and the DRCm algorithms can also easily capture the
tractable classes of acyclic and causal networks. It is well known that acyclic
networks are tractable [19, 8].

Lemma35. If a network is acyclic then there exists an ordering of the variables
for which each bucket has a single relation.

Single-bucket networks contain the class of acyclic networks and causal net-
works. It was shown in [9] that it is possible to discover an ordering of the
variables for which each bucket contains a single relation, whenever such an
ordering exist. We conclude:

Theorem36. Single-bucket networks that are closed under DRC2 are tractable.



6 Conclusions

We have shown that di�erent levels of DRC can globally solve di�erent classes
of constraint networks:

1. DRC2 globally solves acyclic and single-bucket, causal relations in polyno-
mial time. It solves, (not globally solves) Horn CNF theories.

2. DRC3 globally solves closed row-convex networks, bi-valued domain net-
works, closed 1-tight networks, crossword puzzles, and linear inequalities
over �nite subsets of the integers. The algorithm is polynomial for binary
constraints over �nite domains in relational form, and can be exponential
otherwise. Algorithm DLE is a linear elimination algorithm that approxi-
mates DRC3 over integers.

3. AlgorithmDRCm globally solves (m�1)-valued networks, and closed (m�2)-
tight networks. The algorithm is polynomial for binary constraints.

4. Algorithm ARC globally solves all networks and is exponential.
5. The complexity of both DRCm and ARC is exponentially bounded by w�,

the tree-width of the network over �nite domains.
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