
Variable Independence in Markov Decision Problems

Irina Rish and Rina Dechter
Information and Computer Science
University of California, Irvine

Abstract

In decision-theoretic planning, the problem of plan-
ning under uncertainty is formulated as a multidi-
mensional, or factoredMDP. Traditional dynamic pro-
gramming techniques are ine�cient for solving fac-
tored MDPs whose state and action spaces are expo-
nential in the number of the state and action variables,
correspondingly. We focus on exploiting problems'
structure imposed by variable independence that im-
plies decomposability of transitional probabilities, re-
wards, and policies, and is captured by the interaction
graph of an MDP, obtained from its in
uence diagram.
Using the framework of bucket elimination[9], we for-
mulate a variable elimination algorithm elim-meu-id

for computing maximum expected utility, given an in-

uence diagram, and apply it to MDPs. Traditional
dynamic programming techniques for solving �nite-
and in�nite-horizon MDPs, such as backward induc-

tion, value iteration, and policy iteration, can be also
viewed as bucket elimination algorithms applied to a
particular ordering of the state and decision variables.
The time and space complexity of elimination algo-
rithms is O(exp(w�

o
)), where w�

o
the induced width of

the interaction graph along the ordering o of its nodes.
Unifying framework of bucket elimination makes com-
plexity analysis and variable ordering heuristics devel-
oped in constraint-based and probabilistic reasoning
applicable to decision-theoretic planning. As we show,
selecting \good" orderings improves the e�ciency of
traditional MDP algorithms.

Introduction

Decision-theoretic planning is concerned with prob-
lems of planning under uncertainty, that can be formu-
lated in the well-developed framework of the Markov
Decision Processes. However, a straightforward appli-
cation of MDP theory to planning problems in arti�cial
intelligence is computationally ine�cient since the size
of the state space is frequently immense. World's states
and actions are usually represented by vectors of the
state and action variables, thus yielding multidimen-
sional, or factored, MDPs. The time and space com-
plexity of the traditional dynamic programming tech-
niques for solving MDPs is polynomial in size of the
state and action spaces, and therefore exponential in

the number of the state and action variables. Recent
work in decision-theoretic planning has been focused
on coping with this \curse of dimensionality" [3]. It
was observed by Dean [6] and others that in order to
overcome the exponential complexity, one has to ex-
ploit the structure in the state and action space. In
particular, variable and value independence [5] should
be taken in account.

In this paper, we focus on exploiting problems'
structure imposed by variable independence that im-
plies decomposability of transitional probabilities, re-
wards, and policies, and is captured by the interaction
graph of an MDP, obtained from its two-stage in
uence
diagram[7]. The nodes of an interaction graph corre-
spond to the state and action variables, and the arcs
encode probabilistic dependencies and utility (reward)
function. We assume that probability, reward and pol-
icy functions are decomposable into components de-
�ned on cliques of the interaction graph. We show that
this kind of problem's structure is not exploited by tra-
ditional dynamic programming techniques for solving
MDPs, such as backward induction for �nite-horizon
problems, value iteration policy iteration for in�nite-
horizon case.

Using the framework of bucket elimination[9], we for-
mulate a variable elimination algorithm elim-meu-id
for computing maximum expected utility, given an in-

uence diagram, and apply it to MDPs. Traditional
dynamic programming techniques for solving �nite-
and in�nite-horizon MDPs, such as backward induc-
tion, value iteration, and policy iteration, can be also
viewed as bucket elimination algorithms applied to
a particular ordering of the state and decision vari-
ables. Given an ordering of variables, an elimina-
tion algorithm processes each variable in this ordering
and transforms the problem into an equivalent one by
eliminating the variable. Such algorithms allow
ex-
ible utilization of variable ordering which can have a
signi�cant e�ect on their performance characteristics.
While the traditional dynamic programming approach
for MDPs almost exclusively followed the temporal or-
dering of the problem, a general elimination algorithm
such as elim-meu-id can improve performance by us-

ing a more
exible ordering. The algorithm derives a
good ordering from a graph that captures various de-
pendencies in the problem in the same way it has been
done for constraint networks and belief networks, and
its complexity is bounded exponentially by a graph pa-
rameter called induced width, or w�.
In the next section, we give necessary de�nitions.

Section 3 de�nes a factored MDP and its interaction
graph. An example of factored MDP is presented in the
section 4. Motivation for
exible orderings is explained
in the Section 5; the algorithm elim-meu-id and its
properties are presented in Section 6. The next section
summarizes the paper and mentions the future work.

De�nitions and Preliminaries
Given an undirected graph G, and an ordering o of
its nodes, the number of nodes connected to node Q
that precede it in the ordering is called the width of
Q relative to o. The width wo of an ordering o is
the maximum width of nodes along the ordering, and
the width w of a graph is the minimum width over
all its orderings. The graph generated by recursively
connecting the parents of G, in the reverse order of o
is called the induced graph of G, and its width, w�(o),
is called the induced width of G [11, 10].
It is known that the induced width of a graph em-

bedded in a k-tree is bounded by k [1]. A k-tree is
de�ned recursively as follows. A clique of size k (com-
plete graph with k vertices) is a k-tree. Given a k-tree
de�ned on Q1; :::; Qi�1, a k-tree on Q1; :::; Qi can be
generated by selecting a clique of size k and connecting
Qi to every node in that clique.
A belief network (BN) [13] is a directed acyclic

graph, where each node corresponds to a random vari-
able, and arcs denote probabilistic (conditional) de-
pendence between nodes. Given a directed arc (x; y),
x is called parent of y, and y is called child of x. Each
node x in the network is associated with the proba-
bility function P (xjpa(x)), where pa(x) is the parent
set of x. The network de�nes a joint distribution of n
variables given by P (x1; :::; xn) =

Q
n

i=1 P (xijpa(xi)).
A moral graph is obtained from a belief network by
connecting all nodes having a common child, and ig-
noring the directionality of edges.
In
uence diagrams extend belief networks by in-

troducing decision nodes that correspond to decisions
made by an agent, and value nodes that represent util-
ities, or values. The nodes of belief networks are called
chance nodes. ID is a directed acyclic graph, where
the incoming arcs to chance and value nodes repre-
sent functional dependencies (probabilistic for chance
nodes, and deterministic for value nodes), while the
incoming arcs to decision nodes re
ect informational
dependencies: in order to make a decision d an agent
should know the values of its parents, pa(d).

Factored Markov Decision Problems
Decision-theoretic planning tasks are formulated in the
framework of Markov Decision Processes, that involve

the set of possible world's states, the set of actions,
available to an agent, transitional probabilities of mov-
ing from a state to state after an action has been taken,
and rewards associated with an action in a particular
state. Actions are performed at decision epochs, or
time stages. Formally, a multidimensional, or factored,
MDP is de�ned by:

� A set of decision epochs, T = f1; :::; Ng; N is �nite
for �nite horizon MDPs, and N = 1 for in�nite
horizon MDPs;

� a set of n state variables X = fX1; :::; Xng; each
variable Xi has domain Di. The state space is de-
�ned then as
X = �n

i=1Di; x
t = (xt1; :::; x

t

n
) de-

notes the state at time t.

� A set of m action variables, A = fA1; :::; Amg; each
variable Ai has domain DAj

. The action space is

de�ned as
A = �m
j=1DAj

; at = (at1; :::; a
t

m
) denotes

the action at time t.

� A set of probability functions P (xt
i
jpa(xt

i
)), where

pa(xt
i
) �fat�11 ; :::; a

t�1
m
g[fxt�11 ; :::; x

t�1
n
g[fxt1; :::; x

t

n
g.

� Initial rewards r(x; a) for taking an action a in the
state x.

� terminal reward r
N (x) for getting to the state x at

time N (only for �nite-horizon MDPs) .

Finite-horizon Markov Decision Problem [14] is to
�nd a policy � = (d1; :::; dN�1), which is a sequence
of decision rules d

t :
X !
A , such that a cer-
tain optimality criterion is maximized. In the in�nite
horizon case, we are usually looking for a stationary
(time-independent) policy �
X !
A. Widely used
optimality criterion is the expected total discounted re-
ward [14] with discount factor �, 0 � � < 1. If � = 1,
the criterion is called the expected total reward. For
N -stage �nite-horizon MDPs , it is de�ned as

V
�

�;N
(x) � E

�

x
(

N�1X

t=1

�
t�1

r(xt; at) + �
N�1

r(xN));

where E�

s
(�) is the expected value with respect to pol-

icy � conditioned on x
1 = x; xtandat denote, respec-

tively, the state and the action at time t. For an
in�nite-horizon MDP, the expected total discounted
reward of policy � is de�ned as

V
�

�
(x) � lim

N!1

E
�

x

NX

t=1

�
t�1

r(xt; at):

Both expected total discounted reward and expected
total reward can be used for �nite-horizon problems,
while in the in�nite horizon case only the �rst one is
always well-de�ned and guarantees the convergence of
traditional MDP algorithms, such as value iteration
and policy iteration.

We intend to exploit the MDP structure based on
decomposability of transitional probabilities, rewards,

and policies. Transitional probability function is mul-
tiplicative decomposable:

P (xtjxt�1; at) =

nY

i=1

P (xt
i
jpa(xt

i
)):

The reward function is assumed to be additively de-
composable on subsets of the state and action variables,
X
0

i
� X, A0

i
� A, i = 1; :::; k, as follows:

r(X) =

kX

i=1

ri(X
0

i
; A

0

i
):

Finally, we consider decomposable decision rules
(and, as a result, decomposable policies) d(X) =
(d1(Y1); :::; dm(Ym)), Yi � X, that generalize the con-
cept of decision rules (policies) in multidimensional
space. This kind of decomposability of functions can
be captured by an interaction graph of a problem [4],
where nodes correspond to the variables, and the arcs
connect the variables participating in same function
components (interacting variables).
We represent an N -stage MDP (in general, non-

stationary) by an N-stage interaction graph (NG)
which is obtained as follows: 1. construct an in
u-
ence diagram de�ned on the state and action variables
at t = 1; :::; N , fXt

i
ji = 1; :::; ng, fAt

j
jj = 1; :::;mg,

without specifying value nodes; instead, connect the
variables participating in the same reward components
X
0

i
at each time slice; informational arcs denote the

dependencies between the state variables and decision
rule components, i.e. there is a directed arc from X

t

i

to At

j
i� Xi 2 Yj , where Yj is the argument set of j-th

component of decision rule; 2. moralize the graph (for
each node having incoming directional arcs, connect
the node's parents and make those arcs undirected).
The arcs have now a uniform meaning: two variables
are connected by an arc i� they participate in same
component of a probability, reward, or decision rule
function. A stationary MDP, �nite or in�nite horizon,
can be represented by a two-stage interaction graph
(2G).

Unit commitment: a factored MDP

The unit commitment problem is a scheduling prob-
lem from the power industry. A power plant has n
power generating units, that need to be scheduled over
a time period of N hours, so that certain constraint
are satis�ed and total cost of running the units is min-
imized. The load demand constraint requires that the
power load demand L

t at each hour t does not ex-
ceed the power supply of committed units. Minimum
running time (min-up-time) and minimum shut-down
time (min-down-time) restrictions imply that a unit
cannot be turned o� (on) unless it stayed on (o�) for
certain minimal amount of hours. The cost includes
two components, the transitional cost of starting up
units, and the production cost of running a unit on a
certain level of power generation. The objective is to

�nd a most economic feasible schedule of units' start
and stop times.
Each unit i can be described by two variables, the

state of the unit, Xi 2 fON;OFFg, and duration
of staying in the current state (in hours), Di. The
actions applicable to each unit are Ai = fTURN �
ON; TURN �OFF;DO�NOTHINGg. We assume
that units are mutually independent, and their failures
(repairs) are described by a Poisson process with ex-
pected failure rate � (repair rate �). TURN�ON and
TURN � OFF actions are deterministic (failure of a
unit in the moment of turning it on is assumed to have
probability zero). Load demand is modeled by Gaus-
sian distribution with known mean and standard devi-
ation. Those assumptions allow to de�ne transitional
probabilities for each action. Minimum up- and down-
time constraints rule out impossible transitions by set-
ting corresponding transitional probabilities to 0, e.g.:
P (Xt+1

i
= ON jDt

i
; X

t

i
= OFF;A

t

i
= TURN�ON) =

0 if Dt

i
< min down time. The reward function

r(s; a) = �(Op Cost(s) + Tr Cost(s; a)) + LD(s)

has three components: Op Cost(s),the cost of operat-
ing units in a state s (total fuel cost); Tr Cost(s; a),
the cost of transition from the state s

t at hour t

to another state after taking an action a; and the
component LD(s), representing the load demand con-
straint. If we make an assumption that we can im-
port (buy) or export (sell) electric power; then, if
s = (x1; d1; :::; xn; dn; L),

LD(s) � LD(x; L) = cf

nX

i=1

Pi � xi � Lg;

where c is the cost per electric power unit (MW), and
Pi is the power generation level of the i-th unit. The in-
teraction graph of a unit commitment problem is given
in Figure 1.
The traditional formulation of the unit commitment

task is to �nd a schedule, or plan, a1; :::; aN�1, max-
imizing total reward which is the sum of one-step re-
wards r(xt; at), and adopts deterministic model, i.e.
neglects unit failures and assumes that load demand
forecast is known. We formulate the problem as a
�nite-horizon MDP, but can restrict ourselves to poli-
cies that have state-independent decision rules, i.e. can
be represented as a sequence of actions (a1; :::; aN�1),
or schedule, maximizing expected total reward. An-
other task would be to �nd an optimal policy in its
conventional meaning, as a function on states, but this
task is obviously much harder then the previous one.

Structure-Preserving Operators and

Variable Orderings

As we mentioned above, we focus on problems hav-
ing decomposable transitional probability and reward
function. We investigate how this structure can be
exploited by traditional dynamic programming algo-
rithms for solving MDPs. Those techniques compute

Duration

Action

State

Unit n

t+1t

State

Action

DurationUnit 1

Load demand

Figure 1: Interaction graph of a unit commitment
problem

the total reward by sequential application of certain
functional operators to a value function de�ned on the
state spaces [14]. Maximum return operator L is de-
�ned as

Lv � max
d2D

frd + �P
d
vg = max

d2D

Ldv;

where v 2 V , V the space of bounded real-valued func-
tions on the state space, d :
X !
A is a decision
rule (a stationary policy), P d is transitional probabil-
ity matrix with components P (x0jx; d(x)), and r

d is
the vector with components r(x; d(x)), and Ld is the
one period return operator for a decision rule d.
Dynamic programming algorithm for

solving N -stage �nite-horizon MDPs, called backward
induction[14], computes the expected total reward as
V
�

N
= L

N�1
r
N , where L

1
v � Lv; L

N
v � LL

N�1
v.

Value iteration generalizes backward induction for the
in�nite horizon, and computes L

N
v until a certain

stopping criterion is not satis�ed (see [14]). Policy it-
eration employs a di�erent approach: it starts with an
initial policy (decision rule) d and computes its value
at the step called policy evaluation by sequential apply-
ing Ld operator until the sequence converges to some
v(in fact, modi�ed policy iteration[14] provides better
stopping criteria). Then, during policy improvement,
one step of a greedy local search step in the space of all
policies d, with objective function Ldv, is performed;
this involves computing Lv. It is proven that policy
iteration is guaranteed to converge to the global max-
imum, i.e. to �nd an optimal policy.
It is easy to show that the operator Lv does not

preserve the decomposability of rewards and transi-
tional probabilities, i.e. given v and P decomposable
on same subsets of variables, we cannot give a de-
composable representation of Lv in general case. L

combines taking expectation over the state variables
with computing maximum over decision rules, that
\ties" the components of the value function together.
On the other hand, Ld preserves this structure since
it does not involve maximization over decision rules.

X2
2 2RX2

1

X2
2 2RX2

1

X1
2 R1X1

1

D2

D2

X2
2 2RX2

1

X2
2 2RX2

1

X1
2 R1X1

1

Figure 2: Graph-based ordering heuristics

The idea behind our approach presented in the next
section is to allow
exible ordering of maximization
and expectation operations. The ordering should be
selected in accordance with the particular structure
of a problem depicted in its interaction graph. Fig-
ure 2 shows an interaction graph and two possible or-
derings of its nodes, (X1

; D
1
; X

2), and (D1
; X

1
; X

2),
where X

t denotes an arbitrary sequence of xt
i
, and

D
t denotes action variable at time t. Note that the

induced width of the �rst ordering is 3, while for
the second ordering it is 2. An ordering heuristic,
called min-width[8], would prefer the second ordering
which corresponds to shifting maximization operation
in front of Ld operators in our example. For sim-
ilar example with N decision epochs, the complex-
ity of dynamic programming on \traditional" order-
ing (X1

; D
1
; :::; X

N�1
; D

N�1
; X

N) (i.e. backward in-
duction) is O(N jDij

2njDAj
j), while its complexity on

(D1
; :::; D

N�1
; X

1
; :::; X

N) is O(N jDij
2jDAj

jN) The
computation becomes exponential in the number of
time slices, but is not exponential in the state space.

Bucket Elimination for In
uence

Diagrams

A bucket elimination algorithm elim-meu for comput-
ing maximum expected utility, given a belief network
containing decision variables, was presented in [9]. It
implies that all decision variables are the root nodes in
the belief network. We generalize elim-meu by allowing
an arbitrary network structure.
Let X = fx1; :::; xng denote the set of chance nodes

of an in
uence diagram , D = fd1; :::; dmg be the set
of decision (action) nodes. An additively decompos-
able utility (reward) function is de�ned as r(X;D) =

P
k

j=1 rj(Yj), where Y � X [D. Let G denote the

interaction graph of the in
uence diagram obtained as
described above; vector x (vector d) denotes an assign-
ment to the chance (decision) nodes; xY (dZ) is the
restriction of the assignment x (the assignment d) on
Y � X (on Z � D). Given G, and evidence e (value
assignment to variables in Xe � X), algorithm elim-
meu-id (Figure 3) computes maximum expected total
reward

Ve = maxd

X

x

nY

i=1

P (xijpa(xi); e)

kX

j=1

rj(xYj)

and an assignment to decision nodes in form of decom-
posable policy function d(X) = (d1(X

0

1); :::; dm(X
0

m
)),

X
0

i
� X, that maximizes Ve.
The basic idea of the bucket elimination algorithms

is to partition the set of functions de�ned on the nodes
Q1; :::; Ql of the input graph into subsets, or buckets,
in accordance with a given ordering o = Q1; :::; Ql, so
that all functions having Qi as their highest ordered
argument are placed into the i-th bucket. The buck-
ets are processed then from the last to the �rst; pro-
cessing a bucket of a chance node means computing
an expectation on the corresponding variable, while
processing a bucket of an action node means maxi-
mization over all possible values of the corresponding
variable. Below we show how the expression for Ve
is modi�ed when a decision or chance node is elim-
inated. Let Fi = fxig [pa(xi), F = [n

i=1fFig,
�i(Fi) = P (xijpa(xi); e), �j(Yj) = rj(Yj), then Ve can
be expressed as follows:

max
d1;:::;dm

X

x1;:::xn

Y

Fi

�i(Fi)
X

Yj

�j(Yj):

Let us denote by F
xn

IN
(Y dm

IN
) the set of all subsets Fi

(Yj) that include xn (dm), and by F
xn

OUT
(Y dm

OUT
) the

set of all subsets Fi (Yj) that do not include xn (dm).
Elimination of xn:

max
d1;:::;dm

X

x1;:::xn

Y

Fi2F

�i(Fi)
X

Yj

�j(Yj) = max
d1;:::;dm

X

x1;:::xn�1

X

xn

Y

Fi2F
xn
OUT

�i(Fi)
X

xn

Y

Fi2F
xn
IN

�i(Fi)

f
X

Yj2Y
xn
OUT

�j(Yj) +
X

Yj2Y
xn
IN

�j(Yj)g = max
d1;:::;dm

X

x1;:::xn�1

Y

Fi2F
xn
OUT

�i(Fi)�
0(Uxn)f

X

Yj2Y
xn
OUT

�j(Yj)+
�(Wxn

)

�0(Un)
g;

where Uxn = [ifFijFi 2 F
xn

IN
g � fxng, Wn =

[ifFijFi 2 F
xn

IN
g
S
[jfYjjYj 2 Y

xn

IN
g�fxng, �

0(Uxn) =P
xn

Q
Fi2F

xn
IN

�i(Fi), �(Wxn
) =
P

xn

Q
Fi2F

xn
IN

�i(Fi)P
Yj2Y

xn
IN

�j(Yj). Functions �0(Uxn) and �
0(Wxn

) =

�(Wxn)

�0(Uxn)
are computed when processing the bucket of

xn, and added to the buckets of highest ordered vari-
ables in Uxn and Wxn

, correspondingly.

Algorithm elim-meu-id
Input: G, an ordering o, evidence e.
Output: An assignment d1; :::; dm to decision vari-
ables that maximizes the expected reward Ve.
1. Initialize: generate an ordered partition of the
conditional probability matrices, and the reward
components, bucket1, . . ., bucketq, where bucketp

contains matrices �(Fi) and reward components
�(Yj), whose highest variable has number p. Put
the evidence assignments xe into the corresponding
buckets. A bucket of a chance (action) node is called
chance (decision) bucket.
Backward steps:
2.for k q downto 1 do

� If bucketk contains evidence xe
j
, then substitute

xj by x
e

j
in all �(Fi), �(Yj) and put the resulting

matrices in appropriate buckets.

� else, if k is chance bucket, compute �0(Uxk) and
�
0(Wxk

);

� else compute
(Wdk
); Put the computed func-

tions into the buckets of highest ordered variables
in Uxn and Wxk

, or (Wdk
).

3. Return an optimal set of functions (d1; :::dm)
recorded in the decision buckets, and the maximum
expected reward Ve.

Figure 3: Algorithm elim-meu-id

Elimination of dm:
max

d1 ;:::;dm

X

x1;:::xn

Y

Fi2F

�i(Fi)
X

Yj

�j(Yj) = max
d1;:::;dm�1

X

x1;:::xn

Y

Fi2F
dm
OUT

�i(Fi)max
dm

Y

Fi2F
dm
IN

�i(Fi)

f
X

Yj2Y
dm
OUT

�j(Yj) +
X

Yj2Y
dm
IN

�j(Yj)g =

= max
d1 ;:::;dm�1

X

x1;:::xn

Y

Fi2F
dm
OUT

�i(Fi)
(Wdm
);

where Wdm
= [i fFijFi 2 F

dm

IN
g
S
[jfYjjYj 2

Y
dm

IN
g �fdmg, and
(Wdm

) = maxdm
Q

Fi2F
dm
IN

�i(Fi)

f
P

Yj2Y
dm
OUT

�j(Yj)+
P

Yj2Y
dm
IN

�j(Yj)g. The function

(Wdm
) is computed in the bucket of dm and added to

the bucket of highest ordered variable in Wdm
.

Algorithm elim-meu-id can be applied to NG, an
N -stage interaction graph of a �nite-horizon MDP in
order to �nd a policy � = (d1; :::dm). It can be also
incorporated in dynamic programming techniques for
solving in�nite-horizon problems, for example, as pol-
icy evaluation step of the policy iteration algorithm.
We can show that

Theorem 1 : Given an interaction graph NG of
a �nite-horizon MDP, and an ordering of its nodes

X

A A

X

X

X X

X

X X

X

X

X

X

1
1

1

1

1

1 1

2

2

2
2

2

2

2

3 3

3

3

3
3

3

21

n n n

Figure 4: Complete interstate dependence

o, algorithm elim-meu-id can �nd an optimal plan in
O(N (n + m)exp(w�

o
)) time, where N is the number

of decision epochs, n and m are the numbers of the
state and action variables, respectively, and w

�

o
is the

induced width of NG along the ordering o.

It is known that �nding a minimum-induced-width
ordering for an arbitrary graph is an NP-hard problem
[1]. We intend to exploit the regularity of NG which is
just an \unfolded" 2G in case of stationary MDPs.
Assume that all state variables depend on each

other, and on all the variables and actions at the pre-
vious time slice (see an example in Figure 4). Each
two-slice segment of NG forms a clique of size 2n+m

so NG is a chain of such cliques. Easy to see that an
ordering (X1

; A
1
; :::; A

N�1
; X

N), where Xt denotes an
arbitrary sequence of Xt

i
; i = 1; :::; n, has the induced

width 2n+m�1. We will call any such ordering natu-
ral, because it follows the sequence of decision epochs.
Clearly,

Proposition 1: Given a 2G with n state variables,
and m action variables, the induced width of the cor-
responding NG is bounded by 2n+m� 1.

Consequently,

Proposition 2: The minimum induced width order-
ing for an arbitrary NG can be computed in time poly-
nomial in the number of time slices, but exponential in
n and m.

We would like to have a bound on induced width of
NG, given a 2G, such that w�(NG) = O(w�(2G)).
Unfortunately, this is impossible for arbitrary net-
works. For example, it is known that n � N grid
(NG) has w� = n, while w� of the corresponding 2-
slice grid (2G) w� is 2. Therefore, �nding tractable
MDP classes having w�(NG) = O(w�(2G)) is an open
research problem.

Conclusions

We considered the speci�c structure of MDPs imposed
by variable independence that implies decomposabil-
ity of transitional probabilities, rewards, and policies.

This structure is captured by an interaction graph of an
MDP. We propose a general bucket elimination tech-
nique for computing maximum expected utility on in-

uence diagrams (elim-meu-id), and apply it to MDPs.
While the traditional dynamic programming approach
for MDPs almost exclusively followed the temporal or-
dering of the problem, a general elimination algorithm
such as elim-meu-id can improve performance by using
a more
exible ordering derived from the interaction
graph structure.

References
[1] Arnborg, S., Corneil, D.G., and Proskurowski,

A., Complexity of Finding Embedding in a k-
tree, Journal of SIAM, Algebraic Discrete Methods,
8(2):177-184 (1987).

[2] R. Bellman, Dynamic Programming. Princeton
University Press, 1957.

[3] R. Bellman, Adaptive Control Processes: A Guided
Tour, Princeton University Press, Princeton, New
Jersey, 1961.

[4] Bertele, U. and Brioschi, F., Nonserial Dynamic
Programming, Academic Press, New York, 1972.

[5] C. Boutilier, T. Dean, and S. Hanks, Planning un-
der uncertainty: structural assumptions and com-
putational leverage, EWSP, 1995.

[6] T. Dean, Decision Theoretic Planning and Markov
Decision Processes, a tutorial presented at the
Summer Institute on Probability and Arti�cial In-
telligence, Corvalis, Oregon, 1994.

[7] R. Dearden and C. Boutilier, Abstraction and
approximate decision theoretic planning. Unpub-
lished manuscript.

[8] R. Dechter, Constraint networks, Encyclopedia of
Arti�cial Intelligence (2nd Ed.), John Wiley, New
York, 1991 pp. 276-285.

[9] R. Dechter, Bucket Elimination: A Unifying frame-
work for several probabilistic inference algorithms,
to appear in Proceedings of UAI-96, Portland,
1996.

[10] R. Dechter and J. Pearl, Network-based heuris-
tics for constraint satisfaction problems. In Arti�-
cial Intelligence, 34, pp. 1-38, 1987.

[11] E.C. Freuder, A su�cient condition for backtrack-
free search. Journal of the ACM, 29, 1982, 24-32.

[12] R.A. Howard, Dynamic Programming and Markov
Processes, MIT Press, Cambridge, Massachusetts,
1960.

[13] J. Pearl, Probabilistic reasoning in intelligent sys-
tems: networks of plauseible inference, Morgan
Kaufmann, 1988.

[14] M.L. Puterman, Markov decision processes: dis-
crete stochastic dynamic programming, John Wiley
& Sons, 1994.

