JUN-03-2005 0B8:43

BREN ICS COMPUTER SCIENCE 9498244056

CONSTRAINT-BASED BELIEF MAINTENANCE
AND ITS APPLICATION TO DIAGNOSIS*

Rina Dechter
Computer Science Department
Technion -- Israel Institute of Technology
Haifa, Israel 32000
and

Avi Dechter

Department of Management Science
California State University, Northridge, CA 91330

Net address: dechten@cs.ucla.edu or Dechter@Techsel.bitnet

ABSTRACT

F.01

This paper presents a summary of a constraint-based formulation of belief maintenance
system. We define belief in a proposition as the number of solutions of the constraint
networks with which it is consisient. The paper outlines a distributed scheme for calcu-
lating and revising beliefs in acyclic constraint networks and show its applicability to
diagnostic tasks. The suggested process consists of two phases. In the first, called sup-
port propagation, each variable updates the number of extensions consistent with each
of its values. The second, called contradiction resolution, is invoked by a variable that
detects a contradiction, and identifies a minimal set of assumptions that potentially
account for the contradiction. By utilizing the network’s topology, more efficient algo-
rithms for performing these tasks are introduced. Extensions of the scheme to general,

non-acyclic networks; using a clustering approach, are also discussed.
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1. Introduction

Reasoning about dynamic environments is a central issue in Artificial Intelligence.
When dealing with a complex environment, we normally have only partial description of
the world known explicitly at any given time. A complete picture of the environment
can only be speculated by making simplifying assumptions which are consistent with the
available information. When new facts become known, it is important to maintain the
consistency of our view of the world so that queries of interest (e.g., is a certain proposi-
tion believed to be true?) can be answered coherently at all times. Various non-
monotonic logics as well as truth-maintenance systems have been devised to handle such
tasks [Reiter 1987, Doyle 1979, de_Kleer 1986b], and they are referred to as Belief-
Maintenance-systems or BMS for short.

In [Dechter 1988c] we showed that constraint networks and their associated
constraint satisfaction problems provide an attractive paradigm for modeling dynami-
cally changing environments. Constraint networks have the expressive power of proposi-
tional calculus and were traditionally used for expressing static problems, ie., that
require a one-time solution. (for example, picture processing [Montanari 1974, Waltz
1975] ). A substantial body of knowledge for solving such problems has been developed
[Montanari 1974, Mackworth 1977, Freuder 1982, Dechter 1987] and some of its tech-
niques are already utilized in current TMSs, e.g., dependency-directed backtracking, con-
straint propagation, etc.

Constraint networks is an area where the effects of the problem’s topology on its
tractability were studied extensively. Exploiting this topological knowledge when using
constraint networks for BMS gives rise to efficient maintenance and query processing
algorithms. Moreover, the performance and complexity of these algorithms can be
analyzed and predicted in advance, a theoretical treatment which is usually not available
in current TMS research.

The remainder of the paper is organized as follows. Section 2 reviews the con-
straint network model and extends it to handle belief maintenance tasks. Sections 3, 4
and 5 summarize the processing algorithms presented at [Dechter 1988c¢]. These algo-
rithms, which consist of two phases: support propagation and contradiction resolu-
tion, are presented first for singly connected binary constraint networks (sections 3 and
4). Section 6 demonstrates application to circuit diagnosis, and Section 7 contains a sum-
mary and some final remarks,

2. The Model

A constraint network (CN) involves a set of n variables, X;,...,X,, their
respective domains, Ry, . . . ,R,, and a set of constraints. A constraint C;(X;,, - ,X;)
is a subset of the Cartesian product R; x - - - x R,v}. that specifies which values of the vari-
ables are compatible with each other. A binary constraint network is one in which all the
constraints are binary, i.e., involve at most two variables. A binary CN may be associ-
ated with a constrainf-graph (also called primal constraint graph) in which nodes
represent variables and arcs connect those pairs of variables for which constraints are
given. Consider, for instance, the CN presented in Figure 1 (modified from [Mackworth
19771 ). Each node represents a variable whose values are explicitly indicated, and a link
represents the set of value-pairs permitted by the constraint between the variables it con-
nects (observe that the constraint between connected variables is a strict lexicographic
order along the arrows.)
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Figure 1: An example of a binary CN

A solution (also called an extension) of a constraint network is an assignment of
values to all the variables of the network such that all the constraints are satisfied. The
(static) constraint satisfaction problem associated with a given constraint network is the
task of finding one or all of the extensions. For BMS purposes we focus on a related
problem, that of finding, for each value in the domain of a certain variables, the number
(or relative frequency) of extensions in which it participates. We call these figures sup-
ports and consider themn as measuring the degree of belief in the propositions represented
by those values. (If the set of all solutions was assigned a uniform probability distribu-
tion, the support will represent the "belief” in an associated Bayes network [Pearl 1986]
). In particular, we say that a proposition is believed if it holds in all extensions (i.e., is
entailed by the current set of formulas). The support figures for the possible values of
each variable constitute a support vector for the variable.

A dynamic Constraint-Network (DCN) is a sequence of static CNs each result-
ing from a change in the preceding one, representing new facts about the environment
being modeled. As a result of such an incremental change, the set of solutions of the CN
may potentially decrease (in which case it is considered a restriction) or increase (i.e., a
relaxation).

The primary purpose of a BMS is to reason with uncertain and incomplete infor-
mation. In order to make inference in such environments, some of the knowledge is
"completed” by making additional assumptions which are consistent with the current
knowledge. When, due to new information, the knowledge becomes inconsistent, some
of these assumptions have to be retracted. We model assumptions in constraint network
by annotating some variables as assumption variables and giving these variables a spe-
cial status within the processing algorithms. The possible values of assumption variables
will be called assumptions.
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Assumption variables can be used to model default rules: e.g. birds fly (unless
they are dead), an adder functions correctly (unless it is faulty). This is accomplished by
adding to the constraint representing the rule an assumption variable with two values:
one representing the default assumption (e.g., that the rule "birds fly" is true) and the
other representing the exception. For example, we can model "birds fly" with three vari-
ables representing the propositions "birds" "fly” and "birds fly", each with possible values
{t.f}, where the last variable is an assumption variable whose default assumption is "t".
The constraint is given by the following table:

birds | fly | birds fly
t i i
f T t
f f t
t i f

Technically, an assumption variable can be used as an enabling/disabling devise
for any piece of information. If it is undesirable to eliminate a constraint which is no
longer valid then by conjoining the constraint with an assumption variable and activating
the disabling assumption, the same effect will be achieved.

3. Support Propagation in Trees

It is well known that constraint networks whose constraint graph is a tree can be
solved easily [Freuder 1982, Dechter 1987]. Consequently, the number of solutions in
which each value participates (namely, the support of this value), can also be computed
very efficiently on trees and these computations can be performed distributedly.

Consider a fragment of a tree-network as depicted in Figure 2. The link (X,Y)
partitions the tree into two subtrees: the subtree containing X, Txy(X), and the subtree
containing ¥, Txy(Y). Likewise, the links (X,U), (X,V), and (X,Z), respectively, define
the subtrees Txy(U), Txyv(V) and Txz(Z). Denote by sx(x) the overall support for value x
of X, by sx(x/Y) the support for X = x contributed by subtree Txy(Y) (ie., the number
of extensions of this subtree which are consistent with X = x), and by sy(y/-X) the sup-
port for ¥ = y in Tyy(Y). (These notations will be shortened to 5 (x), s (x/Y) and 5 (y/-X),
respectively, whenever the identity of the variable is clear.) The support for any value x
of X is given by:

sx)y = 1 s(yi=-X). (D
( ) YeX's ""'Chb""(x,y)ezc;of,}’) (v
when C (X,Y) denotes the constraint between X and Y. Namely, it is a product of sup-
ports contributed by each neighboring subtree. These respective supports are represented
by the sums in the expression. Equation (1) lends itself to the promised propagation
scheme. If variable X gets from each neighboring node, Y, a vector of restricted supports,
(referred to as the support vector from Y to X):
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Figure 2: A fragment of a tree-structired CN

2
Gl /-X), ... .s(G/-X)), @

where y; is in ¥’s domain, it can calculates its own support vector according to equation
(1) and, at the same time, generate an appropriate message to each of its own neighbors.

The message X sends to ¥, 5 (x/-Y), is the support vector reflecting the subtree Txy(X),
and can be computed by:

=Y = — .

The message generated by a leaf-variable is a vector consisting of zeros and ones
representing, respectively, legal and illegal values of this variable.

Assume that the network is initially in a stable state, namely, all support vectors
reflect correctly the network’s information. The maintenance task is to restore this stabil-
ity when a new input causes a momentary instability. The updating scheme is initiated
by the variable directly exposed to the new input. Any such variable will recalculate and
deliver the support vector for each of its neighbors. When a variable in the network
receives an update-message from a neighbor, it recalculates its outgoing messages, sends
them to the rest of its neighbors, and at the same time updates its own support vector.

The propagation due to a single outside change will propagate through the net-
work only once (no feed-back), since the network has no loops. If the new input is a res-
triction, then it may canse a contradictory state, in which case all the nodes in the net-
work will converge into zero support vectors. In this updating process assumption vari-
ables play the same role as regular variables,

If an application does not require numerical supports, but only needs an indica-
tion whether a given value has some support (i.e., participates in at least one solution),
then flat support-vectors, consisting of zeros and ones, can be propagated in exactly the
same way, except that the summation operations should be replaced by the logic operator
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OR, and the multiplications can be replaced by AND.
4. Handling Assumptions and Contradictions

When, as a result of new input, the network enters a contradictory state, it often
means that the new input is inconsistent with the current set of assumptions, and that
some of these assumptions must be modified in order to restore consistency. The task of
restoring consistency by changing some assumptions is called contradiction resolution.

The subset of assumption variables that are modified in a contradiction resolution
process should be minimal, namely, it must not contain any proper subset of variables
whose simultaneous modification is sufficient for that purpose (i.e., like the maximal
assurnption sets in [Doyle 1979] ). A sufficient (but not necessary) condition for this set
to be minimal is for it to be as small as possible. Other criteria for conflict resolution sets
are suggested in [Petrie 1987]. In this section we summarize the contradiction resolution
process which identifies, in a distributed fashion a minimum number of assumptions that
need to be changed in order to restore consistency. Unlike the support propagation
scheme, however, the contradiction resolution process has to be synchronized. Assume
that a variable which detects a contradiction propagates this fact to the entire network,
creating in the process a directed tree rooted at itself. Given this tree, the contradiction
resolution process proceeds as follows.

With each value v of each regular variable V we associate a weight w (v), indicat-
ing the minimum number of assumption variables that must be changed in the directed
subtree rooted at V in order to make v consistent in this subtree. These weights obey the
following recursion:

wi)=Y

min  w
¥, BygleC V.Y

where EYi} are the set of V’s children and their domain values are indicated by y;;; i.e. y;

O » @)

is the j** value of variable ¥;, (see Figure 3).
.
M .
% min(w 1, w3)
2 O
Yl Yz Yg Y‘

Figure 3: Weight calculation for node v

The weights associated with the values of each leaf assumption variable are "0" for the
value currently assigned to this variable, and "1" to all other possible values. For leaf
nodes which are not assumption variables, the weights of their legal values are all "0".
Non-leafs assumption variables should modify their weight calculation and add 1 the sum
in equation (4) for any of their non-assumed values. The computation of the weights is
performed distributedly and synchronously from the leaves of the directed tree to the
root. A variable waits to get the weights of all its children, computes its own weights
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according to (4), and sends them to its parent. During this bottom-up-propagation a
pointer is kept from each value of V to the values in each of its child-variables, where a
minimum is achieved. When the root variable receives all the weights, it computes its
own weights and selects one of its values that has a minimal weight. It then initiates
(with this value) a top-down propagation down the tree, following the pointers marked
in the bottom-up-propagation, a process which generates a consistent extension with a
minimum number of assumptions changed. At termination this process marks the
assumption variables that need to be changed and the appropriate changes required. For
details see [Dechter 1988c]. In section 6 we will illustrate the contradiction resolution
process for circuit diagnosis.

5. Support propagation in acyclic networks

Acyclic constraint networks extend the notion of a tree-structured binary con-
straint network to networks with constraints of higher arity. A general network may be
represented by a dual constraint graph, consisting of a node for each constraint and an
arc for any two constraints that share at least one variable. Thus, The dual constraint
graph give rise to an equivalent binary constraint network, where variables are the con-
straints of the original network (called a c-variable), their values are their legal tuples and
the constraints call for equality of the values assigned to the variables shared by any two
c-variables.

For example, Figures 4(a) and 4(b) depict, respectively, the primal and the dual
constraint-graphs of a network consisting of the variables A,B,C,D,E,F, with constraints
on the subsets (ABC),(AEF), (CDE), and (ACE) (the constraints themselves are not
specified).

(a) -1

Figure 4: A primal and dual constraint graphs of a CSP

Since all the constraints in the dual representation are equalities, any cycle for
which all the arcs share a common variable contains redundancy, and thus any arc such
that each of the variables in its label is a common variable in some cycle may be
removed from the network. The graph remaining after all such arcs have been removed
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is called a join-graph, and its corresponding network is equivalent to the original net-
work. For example, in Figure 4(b), the arc between (AEF) and {ABC) can be eliminated
because the variable A is common along the cycle
(AFE)—A —(ABC)—AC —(ACEY—AE —(AFE), so the consistency of the A variables
is maintained by the remaining arcs. Similar arguments can be used to show that the arcs
labeled C and E may be removed as well, thus transforming the dual graph into a join-
tree (see Figure 4(c)). A Constraint network whose dual constraint graph can be reduced
1o a join-tree is said to be acyclic. Acyclic constraint networks are an instance of acyclic
data bases discussed at length in [Beeri 1983].

The support propagation algorithm presented for tree-structured binary networks
can be adapted for use in acyclic networks using one of their join-trees. We outline the
algorithm next.

Consider the fragment of a join-tree, whose nodes represent the constraints C,
U,1,U3,U3,Uy, given in Figure 5.

U‘ U!

(e g O

A

Figure 5: A fragment of a join-tree

We denote by ¢ an arbitrary tuple of C. With each tuple, ¢°, we associate a support
number $(z¢), which is equal the number of extensions in which all values of ¢° partici-
pate. Let s(t|1U) denote the mll‘pport of t° coming from subtree Tcy(U), and let
s(t%1-C) denote the support for ¢* restricted to subtree Ty (U) (we use the same nota-
tional conventions as in the binary case). The support for ¢© is given by:

(%) = IT py sE*1-C). )

U e C's neighbors Pomw Ferw

The sums represents the support each neighbor, U, contributes to #°. The propagation
scheme emerging from (5) has the same pattern as the propagation for binary constraint.

Having the supports associated with each tuple in a constraint, the supports of
individual values can easily be derived by summing the corresponding supports of all
tuples in the constraint having that value.
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Contradiction resolution can also be modified for join-trees using the same
methodology. This process will be illustrated in the next section where these algorithms
are demonstrated on a circuit diagnosis example. Support propagation and contradiction
resolution, on join-trees, are linear in the number of constraints and its dependency on the
numbser of tuples ¢ is zlogt (reduced from 2 usin g an indexing technique).

6. A Circuit Diagnosis Example

An electronic circuit can be modeled in terms of a constraint network by associat-
ing a variable with each input, output, intermediate value, and device. Devices are
modeled as bi-valued assumption variables, having the default value "0" if functioning
correctly and the value "1" otherwise. There is a constraint associated with each device,
relating the device variable with its immediate inputs and outputs. Given input data, the
possible values of any intermediate variable or output variable is its "expected value”,
namely, the value that would have resulted if all devices worked correctly, or some
‘“‘unexpected value’” denoted by "e". A variable may have more then one expected
value. For the purpose of this example we assume that the set of expected values for
each variable were determined by some pre-processing and all the other values are
marked by the symbol "e".

Consider the circuit of Figure 6 (also discussed in [de_Kleer 1986a, Davis 1984,
Genesereth 1984] ), consisting of three multipliers, M ,M,,M3, and two adders, A and
A5, The values of the five input variables, A, B, C, D, and F, and of the two output vari-
ables, F and G, are given. The numbers in the brackets are the expected values of the
three intermediate points X, Y, and Z, and of the outputs. The relation defining the con-
straint associated with the multiplier M, is given in Figure 7 as an example, as well as
the initial weights associated with the tuples of these leaf constraints. Given the inputs
and outputs of the circuit, the objective is to identify a minimal set of devices which, if
presumed to be malfunctoning, could explain the observed behavior.

A=3 X[6]

— M1 A1 F= 10
B=2 [12]°
C=2 —L Y[6]

il et
D=3
G= 12
A2 ——2121
E-3 1—4 M3 {
Z[61

Figure 6: A circuit example
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LI
=y

X'/ \ Yy -7 4

Figure 7: An acyclic constraint network of the circuit example

The dual graph of the constraint network corresponding to this circuit is given in
Figure 7. This network is acyclic, as is evident by the fact that a join-tree can be
obtained by eliminating the redundant arc (marked by a dashed line) between constraint
(M,,B,D,Y) and (A,,Z,Y,G). The relation defining the constraint associated with the
multiplier M ; is given in Figure 8 as an example, as well as the initial weights associated
with the tuples of these leaf constraints.

h

w =0

€ wm]

Figure 8: A multiplier constraint

Initially, when no observation of output data is available, the network propagates
its support numbers assuming all device variables have their default value “0". In this
case only one solution exists and therefore the supports for all consistent values are "1"
(the support propagation algorithm is not illustrated). The diagnosis process is initiated
when the value "10" is observed for variable F which is different from the expected value
of 12. The value "10" is fixed as the only consistent value of F. At this point, the con-
straint (X,A ,F,Y), which is the only one to contain F, induces direction on the join-tree,
resulting in the directed tree (rooted at itself) of Figure 9, and contradiction resolution is
initiated. Each tuple will be associated with the minimum number of assumption
changes in the subtree underneath it, and the c-variable will project the corresponding

10
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wiz=6)=0
w(z=¢)=1

Figure 9: Weight calculation for the circuit example

weights on the variables which label its outgoing arc. In Figure 9 the weights associated
with the arcs of the three leaf constraints (i.e., the multipliers constraints), are presented.
They are derived from the weights associated with their incoming constraints (see the
weights in Figure 8). For instance, the weights associated with X is w (X = 6)=0 since "6"
is the expected value of X when M; works correctly (which is the default assumption),
and w(X = ¢) = 1 since, any other value can be expected only if the multiplier is faulty.
Next, the weights propagate to constraint (Y,G,A 2,Z). This constraint and its weights are
given in Figure 10 (note, that G’s observed value is 12).

A, z G Y Weights Faulty Devices

0 6 12 & w=0 none
0 e 12 e w=1 M,y
1 6 12 e w=1 Az
i ¢ 12 ¢ w=2 Myd Ay

Figure 10: The weights of constraint (¥,G,A2,Z)

The corresponding derived Y’s weights are indicated on the outgoing arc of constraint
(Y,G,A,,Z) in Figure 9. Finally, the weights associated with the root constraint
(A1,X,Y,F) are computed by summing the minimum weights associated with each of its
child node. The tuples associated with the root constraint and their weights are presented
in Figure 11. We see that the minimum weight is associated with tuples (2), indicating
M as faulty or (4), indicating A, as faulty. Therefore, either A; or M are faulty. The
weights can also be used as a guide for additional measurement taking in order to del-
ineate between the different diagnoses.

11
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Aq F X Y Weights Faulty Devices
1 0 10 6 e 2 MyvAD & M,
2 ¢ 10 4 6 1 M,
3. ¢ 10 e e 3 Mi& My & MyvAp)
4, i 10 6 6 1 A
5. 1 10 6 e 3 A& M& (MyvAy
8. i 10 € € 4 Ak Mk M & M5vAy

Figure 11: The weights of constraint (4,,F,X,Y) (the root)

This example illustrates the efficiency of the contradiction resolution process
when the special structure of the problem is exploited. By contrast, handling this prob-
lem using ATMS . [de_Kleer 1986b] exhibits exponential behavior. See also [Geffner
1987]. In a similar manner a propagation scheme can be devised to extract all minimal
diagnoses (not necessarily the minimum-cardinality one [Dechter 1988a] ) for further
processing by some diagnostic package.

7. Summary and conclusions

This paper presents a summary of a constraint-based Belief Maintenance System
that is composed of two maintenance algorithms, one for support propagation and the
other for contradiction-resolution. Both algorithms are restricted to acyclic constraint net-
works for which they are very efficient.

When the constaint network is not acyclic, the method of tree-clustering
[Dechter 1988b] can be used in a pre-processing mode. This method uses aggregation of
constraints into equivalent constraints involving larger clusters of variables in such a way
that the resulting network is acyclic. The complexity of the clustering scheme is
exponential in the size of the larger cluster [Dechter 1988b].

The applicability of our BMS is particularly useful for cases involving minor
topological changes, namely when observations arrive regarding the restriction of an
existing constraint rather then the introduction of a new (non-unary) constraint. In such
cases the structure of the acyclic network, which may be compiled initially via tree-
clustering, does not change.

12
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