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Abstract

Since for most arti�cial intelligence problems worst-
case analysis does not necessarily re
ect actual per-
formance and since informative performance guaran-
tees are not always available, empirical evaluation of
algorithms is necessary. To do that we need to ad-
dress the question of distributions, and benchmarks.
Based on our study of CSP algorithms we propose
the use of multiple types of benchmarks and multi-
ple forms of presenting the results. The benchmarks
should include: 1. Individual problem instances rep-
resenting domains of interest, 2. Parameterized ran-
dom problems, 3. Application-based parameterized
random problems. Results should be presented using
1. Average and variances of the data, 2. frequency
and distribution graphs, 3. scatter diagrams

The target is to identify a small number of algorithms
(not one) that are dominating, namely proved superior
on some class of problems. For dominating algorithms
we wish to identify problem characteristics on which
they are likely to be good.

Introduction

The study of algorithms for constraint satisfaction
problems has often relied upon experimentation to
compare the relative merits of di�erent algorithms or
heuristics. Experiments for the most part have been
based on simple benchmark problems, such as the 8-
Queens puzzle, and on randomly generated problem in-
stances. In the 1990s, the experimental side of the �eld
has blossomed, due to the increasing power of inex-
pensive computers and the identi�cation of the \cross-
over" phenomenon, which has enabled hard random
problems to be generated easily.
Worst-case analysis in the area of Constraint Satis-

faction has focussed largely on identifying and char-
acterizing tractable classes of problems, that is, prob-
lems that have a structure which guarantee polynomial
complexity. The primary classi�cation of tractable
classes is by a graph parameter called induced width
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(Dechter 1992; Arnborg 1985). It is known that if
a constraint problem's graph has an induced width
of size w�, the problem can be solved in time and
space exponentially in w�, using a variable elimina-
tion algorithm like adaptive-consistency (Dechter &
Pearl 1987). However, the space complexity of elimi-
nation algorithms render them useful only for a nar-
row class of problems having a very small induced
width. In addition, the average complexity of elim-
ination algorithms was observed to be very close to
their worst-case performance (Dechter & Rish 1994;
Dechter & Meiri 1994). On the other hand, simple
backtracking search, although exponential in the worst
case, can have good average performance.
As a result, and because backtracking requires only

linear space, most practical algorithms for solving con-
straint problems are based on backtracking rather than
on elimination. A partial ordering of some simple
search algorithms, subject to certain variable order-
ing conditions, has been developed in (Kondrak & van
Beek 1997). Nevertheless, the lack of e�ective worst-
case analysis of backtrack search makes empirical eval-
uation mandatory.
To do that researchers have to face the question of

problem distributions, and benchmarks. Based on our
study of constraint satisfaction algorithms we advocate
the use of multiple types of benchmarks and multi-
ple ways of presenting the results. Benchmarks should
include 1. individual instances that come from vari-
ous applications. 2. Parameterized random problems
3. Application-based parameterized problems. Subse-
quently, the results should be presented using 1. Aver-
age and variances of measurements, 2. their frequency
graphs, and 3. scatter diagrams displaying data from
individual instances.
The goal is to identify a small number of algorithms

that are dominating, namely observed to be superior
on some class of problems. For these dominating algo-
rithms we wish to identify problem characteristics on
which they are likely to perform well.

Individual instances as benchmarks: The merit
of this approach is that it is close, if not identical,
to the underlying goal of all research: to solve real
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Figure 1: Lognormal curves based on unsolvable prob-
lems generated from parameters h350; 3; 0:0089; 0:333i.
The graph is based on consistency checks.� and � pa-
rameters were estimated using the Maximum Likeli-
hood Estimator

problems. If the benchmark problems are interesting,
then the results of such a comparison are likely to be
interesting. The drawback of using benchmarks of this
type is that it is often impossible to extrapolate the
results. Algorithm A may beat algorithm B on one
benchmark and lose on another.
Random problems A contrasting technique for

evaluating or comparing algorithms is to run the algo-
rithm on arti�cial, synthetic, parameterized, randomly
generated data. Since a practically unlimited supply of
such random problems is easily generated, it is possi-
ble to run an algorithm on a large number of instances,
thereby minimizing sampling error. Because the prob-
lem generator is controlled by several parameters, the
experimenter can observe the possibly changing e�-
cacy of the algorithm as one or more of the parameters
change.
Application-based random problems The idea is
to identify a problem domain (e.g., job shop schedul-
ing) that can be used to de�ne parameterized problems
having a speci�c structure, and to generate instances
by randomly generating values for the problem's pa-
rameters. This approach combines the virtues of the
two approaches above: it focusses on problems that are
related to real-life applications and it allows generating
many instances for the purpose of statistical validity of
the results.
In the followingwe present examples fromour empir-

ical evaluation with each of these three types of bench-

marks. Most of our experiments were conducted with
parameterized random binary problems. By varying
the parameters of the random problem generator, we
can observe how the relative strength of di�erent al-
gorithms is a�ected by the type of problems they are
applied to. We also de�ne a class of random problems
that model scheduling problems in the electric power
industry, and report the performance of several algo-
rithms on those constraint satisfaction problems. To
complement these random problems, we report on ex-
periments with benchmark problems drawn from the
study of circuits, and which have been used by other
researchers. For details about this study see (Frost
1997).
We experimented with various new and old enhance-

ments to a backtracking algorithms. For a recent sur-
vey on backtracking algorithms see (Dechter & Frost
1998). The algorithms are: BT+DVO, it augments
backtracking with dynamic variable ordering; IAC,
it interleaves arc-consistency during backtrack search;
BJ, is con
ict-directed backjumping; LVO, a particu-
lar value ordering heuristics we developed; LRN, a par-
ticular style of constraint learning during search that
was proved to be the best among several schemes we
tried. The various combinations of algorithms are ex-
plicitly noted. For example BJ+DVO+LRN+LVO is
an algorithm that augments backjumping and dynamic
variable ordering with value-ordering and learning.
These experiments show that the new algorithms

and their hybrids can improve the performance of pre-
vious techniques by an order of magnitude on many
instances.

Displaying the results

Due to the big variance in the computational e�ort re-
quired for each set of parameters it is clear the averages
and variances are not su�cient to capture the whole
picture. Clearly, a display of the distribution of the
data would be preferable (see Figure 1).
Recently there have been indications (Rish & Frost

1997; Gomes, Selman, & Crato 1997) that the distri-
bution of the search e�ort required to solve a set of
CSPs created by a random generator can be succinctly
approximated by well-known probability distributions
such as the lognormal. This line of research may lead
to more informative reporting of experimental results
on random problems. To have con�dence in the results
it is useful to add some scatter diagrams for pairwise
comparison of algorithms.

Experimenting with random binary
problems

Most of our experiments were on randomly generated
problems using 4 parameters: N;D;C; T : N being the
number of variables, D is the number of values in each
domain, T is the tightness of each constraint (the num-
ber of allowed pairs divided by the total number of
pairs), and C: the number of constraints. For each



Parameters Algorithm CC Nodes CPU
h200; 3; 0:0592; 0:111i BT+DVO 5,871,215 207,183 68.46

BT+DVO+IAC 23,836,368 40,098 55.44
BJ+DVO 5,365,467 188,726 69.28
BJ+DVO+LVO 4,793,417 167,211 73.78
BJ+DVO+LRN 5,731,244 186,582 63.39
BJ+DVO+LRN+LVO 5,622,825 159,739 74.00

h300; 3; 0:0206; 0:222i BT+DVO+IAC 141,606 632 0.65
BJ+DVO 2,483,520 222,285 119.26
BJ+DVO+LVO 1,623,455 131,593 86.76
BJ+DVO+LRN 419,193 32,221 15.62
BJ+DVO+LRN+LVO 392,606 25,771 13.98

h350; 3; 0:0089; 0:333i BT+DVO+IAC 24,641 494 0.43
BJ+DVO 1,238,479 182,328 140.81
BJ+DVO+LVO 969,224 118,854 111.79
BJ+DVO+LRN 3,727 464 0.46
BJ+DVO+LRN+LVO 22,688 1,036 3.78

Table 1: Comparison of �ve algorithms on random CSPs with D=3. Each number is the mean of 2,000 solvable
and unsolvable instances. The algorithm with the lowest mean CPU seconds in each group is in boldface.

Parameters Algorithm CC Nodes CPU
h60; 6; 0:4797; 0:111i BT+DVO 24,503,115 412,494 59.72

BT+DVO+IAC 104,319,923 65,432 130.54
BJ+DVO 24,228,726 407,253 63.10
BJ+DVO+LVO 23,904,430 401,131 66.47
BJ+DVO+LRN 24,368,062 406,332 57.43
BJ+DVO+LRN+LVO 24,103,544 405,899 65.75

h75; 6; 0:1744; 0:222i BT+DVO 7,766,594 249,603 40.77
BT+DVO+IAC 18,419,580 16,395 22.22
BJ+DVO 7,530,726 241,124 42.67
BJ+DVO+LVO 7,228,548 230,073 44.05
BJ+DVO+LRN 7,856,321 230,367 42.13
BJ+DVO+LRN+LVO 7,321,890 231,455 43.79

h100; 6; 0:0772;0:333i BT+DVO+IAC 4,718,685 4,625 5.67
BJ+DVO 6,248,608 293,922 67.30
BJ+DVO+LVO 6,581,314 305,121 76.49
BJ+DVO+LRN 5,979,767 232,780 54.34
BJ+DVO+LRN+LVO 6,034,538 235,509 61.22

h125; 6; 0:0395;0:444i BT+DVO+IAC 479,228 566 0.60
BJ+DVO 3,526,619 238,584 66.17
BJ+DVO+LVO 3,007,791 195,720 62.54
BJ+DVO+LRN 2,050,232 108,482 28.80
BJ+DVO+LRN+LVO 1,970,645 102,788 29.45

h150; 6; 0:0209;0:555i BT+DVO+IAC 32,537 111 0.06
BJ+DVO 3,253,255 359,095 111.70
BJ+DVO+LVO 1,328,189 124,415 47.08
BJ+DVO+LRN 339,191 28,056 8.25
BJ+DVO+LRN+LVO 601,454 25,769 12.87

Table 2: Comparison of �ve algorithms on random problems with D=6. Each number is the mean of 2,000 solvable
and unsolvable instances. The algorithm with the lowest mean CPU seconds in each group is in boldface.



N;D and T we determined empirically the value C
that correspond to the phase transition (Mitchell, Sel-
man, & Levesque 1992) as determined by BJ+DVO.
In Table 1 and Table 2 we display the results of ex-

perimenting with particularly big and di�cult problem
instances, using a collection of algorithms that were ob-
served to be superior over various other variants in our
earlier experiments. The tables display average cpu
seconds.
From these tables alone, the combination of

BT+DVO+IAC seems to be superior, in most
cases, by a big margin. The main competitor is
BJ+DVO+LRN. Interestingly when we look at the
distribution of the data in Figure 1. We see that al-
though the average cpu times of LRN and IAC are very
close, there were many more problems solved quickly
by learning than by IAC, as re
ected by consistency-
checks in Figure 1. This illustrates the need of using
the distributions as a more informative basis of com-
parison.

Experiments with DIMACS benchmark
Problems

The Second Dimacs Implementation Challenge in 1993
(Johnson & Trick 1996) collected a set of satis�ability
problem instances for the purpose of providing bench-
marks for comparison of algorithms and heuristics. We
compared our algorithms against six of the problems
that were derived from circuit fault analysis. The prob-
lems are encoded as Boolean satis�ability problems in
conjunctive normal form. Clauses contain from one to
six variables.
Each of our six algorithms was applied to these

benchmark problems. The results are displayed in Ta-
ble 3 and Table 4. The tables show other CPU times
on these problems reported in (Johnson & Trick 1996).
Dubois et al. (Dubois et al. 1996) uses a complete al-
gorithm based on the Davis-Putnam procedure; com-
puter is a Sun SparcStation 10 model 40. Hampson
and Kibler (Hampson & Kibler 1996) use a randomized
hill climbing procedure; computer is a Sun SparcSta-
tion II. Jaumard et al. (Jaumard, Stan, & Desrosiers
1996) use a complete Davis-Putnam based algorithm
with a tabu search heuristic; computer is a Sun Sparc-
Station 10 model 30. Pretolani's H2R algorithm (Pre-
tolani 1996) is based on the Davis-Putnam procedure
and uses a pruning heuristic; computer is a Sun Sparc-
Station 2. Resende and Feo (Resende & Feo 1996)
present a greedy randomized adaptive search proce-
dure called GRASP-A; the computer used was not re-
ported. Spears (Spears 1996) uses a simulated anneal-
ing based algorithm; computer is a Sun SparcStation
10. Van Gelder and Tsuji (Van Gelder & Tsuji 1996)
use a complete algorithm that combines search and
resolution; computer is a Sun SparcStation 10 model
41.
Among our six algorithms, we observe that

BT+DVO+IAC had the best CPU time on three
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Figure 2: A diagrammatic representation of a main-
tenance scheduling constraint satisfaction problem.
Each circle stands for a variable representing the status
of one unit in one week. The dashed vertical ovals in-
dicate constraints between all of the units in one week:
meeting the minimum power demand and optimizing
the cost per week. The horizontal ovals represent con-
straints on one unit over the entire period: scheduling
an adequate period for maintenance.

problems, including one tie with BJ+DVO+LRN,
and BJ+DVO+LRN was best on two, including the
tie. BJ+DVO+LVO and BJ+LVO+LRN+LVO were
each best one on problem. On the hardest prob-
lem, ssa2670-141, we cancelled BT+DVO after 24
CPU hours had passed without the algorithm com-
pleting. Overall, the two most e�ective algorithms that
emerge are BT+DVO+IAC and BJ+DVO+LRN (with
or without LVO).

Experimenting with Maintenance
Scheduling Problems

The problem of scheduling o�-line preventative mainte-
nance of power generating units is of critical interest to
the electric power industry. Computational approaches
to maintenance scheduling have been intensively stud-
ied since the mid 1970's (Dopazo & Merrill 1975;
Zurm & Quintana 1975).
In (Frost 1997) chapter 9, we formalize the mainte-

nance scheduling problem as a constraint optimization
problem and experiment with various algorithms for
its solution.
Since the maintenance scheduling problem is an op-

timization problem we solve it iteratively as a sequence
of constraint problem having a �xed cost bound for the
cost function. The idea of this method is straightfor-
ward: we �x a certain cost for the cost function and
try to see if there exists a satisfying solution for the



Problem Algorithm CC Nodes CPU
ssa0432-003 BT+DVO 51,190 901 0.73
435 variables BT+DVO+IAC 73,817 512 0.70
1,027 clauses BJ+DVO 48,811 865 0.81
unsatis�able BJ+DVO+LVO 69,100 823 0.92

BJ+DVO+LRN 52,505 827 0.71
BJ+DVO+LRN+LVO 59,091 816 0.78
Dubois 1.40
Jaumard 9.00
Pretolani 0.83
Van Gelder 0.55
Wallace 499.30

ssa2670-141 BT+DVO
1,359 variables BT+DVO+IAC 535,875,109 1,279,009 1,943.51
3,321 clauses BJ+DVO 173,446,699 7,117,071 2,791.01
unsatis�able BJ+DVO+LVO 41,073,083 1,858,408 803.81

BJ+DVO+LRN 35,689,610 1,036,554 488.25
BJ+DVO+LRN+LVO 31,854,918 843,099 449.76
Dubois 2,674.40
Van Gelder 164.58

ssa7552-038 BT+DVO 755,034 45,796 14.52
1,501 variables BT+DVO+IAC 1,274,887 3,766 3.51
3,575 clauses BJ+DVO 687,122 40,008 12.17
satis�able BJ+DVO+LVO 578,909 31,899 11.01

BJ+DVO+LRN 439,755 22,884 5.50
BJ+DVO+LRN+LVO 398,541 16,001 3.78
Dubois 1.20
Pretolani 3.67
Hampson 152.2
Resende 8.31
Van Gelder 1.85

Table 3: Comparison of �ve algorithms on DIMACS problems. The names refer to authors who participated in
the DIMACS challenge; references are given in the text. Numbers for our algorithms are all results from single
instances. Some CPU times from other authors are averages over multiple randomized runs on the problem.



Problem Algorithm CC Nodes CPU
ssa7552-158 BT+DVO 1,009,736 51,756 19.98
1,363 variables BT+DVO+IAC 1,863,152 17,938 8.25
3,034 clauses BJ+DVO 845,991 25,611 10.72
satis�able BJ+DVO+LVO 445,172 8,122 4.55

BJ+DVO+LRN 612,791 19,088 8.64
BJ+DVO+LRN+LVO 467,890 12,876 7.07
Dubois 0.80
Hampson 82.50
Jaumard 43.00
Pretolani 2.28
Resende 2.42
Van Gelder 1.14

ssa7552-159 BT+DVO 883,614 39,110 14.45
1,363 variables BT+DVO+IAC 1,378,253 4,167 3.20
3,032 clauses BJ+DVO 674,091 20,093 6.07
satis�able BJ+DVO+LVO 691,654 18,987 6.98

BJ+DVO+LRN 503,122 12,077 3.20
BJ+DVO+LRN+LVO 563,871 12,890 3.67
Dubois 0.90
Hampson 82.30
Jaumard 6.00
Pretolani 2.68
Resende 1.63
Van Gelder 1.14

ssa7552-160 BT+DVO 712,009 35,877 12.92
1,391 variables BT+DVO+IAC 1,265,887 4,098 3.02
3,126 clauses BJ+DVO 687,833 22,088 6.28
satis�able BJ+DVO+LVO 792,615 23,766 7.14

BJ+DVO+LRN 453,788 9,745 3.67
BJ+DVO+LRN+LVO 495,166 10,687 4.50
Dubois 0.90
Hampson 86.00
Jaumard 6.00
Pretolani 2.80
Resende 22.79
Van Gelder 1.44

Table 4: Continuation of Table 3.



original set of constraints including the constraint of
the cost function. If there is a solution we lower the
cost bound and solve the problem again. We repeat the
process untill we encounter an unsatis�able problem.
This approach reminds one of the method of solving
planning problems using satis�ability (e.g., satplan),
and more generally it resembles previous methods for
solving optimization iteratively such as iterative deep-
ening A*.

Iterative Learning

An interesting algorithm within this iterative scheme
is learning. We used the learning algorithm,
BJ+DVO+LRN, to solve the maintenance scheduling
CSPs (MSCSPs), and the new constraints introduced
by learning are retained for use in later iterations with
tighter cost-bounds. We call this approach iterative
learning. Retaining a memory of constraints is safe be-
cause as the cost-bound is lower the constraints become
tighter. Any solution to an MSCSP with a certain cost-
bound is also a valid solution to the same problem with
a higher cost-bound. If the the cost-bound were both
lowered and raised, as suggested by a binary search ap-
proach, then some learned constraints would have to
be \forgotten" when the cost-bound was raised.
Our experiments demonstrated (not shown here for

lack of space) that including the learned constraint
improved signi�cantly to e�ectiveness of this scheme.
Also, using this set of experiment as an example
to application-based random problems we observed
(see Table 5) that on small problems (100 instances)
BT+DVO+IAC is the best algorithm. However on
larger problems it had the worst average time while
"pure" BJ+DVO was best.

Conclusion

The empirical evaluation of constraint processing al-
gorithms aims at �nding dominating algorithms and
classes of problems instances on which each algorithm
is likely to perform best. Since empricial evaluation
can cover only a small portion of the problem space,
and since the statistics of a realistic problem space are
not likely to be available, we must seek general guide-
lines that will lead to superior and more robust algo-
rithms and heuristics. Our recent studies of constraint
processing algorithms have identi�ed several dominat-
ing algorithms and have provided initial guidelines for
optimizing their utilization (Frost 1997).
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