
Unifying Tree-Decomposition Schemes

for Automated Reasoning

Keywords : Automated Reasoning

Abstract

The paper provides a unifying perspective
of tree-decomposition algorithms appearing in
various automated reasoning areas, such as
join-tree clustering for constraint-satisfaction
and the clique-tree algorithm for probabilis-
tic reasoning. Subsequently, the paper ex-
tends the variable-elimination scheme called
bucket-elimination (BE) into a two-phase mes-
sage passing along a bucket-tree (BTE), mak-
ing it another instance of tree-decomposition.
Our analysis shows that the new algorithm
BTE may provide a substantial speed-up over
BE for important reasoning tasks. Time-space
tradeo�s are cast within the tree-decomposition
framework.

1 Introduction

The paper introduces a general tree-decomposition
framework for solving a wide range of automated rea-
soning tasks. We show that many existing decomposi-
tion schemes, such as join-tree clustering, junction-tree
decompositions, and hyper-tree decomposition, are in-
stances of tree-decomposition. We then introduce a new
algorithm, called bucket-tree elimination (BTE), based
on the Bucket Elimination technique [Dechter, 1999] and
show that it is an instance of tree-decomposition.

The unifying framework provides clarity which is likely
to encourage technology transfer. In particular, a re-
cent approximation scheme for Bucket-Elimination algo-
rithms, called mini-bucket elimination, can now be ex-
tended to general tree-decompositions, as we show in a
companion paper [anonymous, 2001].

Section 2 de�nes the automated reasoning task and
related background concepts. Section 3 introduces the
tree-decomposition framework and its associated algo-
rithm. Section 4 introduces and analyzes the bucket-
tree elimination algorithm, and Section 5 relates exist-
ing decomposition methods within the context of tree-
decomposition. Section 6 discusses time-space tradeo�s,
Section 8 provides related work and concludes.

2 Automated reasoning tasks

Definition 2.1 An automated reasoning task P is a
sixtuple P =< X;D;F;

N
;+; fZ1; :::; Ztg > de�ned as

follows:

1. X = f1; :::; ng is a set of variables.

2. D = fD1; :::; Dng is a set of �nite domains.

3. F = ff1; :::; frg is a set of functions. The scope of
function fi, denoted scope(fi) � X, is the set of
arguments of fi.

4.
N

i fi 2 f
Q

i fi;
P

i fi; ./i fig is a combination op-
erator.

5. +Y f 2 f max

S�Y
f; min

S�Y
f;

Q
S�Y

f;

P
S�Y

fg, where S is

the scope of function f and Y � X is a marginal-
ization operator.

6. The problem is to compute, 8 Zi
+Z1

Nr

i=1 fi; :::;+Zt

Nr

i=1 fi

Definition 2.2 The primal graph of a problem P has
the variables as its nodes, and two nodes are connected
if they appear in a scope of a function in F . The hyper-
graph of a problem P has the variables as its nodes and
the scopes of functions as its hyperedges.

Definition 2.3 (graph concepts) An ordered graph
is a pair (G; d) (also denoted Gd), where G is an undi-
rected graph and d = X1; :::; Xn is an ordering of the
nodes. The width of a node in an ordered graph is the
number of its earlier neighbors, while the width of an or-
dering d, w(d), is the maximum width over all nodes. In
an ordered graph, the induced width, w�(d), is the width
of the induced ordered graph obtained by processing the
nodes recursively, from last to �rst. When node X is
processed, all its earlier neighbors are connected.

Examples of reasoning tasks

Probabilistic Inference Queries over Bayesian net-
works [Pearl, 1988] can be formulated as automated rea-
soning tasks where the functions in F denote conditional
probability table and the scopes of these functions is de-
termined by a directed acyclic graph (DAG): Each func-
tion fi ranges over variable i and its parents in the dag.
The primal graph of a Bayesian network is its moral
graph.

� Belief-updating is the task of computing belief
in variable y in Bayesian networks. For this task,
the combination operator is

N
j
=
Q

j
and the

marginalization operator is +y=
P

X�y
.

� Most probable explanation requires computing
the most probable tuple in a given Bayesian net-
work. Here the combination operator is

N
j =
Q

j

and marginalization operator is +
;
= maxX .

Constraint Satisfaction and Optimization
For CSPs, the functions in F are deterministic relations
over subsets of variables. In constraint optimization, the
functions in F are real-valued cost functions. The primal
graph is the constraint graph.

� Deciding consistency of a CSP requires deter-
mining if a constraint satisfaction problem has a so-
lution and, if so, to �nd all its solutions. Here the
combination operator is

N
j
= ./

j
and the marginal-

ization operator is +;= �X .

� Max-CSP, Combinatorial optimization Max-
CSP problems seek to �nd a solution that minimizes
the number of constraints violated. Combinatorial
optimization assumes real cost functions in F . Both
tasks can be formalized using the combination op-
erator

N
j
=
P

j
and the marginalization operator

is +;= minX (the constraints can be expressed as
cost functions of cost 0, or 1).

3 Tree-Decomposition schemes

This section introduces a unifying tree-decomposition
framework. The exposition is declarative, separating the
desired target output from its generative process.

Definition 3.1 Let P =< X;D;F;
N
;+; fZig > be an

automated reasoning problem. A tree-decomposition for
P is a triple < T; �; >, where T = (V;E) is a tree,
and � and are labeling functions which associate with
each vertex v 2 V two sets, �(v) � X and (v) � F 1,
that satisfy the following conditions:

1. For each function fi 2 F , there is exactly one vertex
v 2 V such that fi 2 (v), and scope(fi) � �(v).

2. For each variable x 2 X, the set fv 2 V jx 2 �(v)g
induces a connected subtree of T . This is also called
the running intersection or connectedness property.

3. 8 i Zi � �(v) for some v 2 T .

When the combination operator is join, as in con-
straint satisfaction, Condition 1 can be relaxed to require
that each function will be in at least one node, thus al-
lowing multiple appearances of a function in nodes.

Definition 3.2 (tree-width, hyper-width, separator)
The width (also called tree-width) of a tree-decomposition
< T; �; > is max

v2V
j�(v)j, and its hyper-width is

max

v2V
j (v)j. Given two adjacent vertices u and v of a

tree-decomposition, a separator of u and v is de�ned as
sep(u; v) = �(u) \ �(v).

Algorithm tree-elimination (CTE)
Input: A tree decomposition < T; �; > for a prob-
lem P =< X;D;F;

N
;+; fZ1; :::Ztg >.

Output: An augmented tree whose nodes are clus-
ters containing the original functions as well as mes-
sages received from neighbors. A solution computed
from the augmented clusters.
Compute messages:
For every edge (u; v) in the cluster tree, do

� Let (u; v) be an edge in the cluster tree such that
vertex u has received messages from all adjacent
vertices other than v.

� Let m(i;u) denote the message sent by vertex i to
vertex u. Compute:

m(u;v) =+sep(u;v) (
O

f2cluster(u);f 6=m(v;u)

f)

where cluster(u) = (u) [fm(v;u)j(v; u) 2 Tg

Compute solution: For every v 2 T and every Zi �
�(v), compute +Zi

N
f2cluster(v) f .

Figure 1: Algorithm cluster-tree elimination (CTE)

Example 3.1 Consider a problem P over variables
A;B;C;D; F;G with functions over scopes of size
2: F = ff(A;B); f(A;C), f(B;C); f(B;F); f(C;F),
F (A;B;D) F (F;G)g. Figure 2b gives its primal graph.
Any of the trees in Figure 6 is a tree-decomposition for
the problem where the functions can be partitioned into
clusters that contain their scopes.

A tree-decomposition facilitates a solution to an au-
tomated reasoning task. Algorithm cluster-tree elimina-
tion for processing a tree-decomposition is given in Fig-
ure 1. It works by having each vertex of the tree send a
function to each of its neighbors. If the tree contains m
edges, then a total of 2m messages will be sent. Node
u takes all the functions in node u and all messages re-
ceived by u from all adjacent nodes other than v, joins
them using the combination operator and projects the
combined function onto the separator of u and v using
the marginalization operator. The projected function is
then sent to v.

Node activation can be asynchronous. Convergence is
guaranteed, but it may take as long as the diameter of
the tree in the worst case. If processing is performed
from leaves to root and back, convergence is guaranteed
after two passes, where only one message is sent on each
edge in each direction.

Once all nodes have received messages from all neigh-
bors, a solution to the problem can be generated using
the output augmented tree (as described in the algo-
rithm), in output linear time. For some tasks the whole

1We follow the notation provided in [Georg Gottlob and
Scarello, 1999].

output tree is used to compute the solution (e.g., com-
puting optimal tuple).

Theorem 3.2 (Correctness and completeness)
Algorithm CTE is sound and complete.

Theorem 3.3 (Complexity) Let N be the number of
nodes in the tree decomposition, w be its tree-width, sep
be its maximum separator size, r be the number of input
functions in F , and deg be the maximum degree in T .
The time complexity of CTE is O((r+N) �deg � exp(w))
and its space complexity is O(N � exp(sep)).

4 Bucket-Tree Elimination

In this section we �rst extend the bucket-elimination
scheme into a message passing algorithm along a bucket-
tree. We then show that a bucket-tree is an instance of
tree-decomposition and that the extended algorithm co-
incides with CTE.
Bucket-elimination (BE) is a unifying algorithmic

framework for dynamic-programming algorithms ap-
plicable to probabilistic and deterministic reasoning
[Bertele and Brioschi, 1972; Dechter, 1999]. The input
to a BE algorithm consists of a collection of functions
or relations (e.g., clauses for propositional satis�ability,
constraints, or conditional probability matrices for be-
lief networks). Given a variable ordering, the algorithm
partitions functions into buckets, each associated with
a single variable. A function is placed in the bucket of
its latest argument in the ordering. The algorithm pro-
cesses each bucket, top-down, from the last variable to
the �rst, by a variable elimination procedure that com-
putes a new function using combination and marginal-
ization operators. The new function is placed in the
closests lower bucket whose variable appears in the new
function's scope.
When the solution of the problem requires a complete

assignment (e.g., solving the most probable explanation
(mpe) problem in Bayesian networks), a second, bottom-
up phase, assigns a value to each variable along the or-
dering, consulting the functions created during the top-
down phase. For more details see [Dechter, 1999].
Some tasks, however, require repeated execution of

the BE algorithm, for example, when a belief for ev-
ery variable in a Bayesian network is required. Another
example is computing the optimal cost associated with
each value of each variable, to guide search algorithms.
In order to compute belief for every variable, BE would
have to be run n times, each initiated by a di�erent
variable. We next propose a more e�cient approach, by
extending bucket-elimination into a bucket-tree elimina-
tion scheme, called BTE.
The idea is based on a recent result in the context

of belief updating. It is known that BE can be viewed
as message-passing from leaves to root along a bucket-
tree [Dechter99]. A generalized elimination scheme was
recently developed by Cozman [Cozman, 2000] in the
context of probabilistic inference, where a second pass
along the bucket tree can update every bucket in the
tree. Here this scheme is derived and analyzed in a more
general and abstract setting.

A

B C

F

D

G

A

B C

F

D

G

(a) (b)

Season

Rain

Wet

Slipperywatering
Manual

Automated
sprinkler

Figure 2: belief network P (g; f; d; c; b; a)
= P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a)

We next present this idea for any automated reasoning
task, show that the BTE algorithm is an instance of tree-
decomposition, and derive correctness and complexity
from this relationship.

Definition 4.1 (buckets) Let P =< X;D;F;
N
;+>

be an automated reasoning problem and d an ordering of
its variables d = (x1; :::; xn). Let Bx1 ; :::; Bxn be a set of
buckets, one for each variable. Each bucket Bxi contains
those functions in F whose latest variable in d is xi.

Definition 4.2 (bucket-tree) A bucket-tree of P and
an ordering d, has buckets as its nodes, and bucket Bx

is connected to bucket By if the function generated in
bucket Bx by BE is placed in By. The variables of Bxi

are those appearing in the scopes of any of its new and
old functions.

Therefore, in a bucket tree, every node Bx has one
parent node By and several child nodes Bz1 ; :::Bzt. The
structure of the bucket-tree can also be extracted from
the induced-ordered graph of P along d using the follow-
ing equivalent de�nition.

Definition 4.3 (bucket tree, graph-based) Let Gd

be the induced graph along d of a reasoning problem P
whose primal graph is G. Each variable x and its earlier
neighbors in the induced-graph is a variable in bucket Bx.
The nodes of the bucket-tree are the n buckets. Each
node Bx points to By (or, By is the parent of Bx) if y is
the latest earlier neighbor of x in Gd. If By is the parent
of Bx in the bucket-tree, then the separator of x and y,
is the set of variables appearing in Bx \By.

Example 4.1 Consider the Bayesian network de�ned
over the DAG in Figure 2a. Figure 4 left shows the
initial buckets along the ordering d = A;B;C;D; F;G,
and the � messages that will be passed by BE from top
to bottom. On its right, the �gure displays the same
computation as a message-passing along its bucket-tree.

Theorem 4.2 A bucket tree of a reasoning problem P
is a tree-decomposition of P .

Since the bucket-tree is a tree-decomposition, the
cluster-tree elimination algorithm CTE is applicable.

Algorithm bucket-tree elimination (BTE)
Input: A problem P =< X;D;F;

N
;+,

fx1; :::; xng >, ordering d.
Output: Augmented buckets containing the orig-
inal functions and all the � and � functions re-
ceived from neighbors in the bucket-tree. A solu-
tion to P computed from augmented buckets.
0. Pre-processing:
Place each function in the latest bucket, along d,
that mentions a variable in its scope. Connect two
buckets Bx and By if variable y is the lastest ear-
lier neighbor of x in the induced graph Gd. 1.
Bottom-up phase: � messages (BE)
For i = n to 1, process bucket Bxi :
Let �1; :::�j be all the functions in Bxi at the time
Bxi is processed, including original functions of P .
The message �yxi sent from xi to its parent y, is
computed by

�yxi(sep(xi; y)) =+sep(xi;y)

jO

i=1

�i

where sep(xi; y) is the separator of xi and y.
2. Top-down phase: � messages
For i = 1 to n, process bucket Bxi :
Let �1; :::�j be all the functions in Bxi at the time
Bxi is processed, including the original functions
of P . Bxi takes the � message received from its
parent y, �xiy , and computes a message �

zj
xi for each

child bucket zj by

�zjxi (sep(xi; zj)) =+sep(xi;zj) �
xi
y

O
(
O

i

�i=�
xi
zj
)

3. Compute solution: In each augmented
bucket compute: +xi

N
f2bucketi

f ,

Figure 3: Algorithm Bucket-Tree Elimination

Indeed, as we show, the correctness of the extension of
BE to BTE that adds a bottom-up message passing
is established by showing equivalence with CTE when
applied to the problem's bucket-tree. To present the al-
gorithm, we will use two types of messages, �s and �s
as common in the exposition of the bucket-elimination
scheme.

Algorithm bucket-tree elimination (BTE) is given in
Figure 3. In the top-down phase, each bucket receives
� messages from its children and sends a � message to
its parent. This portion is equivalent to BE. In the
bottom-up phase, each bucket receives a � message from
its parent and sends � messages to each child.

Example 4.3 Figure 5 shows the complete execution of
BTE along the linear order of buckets and along the
bucket-tree. The � and � messages are viewed as mes-
sages placed on the outgoing arcs.

Theorem 4.4 Algorithm BTE is sound and complete

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ),(BAB

Cλ

)(AA
Bλ

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ

),(BAB
Cλ

)(AA
Bλ

Figure 4: Execution of BE along the bucket-tree

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ),(BAB

Cλ

)(AA
Bλ

)(FG
FΠ

),(CBF
CΠ

),(BAD
BΠ

),(BAC
BΠ

)(AB
AΠ

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ

),(BAB
Cλ

)(AA
Bλ

)(FG
FΠ

),(CBF
CΠ

),(BAD
BΠ

),(BAC
BΠ

)(AB
AΠ

Figure 5: Propagation of �s and �s along the bucket-tree

4.1 Complexity

Clearly, the induced-width w� along d is identical to
the tree-width of the bucket-tree when viewed as a tree-
decomposition. We next provide a re�ned complexity
analysis of BE followed by complexity analysis of BTE.

Theorem 4.5 (Complexity of BE) Let w� be the in-
duced width of G along ordering d and sep its maximum
separator. The time complexity of BE is O(r � exp(w�+
1)) and its space complexity is O(n � exp(sep)).

Theorem 4.6 (Complexity of BTE) Let w� be the
induced width of G along ordering d and sep its max-
imum spearator (sep � w�). The time complexity of
BTE is O(r � deg � exp(w� + 1)), where deg is the maxi-
mum degree in the bucket-tree. The space complexity of
BTE is O(n � exp(sep)).

In theory the speedup expected from running BTE vs
running BE n times (n-BE) is at most n. This may seem
insigni�cant compared with the exponential complexity
in w�, however in practice it can be very signi�cant. In
particular, when these computations are used as a proce-
dure within more extensive search algorithms [Kask and
Dechter, 1999]. The actual speedup of BTE relative to
n-BE may be smaller than n, however. We know that
the complexity of n-BE is O(n � r � exp(w�+1)), whereas
the complexity of running BTE is O(deg �r �exp(w�+1)).
These two bounds cannot be directly compared because
we do not know how tight the n-BE bound is. We can
hypothesize as follows: If the complexity of n-BE was
�(n �r �exp(w�+1)), then the speeup of BTE over n-BE
would be
(n=deg). In a companion paper [anonymous,
2001] we evaluate empirically the speed-up of an approx-
imation scheme based on BTE that show substantial
gains.

5 Relating tree-decomposition methods

5.1 Join-Tree Clustering

In both constraint satisfaction and in Bayesian net-
work's communities the most used clustering methods
called join-tree clustering ([Dechter and Pearl, 1989;
Lauritzen and Spiegelhalter, 1988]) are based on a tri-
angulation algorithm which transforms the primal graph
G = (V;E) of a problem instance P into a chordal graph

G
0

. Therefore, a join-tree clustering is a tree T = (V;E),

where V is a set of maximal cliques of G
0

and E is a
set of edges that form a tree between cliques satisfying
the connectedness property [Maier, 1983]. The width of
a join-tree clustering is the cardinality of its maximal
clique, which coincides with the induced-width (plus 1),
along the order of triangulation. Subsequently, every
function is placed in one clique containing its scope.
It is easy to see that a join-tree satis�es the properties

of tree-decomposition.

Proposition 1 Every join-tree clustering is a tree-
decomposition. 2

Join-trees correspond to minimal tree-decompositions
only, where separators are always strict subsets of their

adjacent clusters, thus excluding some decompositions
that can be useful (see [Georg Gottlob and Scarello,
1999]). Moreover, they are cluster-minimal; no node and
its variables can be partitioned further to yield a more
re�ned tree-decomposition.

Example 5.1 Consider a problem having functions de-
�ned on all pairs of variables whose graph is complete.
Clearly, the only possible join-tree will have one node
containing all the variables and all the functions. An al-
ternative tree-decomposition has node C1 whose variables
are f1; :::; ng and whose functions are de�ned over the
pairs of variables: f(1; 2)(3; 4); ::::(i; i+1)(i+2; i+3)::::g.
Then, there is a node, Ci;j, for each other function that
is not contained in C1, and the tree connects C1 with each
other node. While this is a legitimate tree-decomposition,
it is not a legitimate join-tree. This example is an in-
stance of a hyper-tree decomposition, discussed next.

5.2 Hypertree Decomposition

Recently, Gottlob et.al [Georg Gottlob and Scarello,
1999] presented the notion of hyper-tree decomposi-
tions for Constraint Satisfaction, and showed that for
CSPs the hyper-width parameter can capture tractable
classes that are not captured by tree-width. The
exposition in [Georg Gottlob and Scarello, 1999] of
hypertree-decomposition, as is, is not an instance of
tree-decomposition because it allows a function to la-
bel more than a single node in the tree. While this
will not hurt the solution of constraint problems it is
not legal for the general case. Since our interest is
in general reasoning tasks, tree-decomposition must be
restricted. We will therefore augment the de�nition of
hypertree-decomposition in [Georg Gottlob and Scarello,
1999] with a restriction, and will show that such a re-
stricted hypertree-decomposition is an instance of tree-
decomposition.
A hypertree for a hypergraph H [Georg Gottlob and

Scarello, 1999] is a triple < T; �; >, where T = (N;E)
is a rooted tree, and � and are labeling functions
which associate with each node p 2 N two sets �(p) �

scope(H) and (p) � edges(H). If T
0

= (N
0

; E
0

) is sub-

tree of T , we de�ne �(T
0

) = [v2N 0�(v). We denote the
set of vertices N of T by vertices(T), and the root of
T by root(T). Moreover, for any p 2 N , Tp denotes the
subtree of T rooted at p.

Definition 5.1 [Georg Gottlob and Scarello, 1999] A
(restricted) complete hypertree decomposition of a hyper-
graph H is a hypertree < T; �; > for H which satis�es
the following conditions:

1. For each edge h 2 edges(H), there exists p 2
vertices(H) such that h 2 (p)and scope(h) � �(p)
(we say that p strongly covers h);

2. For each variable x 2 scope(H), the set fp 2
vertices(T)jx 2 �(p)g induces a (connected) subtree
of T .

3. For each p 2 vertices(H), �(p) � scope((p)).

4. For each p 2 vertices(T), scope((p)) \ �(Tp) �
�(p).

Figure 6: From a bucket-tree (left) to join-tree (middle)
to a super-bucket-tree (right)

5. (the restricting condition) For every h 2 H there is
exactly one p 2 vertices(T) s.t. h 2 (p).

Conditions 1-4 correspond to complete hypertree-
decompositions in [Georg Gottlob and Scarello, 1999].

Definition 5.2 A complete hypertree-decomposition of
a reasoning problem P is obtained from a hypertree-
decomposition of its hypergraph by replacing hyperedges
with the functions having the hyperedges as their scope.

Proposition 2 Any (restricted) complete hypertree de-
composition of P is a tree-decomposition of P . 2

Notice that the opposite is not true. There are tree-
decompositions that are not (restricted) complete hyper-
tree decompositions, because hypertree decompositions
require that the variables labeling a node will be con-
tained in the scope of its labeling functions.
For example, consider a single n-ary function f . It

can be mapped into a bucket-tree with n nodes. Node i
contains all variables f1; 2; :::ig but no functions, while
node n contains all the variables and the input function.
Both join-tree and hyper-tree decomposition will allow
just one node that include the function and all its vari-
ables.

6 Space-Time Tradeo� : Superbuckets

The main drawback of CTE is its memory needs.
The space complexity of CTE is exponential in the
largest separator size. In practice this may be too pro-
hibitive and therefore time-space tradeo�s were intro-
duced [Dechter, 1996]. The idea is to trade space for
time by combining adjacent nodes, thus reducing sepa-
rator sizes, while increasing theire width and the hyper-
width.

Proposition 3 If T is a tree-decomposition, then any
tree obtained by merging adjacent nodes in T , is a tree-
decomposition. 2

Since a bucket tree is a tree-decomposition, by merging
adjacent buckets, we get what we call a super-bucket-
tree (SBT). This means that in the top-down phase of
processing SBT , several variables are eliminated at once.
Note that one can always generate a join-tree from a
bucket-tree by merging adjacent nodes. For illustration
see Figure 6.

7 Related work and conclusions

By its nature the work here is related to all the work in
the past two decades on tree-docmpositions for speci�c
tasks, to which we referred sporadically throughout the
paper. Unifying framework were also presented [Shenoy,
1992; Bistarelli et al., 1997]. The work here put all these
schemes and formalisms together.
The work presented here has two novelties. First,

it provides a unifying framework for tree-decomposition
that draws on notations and formalizations that appear
in wide sources and in diverse communities, such as prob-
abilistic reasoning, optimization, constraint satisfaction
and graph theory. We believe that the current exposition
add clarity and will allow technology transfer.
The second novelty is extending the general variable-

elimination algorithm called bucket elimination, into a
two phase algorithm along a bucket-tree making explicit
the connection between these type of algorithms and
tree-decompositions. The extension is important for a
variety of reasoning tasks. The correctness and com-
plexity of the involving algorithms is analyzed.

References

[anonymous, 2001] anonymous. Up and down mini-
bucket: a scheme for approximating combinatorial op-
timization tasks. Submitted to Ijcai-2001, 2001.

[Bertele and Brioschi, 1972] U. Bertele and F. Brioschi.
Nonserial Dynamic Programming. Academic Press,
1972.

[Bistarelli et al., 1997] S. Bistarelli, U. Montanari, and
F. Rossi. Semiring-based constraint satisfaction and
optimization. Journal of the Association of Comput-
ing Machinery, 44, No. 2:165{201, 1997.

[Cozman, 2000] F. G. Cozman. Generalizing variable-
elimination in bayesian networks. In Workshop
on Probabilistic reasoning in Bayesian networks at
SBIA/Iberamia 2000, pages 21{26, 2000.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree
clustering for constraint networks. Arti�cial Intelli-
gence, pages 353{366, 1989.

[Dechter, 1996] R. Dechter. Topological parameters for
time-space tradeo�s. In Uncertainty in Arti�cial In-
telligence (UAI'96), pages 220{227, 1996.

[Dechter, 1999] R. Dechter. Bucket elimination: A uni-
fying framework for reasoning. Arti�cial Intelligence,
113:41{85, 1999.

[Georg Gottlob and Scarello, 1999] Nicola Leone
Georg Gottlob and Francesco Scarello. A comparison
of structural csp decomposition methods. Ijcai 1999,
1999.

[Kask and Dechter, 1999] K. Kask and R. Dechter.
Branch and bound with mini-bucket heuristics. Proc.
IJCAI-99, 1999.

[Lauritzen and Spiegelhalter, 1988] S.L. Lauritzen and
D.J. Spiegelhalter. Local computation with probabil-
ities on graphical structures and their application to

expert systems. Journal of the Royal Statistical Soci-
ety, Series B, 50(2):157{224, 1988.

[Maier, 1983] D. Maier. The theory of relational
databases. In Computer Science Press, Rockville, MD,
1983.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intel-
ligent Systems. Morgan Kaufmann, 1988.

[Shenoy, 1992] P.P. Shenoy. Valuation-based systems
for bayesian decision analysis. Operations Research,
40:463{484, 1992.

