Principles and Methods for Automated Inference

Rina Dechter and Irina Rish Information and Computer Science University of California, Irvine {dechter, irinar}@ics.uci.edu

Introduction

- 1. Most Articial Intelligence tasks are NP-hard.
- 2. Elimination and conditioning: reasoning principles common to many NP-hard tasks.
- 3. Problems described by assigning values to variables subject to a given set of dependencies (constraints, clauses, probabilistic relations, utility functions).
- 4. The dependency structure can be described by a graph: variables - nodes, dependencies - edges (constraint networks, belief networks, influence diagrams).

Articial Intelligence Tasks

Areas:

- 1. Automated theorem proving
- 2. Planning and Scheduling
- 3. Machine Learning
- 4. Robotics
- 5. Diagnosis
- 6. Explanation

Frameworks:

- 1. Propositional Logic
- 2. Constraint Networks
-
- 4. Markov Decision Processes

Our Focus: Tasks

- $-$ Deciding if there is a solution (satisfiability).
- Finding one or all solution.
- Counting solutions.
- Belief Networks:
	- { Belief Updating (BEL)
	- { Most Probable Explanation (MPE)
	- { Maximum Aposteriory hypothesis (MAP).
- Influence Diagrams and MDPs:
	- Finding Maximum Expected Utility (MEU) decision.
	- Finding optimal (MEU) policy.

Propositional SAT

Party Problem

If Alex goes, then Beki goes: $A \rightarrow B$ If Chris goes, then Alex goes: $C \rightarrow A$

Query:

Is it possible that Chris goes (C) , but Beki is not $(\neg B)$?

 \downarrow Is $\varphi = \{\neg A \lor B, \neg C \lor A, \neg B, C\}$ satisfiable?

Constraint Satisfaction

Map Coloring

Variables = $\{A, B, C, D, E, F, G\}$ Domain = $\{red, green, blue\}$ Constraints: $A \neq B$, $A \neq D$, etc.

Constrained Optimization

Power Plant Scheduling

Variables = $\{X_1, ..., X_N\}$ Domain = $\{ON, OFF\}$ Constraints: $X_1 \vee X_2$, $\neg X_3 \vee X_4$, minimum-on and minimum-off time, etc.

$$
\sum_{i} P(X_i) \geq Demand
$$

Objective :

minimize $Total_Fuel_Cost(X_1, ..., X_N)$

Belief Networks

Query:

 $P(T = yes | S = no, D = yes) = ?$

Decision-Theoretic Planning

Example: Robot Navigation

State $= \{X, Y, Battery_Level\}$ Actions $= \{North, South, West, East\}$ Probability of Success $= P$ Task: reach the goal ASAP

Two Reasoning Principles: Elimination and Conditioning

Inference vs. Search Thinking vs. Guessing

Graph coloring Elimination

Adaptive consistency: **Bucket elimination**

 $Buckets(E): E \neq D, E \neq C$ $Buckets(D): D \neq A$ $Buckets(C): C \neq B$ $Buckets(B): B \neq A$, $Bucket(A)$:

Basic step: deduction, constraint recording.

Graph Coloring Conditioning

Algorithmic Principles

Elimination:

Basic operation: eliminating variables. Reduction to equivalent subproblems, propagating constraints, probabilities. Inference, deduction, "thinking".

Conditioning:

Basic operation: value assignment, conditioning. "Guessing", generating subproblems, search.

Paradigm:

Most reasoning algorithms employ one or both of those principles.

Satisfiability **Elimination**

 $\varphi = (\neg A \vee B) \wedge (\neg A \vee E) \wedge (\neg B \vee C \vee D) \wedge \neg C$

Directional resolution (DR)

Induced width $w_d^*(A) \, = \,$ number of A 's parents in the induced graph along ordering d

Satisfiability: Conditioning

Guessing: conditioning on variables, search:

$$
\varphi = (\neg A \lor B) \land (\neg C \lor A) \land \neg B \land C
$$

Complexity

Known examples

Elimination examples:

- \bullet Dynamic programming (optimization) $\hspace{0.1em}$
- Davis-Putnam, directional resolution (SAT)
- Fourier elimination, Gausian elimination
- Adaptive Consistency (CSP)
- Join-tree for belief updating and CSPs

Conditioning examples:

- \bullet Branch and Bound (optimization) $\hspace{0.1em}$
- Davis-Putnam backtracking
- \bullet Backtracking (CSP)
- Cycle-cutset scheme (CSPs, Belief networks)

Bucket elimination and conditioning:

a uniform framework

- \bullet Understanding: commonality and differences. \blacksquare
- \bullet Ease of implementation $\hspace{0.1mm}$
- \bullet Uniformity $\hspace{0.1em}$
- \bullet Technology transfer $\hspace{0.1em}$
- Allows uniform extensions to hybrids of conditioning+elimination, and to approximations.

Outline; Road Map

Applications:

- \bullet Configuration and design problems
- \bullet Temporal reasoning $\hspace{0.1em}$
- \bullet Scheduling $\hspace{0.1em}$
- \bullet Circuit diagnosis $\hspace{0.1em}$
- \bullet Scene labeling $\hspace{0.1em}$
- Natural language parsing

Constraint Network = $\{X, D, C\}$

Variables: $X = \{X_1, ..., X_n\}$ **Domains:** $D = \{D_1, ..., D_n\}$, $D_i = \{v_1, ..., v_k\}$ Constraints: $C = \{C_1, ... C_l\}$

A constraint graph: A node per variables, an edge between constrained variables.

A solution: an assignment of a value to each variable that does not violate any constraint.

The Idea of Elimination

Eliminate variables one by one:

 $R_{DBC} = \Pi_{(-E)} R_{ED} \bowtie R_{EB} \bowtie R_{EC}$

The Idea of Elimination

Eliminate variables one by one:

Solution generation process is backtrack-free

The Idea of Elimination

Eliminate variables one by one:

Solution genration process is backtrack-free

Bucket Operation: Join followed by projection

Finding all solutions of constraints $R_1, ..., R_n$ using join:

 $Solutions = R_1 \bowtie R_2 \bowtie, ..., \bowtie R_m$

The operation in bucket E: Join: $R_{EBCD} \leftarrow R_{EB} \bowtie R_{ED} \bowtie R_{EC}$ Project: $R_{BCD} = \Pi_{BCD}(R_{BCDE})$

Join complexity: exponential in the number of variables.

Adaptive Consistency **Bucket elimination**

(Dechter and Pearl 1987, Seidel, 1981)

Bucket(E): $E \neq D$, $E \neq C$ $E \neq B$ $Bucket(D): D \neq A, ||, R_{DCB}$ Bucket(C): $C \neq B$ || R_{ACB} $Buckets(B): B \neq A, || R_{AB}$ \mathcal{S} and \mathcal{S} and

 $Buckets(A): A \neq D, A \neq B$ $Buckets(D): D \neq E, || R_{DB}$ $Bucket(C): C \neq B C \neq E,$ $Buckets(B): B \neq E, ||$ R_{BE}, R_{BE} \mathcal{S} , \mathcal{S} ,

Width and Induced Width

 \bullet width of an ordered graph: $w(\mathit{d})$ The maximum number of earlier neighbors.

 \bullet Induced width: $w^*(d)$.

The width in the ordered induced graph, generated by recursively connecting parents.

Width and Induced Width

 \bullet width of an ordered graph: $w(\mathit{d})$ The maximum number of earlier neighbors.

 \bullet Induced width: $w^*(d)$.

The width in the ordered induced graph, generated by recursively connecting parents.

Width and induced width

 \bullet width of an ordered graph: $w(\mathit{d})$ The maximum number of earlier neighbors.

 \bullet Induced width: $w^*(d)$.

The width in the ordered induced graph, generated by recursively connecting parents.

More on Induced-width (tree-width)

- Finding minimum w* is NP-complete (Arnborg, 1985).
- Greedy ordering algorithms : min-width ordering, min induced-width (Bertele, Briochi 1972, Freuder 1982).
- Approximation orderings.
- The induced width of a given ordering is easy to compute.
- ⁿ n grids have width of 2 but induced-width of n.
- Trees have induced-width of 1.
- Tree-width equals induced-width $+1$.

Adaptive Consistency

Initialize: Partition constraints into $bucket_1, ...bucket_n$. For $p = n$ downto 1, process bucket_p for all relations $R_1,...R_m \in bucket_p$ do $R_{new} \leftarrow$ Find solutions to $bucket_p$ and project out X_p . If R_{new} is not empty, then add to appropriate lower bucket. return \bullet jeunearijk

$$
R_{new} \leftarrow \Pi_{(-X_p)}(\mathbb{M}_{j=1}^{m-1} R_j)
$$

Properties of Elimination: **Tractable classes**

Theorem:

Adaptive-consistency generates a problem that can be solved without deadends (backtrack-free).

Theorem:

The time and space complexity of Adaptive-consistency along d is of the interesting d is \mathcal{A} and \mathcal{A}

Conclusion:

Problems having bounded induced-width ($w ~ < v$) can be solved in polynomial time.

Special cases:

Trees and series-parallel networks.

Solving Trees

(Mackworth and Freuder 1985)

Adaptive-consistency is linear for trees.

Only domain (unary) constraints are recorded. This is known as arc-consistency.

Adaptive consistency is equivalent to enforcing directional arc-consistency for trees.

When only domain (unary) constraints are recorded, the operation is called arc-consistency.

 $R_A \leftarrow \prod_A R_{AB} \bowtie D_B$

Example: $R_A = \{1, 2, 3\}, R_B = \{1, 2, 3\},$

$$
x < y
$$

 $x < y$

3

Allows distributed message passing.

Crossword Puzzle

- R1;2;3;4;5=f(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T), (S,N,A,I,L), (S,T,E,E,R)g
- R3;6;9;12 =f(H,I,K,E), (A,R,O,N), (K,E,E,T), (E,A,R,N), (S,A,M,E)g
- R5;7;11 =f(R,U,N), (S,U,N), (L,E,T), (Y,E,S), $\mathcal{L} = \mathcal{L} \cdot \mathcal{L$
- $R_{8,9,10,11} = R_{3,6,9,12}$
- $R_{10,13} = \{ (N, O), (B, E), (U, S), (I, T) \}$
- $R_{12,13}$ = $R_{10,13}$

Crossword Puzzle

The Power of Assignments

 $E = 1$ is an assignment. An observation.

Bucket(E): $E \neq D$, $E \neq C$ $E \neq B$, $\mathsf{E} = 1$ Bucket(D): ^D 6= ^A jj RD ⁼ f2g $\mathcal{S} = \{ \mathcal{S} \mid \mathcal{S} \mathcal{S} \}$, if $\mathcal{S} = \{ \mathcal{S} \mid \mathcal{S} \mathcal{S} \}$ $Backet(B): B \neq A, \parallel R_B = \{2\}$ $Bucket(A)$:

Case of observed buckets: Assign value to each relation separately Graph effect: Delete all arcs incident to observation. **Reduced complexity:** based on $w*$ of modified graph.

The power of assignments

 $E = 1$ is an assignment. An observation.

Bucket(E): $E \neq D$, $E \neq C$ $E \neq B$, $\mathsf{E} = 1$ \mathcal{D} and \mathcal{D} and \mathcal{D} and \mathcal{D} are functions of \mathcal{D} and \mathcal{D} are family and \mathcal{D} $\mathcal{S}(\mathcal{S}) = \mathcal{S}(\mathcal{S}) = \mathcal{S}(\mathcal{S})$, if $\mathcal{S}(\mathcal{S}) = \mathcal{S}(\mathcal{S})$ $Backet(B): B \neq A, \parallel D_B = \{2\}$ $Bucket(A)$:

Case of observed buckets:

Assign value to each relation seprately Graph effect: Delete all arcs incident to observation. Reduced complexity: based on $w*$ of modified graph. Conditioning exploit the power of assignment:

Basic step: guessing, conditioning. Leads to backtracking search. Complexity: exponential time, linear space.

Variety of Backtracking Algorithms

Simple Backtracking + variable/value ordering heuristics $+$ constraint propagation $+$ smart backjumping + learning no-goods+ ...

- Forward Checking [Haralick & Elliot, 1980]
- Backjumping [Gaschnig 1977, Dechter 1990, Prosser, 1993]
- Backmarking [Gaschnig 1977]
- BJ+DVO [Frost & Dechter 1994]
- Constraint learning [Dechter 1990] [Frost & Dechter 1994] [Bayardo & Miranker, 1996]

Search Complexity Distributions

Complexity histograms (deadends, time) \Rightarrow continuous distributions [Frost, Rish, Vila, 1997]:

Complexity Comparison

Pair-wise Elimination (Dechter and van Beek, 1997)

In certain problem pair-wise elimination suf fices.

Simultaneous Join-project elimination

 $Buckets(E) = \{R_{ED}, R_{EC}, R_{EAB}\}$

 \rightarrow R_{ABCD}

Pair-wise elimination:

 $Buckets(E) = \{R_{ED}, R_{EC}, R_{EAB}\}$

$$
\rightarrow \quad R_{DC}, \quad R_{ADB}, \quad R_{ACB}
$$

Pair-wise elimination is complete for:

- \bullet Linear inequalities $\hspace{0.1em}$
- \bullet propositional variables $\hspace{0.1em}$
- \bullet Crossword puzzles

Bucket elimination for linear inequalities

 $Bucket(x)$: $\{x-y\leq 17, \quad 5x+2.5y+z\leq 84, \quad t-x\leq 2\} \rightarrow$ $5t + 2.5y + 5z < 94$, $t - y < 19$

P (r1) $i=1$ aixi the contract $i=1$ \blacksquare $i=1$ bixi in the $i=1$

$$
\sum_{i=1}^{r-1} (-a_i \frac{b_r}{a_r} + b_i) x_i \le -\frac{b_r}{a_r} c + d.
$$

(If a_r , b_r opposite signs)

Fourier elimination:

Bucket elimination algorithm for linear inequalities. Complexity is not bounded by the induced-width.

Temporal constraint networks:

A tractable case when inequalities are $x-y \le 16$, $x \le 5$.

Fourier Elimination: **Bucket-elim for Linear Inequalities**

Input: Linear inequalities set, 0 Output: A back-track free set Intialize: partition into buckets

 $B(x)$: $x - y \le 17$, $5x + 2.5y + Z = 84$, $t - x \le 2$ $B(t)$: $t - x \le 19$ $5t + 2.5y + 5Z \le 94$ $B(u)$: $B(z)$: $B(z)$: $5x + 2.5y + z < 84$ $B(y) : x - y \le 17$ $B(x) : t - x \leq 2$ $B(t)$: $B(t): t - x < 2$ $B(x)$: $x - y < 17$, $5x + 2.5y + Z < 84$ $B(y)$: $B(z)$:

Temporal Constraint **Networks**

(Dechter, Meiri and Pearl 1990)

Algorithm for STP is Bucket elimination

$$
B(x): x - y \le 5, \quad x > 3, \quad t - x \le 10
$$

\n
$$
B(y): y \le 10 \quad || \quad -y \le 2, \quad t - y \le 15
$$

\n
$$
B(z): \quad || \quad t \le 25
$$

Algorithm records only Binary constraints of same type

Complexity
$$
\Rightarrow
$$
 0(n^3)
 \Rightarrow 0(w^*n^2)

Summary

- 1. Bucket elimination for $CSPs =$ Adaptive consistency
- 2. Performance characterized by induced width of ordered graph. Thile and space $O(exp(w_d))$.
- 3. The bucket operation: join-project.
- 4. Value assignments reduce induced width and reduce complexity.
- 5. Conditioning: backtracking search Worst case time $O(exp(n))$, but much better on average. Linear space.
- 6. Bucket elimination for linear inequalities $=$ Fourier elimination.

Fourier Elimination

```
Initialize: partition inequalities into
bucket_1, \ldots, bucket_n.For p \leftarrow n downto 1
    for each pair \{\alpha, \beta\} \subseteq \text{bucket}_i,
         compute \gamma = \text{elim}_p(\alpha, \beta).
         If \gamma has no solutions,
         return inconsistency.
         else add \gamma to
         the appropriate bucket.
return E_o(\varphi) \leftarrow \bigcup_i \mathit{bucket}_i.
```
"Road Map": Tasks and Methods

Propositional Satisfiability

Conjunctive normal form (CNF) $\varphi = (A \vee B \vee C) \wedge (\neg A \vee B \vee E) \wedge (\neg B \vee C \vee D)$

Is φ satisfiable? If it is, find a solution (*model*).

CNF: conjunction of clauses clause: disjunction of literals literal: A or $\neg A$

Interaction graph:

Variables (*propositions*) \Rightarrow nodes Constraints (*clauses*) \Rightarrow cliques

The operation in a bucket: pair-wise resolution $(A \vee B) \wedge (\neg A \vee E) \wedge (A \vee \neg C)$: $(A \vee B) \wedge (\neg A \vee E) \Rightarrow (B \vee E),$ $(\neg A \lor E) \land (A \lor \neg C) \Rightarrow (E \lor \neg C).$

Resolution creates clauses \Rightarrow

Special case:

Unit resolution - resolution with unit clauses: $\neg A \land (A \lor B \lor C) \Rightarrow (B \lor C)$

propagation - unit resolution until Unit n_O unit clause is left.

Directional Resolution **Bucket Elimination**

 $\varphi = \neg C \land (A \lor B \lor C) \land (\neg A \lor B \lor E) \land (\neg B \lor C \lor D)$

Resolution: logical inference ("thinking")

DR Complexity

$$
|bucket_i| = O(exp(w^*)) \Rightarrow |E_o| = O(nexp(w^*))
$$

$$
\Downarrow
$$

Time(DR) and Space(DR) = $O(nexp(w^*))$

Directional Resolution (DR) [Davis,Putnam, 1960] [Dechter, Rish, 1994]

```
Input: A cnf theory \varphi, d = Q_1, ..., Q_n.
Output: A directional extension E_d(\varphi),
equivalent to \varphi; E_d(\varphi) = \emptyset iff \varphi is unsatisfiable.
1. Initialize: generate a partition of clauses,
bucket_1, ..., bucket_n, where bucket_i contains
all the clauses whose highest literal is Q_i.
              Resolve each pair
              \{(\alpha \vee Q_i), (\beta \vee \neg Q_i)\}\subset \text{bucket}_i.. It is the contract of the contract of the contract of \mathbf{I} is the contract of the contr
             return E_d(\varphi) = \emptyset,
             else add \gamma to the appropriate bucket.
3.Return E_d(\varphi) \leftarrow \bigcup_i \mathit{bucket}_i.
```
Conditioning adds a literal to φ

$$
A=0 \Rightarrow \neg A \land \varphi
$$

 $A = 1 \Rightarrow A \wedge \varphi$

Conditioning implies:

· unit resolution:

$$
A = 0 \Rightarrow \neg A \land (A \lor B \lor C) \Rightarrow (B \lor C)
$$

 \bullet deleting *tautologies*:

 $A = 0 \Rightarrow \neg A \wedge (\neg A \vee B \vee E) \Rightarrow$ clause $(\neg A \vee B \vee E)$

is deleted from φ .

 \bullet deleting a variable from the graph $\hspace{0.1em}$

Backtracking Search Conditioning

Search: "guessing" (partial) solutions

The Davis-Putnam

 \blacksquare . Loweland, Loveland, 1962, Loveland,

 $DP(\varphi)$ **Input:** A cnf theory φ . **Output:** A decision of whether φ is satisfiable. 1. Unit_propagate(φ); 2. If the empty clause generated return(false); 3. else if all variables are assigned return(true); 4. else $Q =$ some unassigned variable; $5.$ 6. return($DP(\varphi \land Q)$ \lor 7. DP($\varphi \wedge \neg Q$))

Historical Perspective

- 1960 resolution-based Davis-Putnam algorithm.
- 1962 original Davis-Putnam was replaced by conditioning procedure [Davis, Logemann and Loveland, 1962] due to memory explosion, resulting in a backtrack search known as the Davis-Putnam(- Logemann-Loveland) procedure.
- The dependency on a graph parameter called induced width was not known in 1960.
- 1994 Directional Resolution, a rediscovery of the original Davis-Putnam [Dechter and Rish, 1994]. Identification of tractable classes.

Experimental Results:

DP vs DR on k -CNFs [Dechter and Rish, 1994

1. Uniform random 3-CNF: N variables, C clauses 2. Random (k,m)-tree: a tree of $k + m$ -node cliques with k -node intersections (clique separators)

Uniform random 3-CNFs:

 (k,m) -tree CNFs:

Why Hybrids?

Conditioning (backtracking)

+ Elimination (resolution) [Rish and Dechter, 1996]

Conditioning+DR:

Algorithm $DCDR(b)$

DCDR(b):

Experimental Results

Summary

- 1. Bucket elimination: Directional Resolution (resolution-based Davis-Putnam). Thile and space $O(exp(w_0))$.
- 2. Conditioning: backtracking search (backtracking-based Davis-Putnam Procedure). Time $O(exp(n))$, better on average; space $O(n)$.
- 3. Conditioning (Backtracking) + Elimination (Resolution): Conditioning when $w^* \geq b$, resolution otherwise. Time $exp(b + |cond(b)|)$, space $exp(b)$.

"Road Map": Tasks and Methods

Belief Networks

● Belief networks are acyclic directed graphs annotated with conditional probability tables.

Tasks (NP-hard):

- \bullet belief-updating (*BEL)*
- \bullet Finding most probable explanation (*MPE*) $\hspace{0.2mm}$
- \bullet Finding maximum aposteriori hypothesis (*MAP*) $-$
- \bullet Finding maximum expected utility (MEU)

Common Queries

- 1. Belief assessment: Find $bel(x_i) = P(X_i = x_i|e)$.
- 2. Most probable explanation (MPE) : Find x S.t. $p(x) = max_{\bar{x}_n} n_{i=1}F(x_i|x_{pa_i}, e)$.
- 3. Maximum aposteriori hypothesis (MAP) : Given $A = \{A_1, ... A_k\} \subseteq A$, find $a^* = (a^*1, ... a^*k)$ s.t. $p(a^o) = \mathsf{max}_{\overline{a}_k} \sum_{x_{X - A}} \mathsf{\Pi}_{i=1}^n$ $\prod_{i=1}^{n} \Gamma(x_i | x_{pa_i}, e)$.
- 4. Maximum expected utility (MEU) : Given $u(x) \,=\, \sum_{Q_j \in Q} f_j(x_{Q_j})$, find decisions $d^o \,=\,$ $(d^{o_1}, ..., d^{o_k})$ $\max_d \sum_{x_{k+1},...,x_n}^{\infty} \bigcap_{i=1}^n$ $\prod_{i=1}^{n} \prod_{i=1}^{n} x_{i} x_{pa_{i},d} y_{u(x)}$.

Ordering: a, b, c, d, e $P(a, e = 0) = \sum_{b, c, d, e = 0} P(a, b, c, d, e)$ $= \sum_b \sum_c \sum_d \sum_{e=0} P(e|b, c) P(d|a, b) P(c|a) P(b|a) P(a)$

 $= p(a) \sum_b P(b|a) \sum_c P(c|a) \sum_d P(d|b,a) \sum_{e=0} P(e|b,c)$

Ordering: a, e, d, c, e $P(a, e = 0) = \sum_{e=0,d,c,b} P(a, b, c, d, e)$

$P(a, e = 0) = P(a) \sum_{e} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b)$

 $P(e|b, c)$

Backwards Computation $=$ Elimination

Ordering: a, b, c, d, e $P(a) \sum_b P(b|a) \sum_c P(c|a) \sum_d P(d|b,a) \sum_{e=0} P(e|b,c)$

 $= P(a) \sum_b P(b|a) \sum_c P(c|a) P(e = 0|b, c) \sum_d P(d|b, a)$

$$
= P(a) \sum_{b} P(b|a) \lambda_{D}(a, b) \sum_{c} P(c|a) P(e = 0|b, c)
$$

= $P(a) \sum_{b} P(b|a) \lambda_{D}(a, b) \lambda_{C}(a, b)$
= $P(a) \lambda_{B}(a)$

The Bucket elimination process:

 $bucket(E) =$ $P(e|b, c), e = 0$ $bucket(D) = P(d|a, b)$ $bucket(C) = P(c|a)$ $bucket(B) = P(b|a)$ $bucket(A) = P(a)$

Backwards Computation, Different Ordering

Ordering: a, e, d, c, b $P(a, e = 0) = P(a) \sum_{e=0} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a)$ $P(d|a,b)P(e|b,c)$

$$
P(a) \sum_{e=0} \sum_{d} \sum_{c} P(c|a) \lambda_B(a, d, c, e)
$$

\n
$$
P(a) \sum_{e=0} \sum_{d} \lambda_C(a, d, e)
$$

\n
$$
P(a) \sum_{e=0} \lambda_D(a, e)
$$

\n
$$
P(a) \lambda_D(a, e = 0)
$$

The bucket elimination Process:

$$
bucket(B) = P(e|b, c), P(d|a, b), P(b|a)
$$

\n
$$
bucket(C) = P(c|a) || \lambda_B(a, d, c, e)
$$

\n
$$
bucket(D) = || \lambda_C(a, d, e)
$$

\n
$$
bucket(E) = e = 0 || \lambda_D(a, e)
$$

\n
$$
bucket(A) = P(a) || \lambda_D(a, e = 0)
$$

Bucket Elimination and Induced Width

Ordering: a, b, c, d, e

Ordering: a, e, d, c, b bucket(B) = P (ejb; c); P (dja; b); P (bja) \mathbf{b} bucket (C) \mathbf{b} by \mathbf{b} and \mathbf{b} by \mathbf{b} \mathbf{b} by \mathbf{b} bucket \mathcal{L} if \mathcal{L} and \mathcal{L} and \mathcal{L} $\mathbf{E} \left(\mathbf{E} \right)$ = $\mathbf{E} \left(\mathbf{E} \right)$ if $\mathbf{E} \left(\mathbf{E} \right)$ \mathbf{b} if $\mathbf{$
Bucket Elimination and Induced Width

Handling Observations

Observing $b = 1$

Ordering: a, e, d, c, b

Ordering: a, b, c, d, e

bucket(E) = P (e) = P (e) = 0 (bucket(D) = P (dja; b) bucket \mathcal{L} is provided to \mathcal{L} if \mathcal{L} if \mathcal{L} is \mathcal{L} if \mathcal{L} if \mathcal{L} is \mathcal{L} if \mathcal{L} if \mathcal{L} is the substitution of \mathcal{L} \mathbf{b} = \mathbf{b} = \mathbf{c} ; \mathbf{b} = 1 \mathbf{b} ; D(a; b); C(a; bucket (A) is presented as \mathcal{A} if \mathcal{A} if \mathcal{B} (A) is \mathcal{B}

Observed bucket:

 $bucket(B) = {P(e|b, c), P(d|a, b), P(b|a), b = 1} \rightarrow$

$$
\lambda_B(a) = P(b = 1|a)
$$

\n
$$
\lambda_B(a, d) = P(d|a, b = 1)
$$

\n
$$
\lambda_B(e, c) = P(e|b = 1, c).
$$

Elim-bel

Irrelevant buckets for elim-bel

Buckets that sum to 1 are **irrelevant** Identication: no evidence, no new functions.

Recursive recognition : ($bel(a|e)$)

 $bucket(E) = P(e|b, c), e = 0$ $bucket(D) = P(d|a, b)$,...skipable bucket $bucket(C) = P(c|a)$ $bucket(B) = P(b|a)$ $bucket(A) = P(a)$

Complexity: Use induced width in moral graph without irrelevant nodes, then update for evidence arcs.

Finding the MPE

(An optimization task)

Ordering: a, b, c, d, e $m = \max_{a,b,c,d,e=0} P(a,b,c,d,e) =$ $=$ max_a $P(a)$ max_b $P(b|a)$ max_c $P(c|a)$ max_d $P(d|b,a)$

 $\max_{e=0} P(e|b, c)$

Ordering: a, e, d, c, b $m = \max_{a,e=0,d,c,b} P(a, b, c, d, e)$ $m = \max_a P(a) \max_e \max_d \cdot$

 $\max_c P(c|a) \max_b P(b|a)P(d|a,b)P(e|b,c)$

Algorithm Elim-mpe

Input: A Belief network $P = \{P_1, ..., P_n\}$ Output: MPE

- 1. Initialize: Partition into buckets.
- 2. Process buckets from last to first:

3. Forward: Assign values in ordering d

Generating the MPE Tuple

Step 3:

 $a_0 = argmax_a P(a) \cdot h(a)$ $e_0 = E = 0$ $d_0 = argmax_d h(a_0, d, e_0)$ $c_0 = argmax_c P(c|a_0) \cdot h(a_0, d_0, c, e_0)$ $b_0 = argmax_b P(e_0|b, c_0) \cdot P(d_0|a_0, b) \cdot P(b|a_0)$

Return a_0, e_0, d_0, c_0, b_0

Elim-mpe

Input: A belief network $\{P_1, ..., P_n\}$; d; e. Output: mpe 1. Initialize: 2. Process buckets: for $p = n$ to 1 do for matrices $h_1, h_2, ..., h_j$ in $bucket_p$ do \bullet II (observed variable) assign $X_p \equiv x_p$ [$\,$ to each h_i and put in buckets. \bullet Else, (multiply and maximize) \bullet $h_p = \max_{X_p} \Pi_{i=1}^{\prime} h_i.$ option and the contract of the \sim \sim \sim \sim $p \longrightarrow p \longrightarrow \Lambda p p$ Add h_p to its bucket. 3. Forward: Assign values in ordering d

Theorem: Elim-mpe finds the value of the most probable tuple and a corresponding tuple.

Cost Networks and Dynamic Programming

• Minimize sum-of-costs.

Elim-opt, Dynamic Programming

(Bertele and Briochi, 1972)

Algorithm elim-opt **Input:** A cost network (X, D, C) , $C = \{C_1, ..., C_l\};$ ordering o; e. **Output:** The minimal cost assignment. 1. **Initialize:** Partition the cost components into buckets. 2. Process buckets from $p \leftarrow n$ downto 1 For costs $h_1, h_2, ..., h_j$ in $bucket_p$, do: • If (observed variable) $X_p = x_p$, assign $X_p = x_p$ to each h_i and put in buckets. • Else, (sum and minimize) $h^p = min_{X_p} \sum_{i=1}^J h_i.$ $p^{\prime} = argmin_{X_p} h^p$. \sim \sim \sim \sim AUU μ to its bucket. Forward: Assign minimizing values in or- $3₁$ dering o

Algorithm Elim-Opt (Dechter, Ijcai97)

 $min_{a,d,c,b,e=0}C(a,b,c,d,e) = min_{a,d,c,b}$ $C(a, c) + C(a, b, d) + C(b, e) + C(b, c) + C(c, e)$

1. Partition $C = \{C_1, ..., C_r\}$ into buckets

Process buckets from last to first: $2.$

3. Forward: Assign values in ordering d

Finding the MAP

(An optimization task)

Variables A and B are the hypothesis variables. Ordering: a, b, c, d, e $max_{a,b} P(a,b,e=0) = max_{a,b} \sum_{c,d,e=0} P(a,b,c,d,e)$

 $\bm = \max_{a} P(a) \max_{b} P(b|a) \sum_{c} P(c|a) \sum_{d} P(d|b,a)$ $\sum_{e=0} P(e|b, c)$

Ordering: a, e, d, c, b illegal ordering $\max_{a,b} P(a,e,e=0) = \max_{a,b} \sum_P(a,b,c,d,e)$

max $_{a,b}$ $P(a,b,e=\mathsf{0}) = \mathsf{max}_a$ $P(a)$ max_b $P(b|a)$ $\sum_{d} \cdot$ $\max_c P(c|a)P(d|a,b)P(e=0|b,c)$

Elim-map

Maximum aposteriori hypothesis (MAP) : Given $A = \{A_1, ... A_k\} \subseteq X$, find $a^o = (a^o_1, ... a^o_k)$ s.t. $p(a^o) = \mathsf{max}_{\overline{a}_k}\sum_{x_{X-A}}\mathsf{\Pi}_{i=1}^n P(x_i|x_{pa_i},e).$

A belief network and Input: hypothesis $\vert A \vert$ ${A_1, ..., A_k}, d, e.$ Output: An map. 1. Initialize: 2. Process buckets : for $p = n$ to 1 do for matrices $\beta_1, \beta_2, ..., \beta_j$ in $bucket_p$ do • If observed variable, assign $X_p = x_p$. • Else, (multiply and sum or max) $\beta_p = \sum_{X_p} \mathsf{\Pi}_{i=1}^J \beta_i$ $(X_p \in A)$ $\beta_p = \max_{X_p} \Pi_{i=1}^{\circ} \beta_i$ $a^0 = argmax_{X_p} \beta_p.$ Add β_p to its bucket. 3. Forward: Assign values to A .

Variable ordering is restricted: max-buckets should preceede (processed after) summation buckets.

Complexity of bucket elimination

Theorem

Given a belief network having n variables, observations e , the complexity of elim-mpe, elimbel, elim-map along d , is time and space

 $O(n \cdot exp(w * (d)))$

where $w*(d)$ is the induced width of the moral graph whose edges connecting evidence to earlier nodes, were deleted.

Bucket-Elimination for trees and Poly-Trees

Elim-bel, elim-mpe, elim-map are linear for poly-trees.

They are similar to single root query of Pearl's propagation on poly-trees, if using topological ordering (and super-bucket processing of parents.)

Example:

Relationship with join-tree clustering

(constraint networks and belief networks)

Ordering: a, b, c, d, e

 $bucket(E) = P(e|b, c)$ $bucket(D) = P(d|a, b)$ bucket(C) = $P(c|a)$, $|| \lambda_E(a, b)$ $bucket(B) = P(b|a), || \lambda_C(a, b)$ $backet(A) = P(a), || \lambda_B(a)$

A clique in tree-clustering can be viewed as a set of buckets.

Conditioning: Generates the Probability Tree

Complexity of conditioning:

Time: exponential

Space: linear.

Conditioning+ Elimination

Method: Search until a problem having a small w^* is created.

Conditioning $+$ Elimination Trading space for time

- \bullet Algorithm *elim-cond(b), b* bounds width: When $b > width$, apply conditioning.
- \bullet $b =$ \cup is full conditioning, $\hspace{0.1em}$
- \bullet $b \equiv w^*$ is pure bucket elimination
- \bullet $b = 1$ is the cycle-cutset method.
- \bullet Time $exp(b+|cond(b)|)$, space $exp(b)$

Super-Bucket Elimination Trading space for time

(Dechter and El Fattah, UAI 1996)

 \bullet Eliminating a few variables "at once". $\hspace{0.1em}$

 \bullet Here conditioning is local to super-buckets.

The Super-Bucket Idea

Larger super-buckets (cliques) means more time and less space:

Complexity:

- 1. Time: exponential in clique and super-bucket size
- 2. Space: exponential in separator size.

Application: Circuit **Diagnosis**

Problem: Given a circuit and unexpected output, identify faulty components. The problem can be modeled as a constraint optimization problem and solved by bucket elimination.

Benchmark Circuits

Secondary Trees for C432

Time-Space tradeoff for circuits

"Road Map": Tasks and Methods

Approximation algorithms

Approximating conditioning:

Random search, GSAT, stochastic simulation.

Approximating elimination:

Local consistency algorithms, bounded resolution, the mini-buckets approach.

 \bullet Approximation of hybrids of conditioning +elimination.

Approximating conditioning: Randomized Hill-climbing search

(Hopfield 1982, kirkpatrick et. al, 1983) (Minton et. al. 1990, Selman et. al, 1992)

For CSP and SAT:

GSAT: (one try)

1. Guess an assignment to all the variables.

2. Improve assignment by fliping a value using a guiding hill-climbing function: the number of conflicting constraints.

- 3. Use randomization to get out of local minimas.
- 4. After a fixed time stop and start a new try.

Randomized hill climbing frequently solve large and hard satisfiable problems.

Distributed version: Energy minimization in a Hopfiled neural network (Hopfiled, 1982), Boltzman machines.

Approximating Conditioning with elimination

Energy minimization in Neural networks

(Pinkas and Dechter, JAIR 1995)

 \bullet Cutset nodes run the original greedy update $\hspace{0.1mm}$ function relative to neighbors. The rest of the nodes run the arc-consistency algorithm followed by value assignment, distributedly.

Approximating Conditioning in a Hybrid

GSAT with Cycle-Cutset

(Kask and Dechter, AAAI 1996)

Algorithm $(GSAT + cycle-cutset)$

Input: A CSP, variables divided into cycle cutset and tree variables

Output: An assignment to all the variables. One try:

Create a random initial assignment, and then alternatively executes these two steps: natively executes these two steps: two step

- 1. Run Tree Algorithm on the problem, where the values of cycle cutset variables are fixed.
- 2. Run GSAT on the problem, where the values of tree variables are fixed.

GSAT with cycle-cutset

(Kask and Dechter, AAAI 1996)

GSAT with cycle-cutset

(Kask and Dechter, AAAI 1996)
"Road Map": Tasks and Methods

Approximating Elimination: **Local Inference**

 \bullet Problem: bucket elimination (inference) $$ algorithms are intractable when w is large.

 Approximation idea: bound the arity of recorded dependencies (constraints/probabilities/utilities), i.e. perform local inference.

CSPs: local consistency; SAT: bounded resolution; Belief networks, optimization: mini-buckets

CSP: from Global to Local Consistency

i-consistency

• i-consistency:

Any consistent assignment to any $i-1$ variables is consistent with at least one value of any i -th variable.

Arc-consistency \Leftrightarrow 2-consistency Path-consistency \Leftrightarrow 3-consistency

 strong i-consistency: k-consistency for every $k \leq i$

o directional i-consistency:

Given an ordering, X_k is *i*-consistent with any $i - 1$ previous variables.

strong directional i-consistency: Given an ordering, X_k is strongly *i*-consistent

with any $i - 1$ previous variables.

Enforcing Directional i-consistency

- \bullet Directional \imath -consistency bounds the size of recorded constraints by i .
- $\bullet\,$ For $\imath>w$, directional \imath -consistency is equivalent to adaptive consistency (bucket elimination).

Consistency Algorithms

SAT: Bounded Directional Resolution (BDR(i))

- \bullet BDR(i) enforces directional \imath -consistency
- \bullet Bucket Operation: bounded resolution.

Resolvents on more than *i* variables are not recorded: e.g., $(A \vee B \vee \neg C) \wedge (\neg A \vee D \vee E) \rightarrow (B \vee \neg C \vee D \vee E)$ is not recorded by BDR(3).

 \bullet Non-directional version: $\kappa\textrm{-}\textbf{ciosure}$ (van Gelder, $\hspace{0.1mm}\blacksquare$ 1996]. Enforces full k-consistency.

Preprocessing by i-consistency

Complete algorithm BDR-DP(i) runs BDR(i)

as a preprocessing before DP-backtracking.

Experimental Results:

Uniform random CNFs (k,m)-tree CNFs

 DP, DR and BDR-DP on (2,5)-chains (25 subtheories)

Probabilistic Inference:

Mini-Bucket Approximation

Idea:

bound the size of probabilistic components by splitting

Complexity decrease:

$$
O(e^n) \to O(e^r) + O(e^{n-r})
$$

Approx-mpe(i) [Dechter and Rish, 1997]

i - max number of variables in a mini-bucket

Input: A Belief network $P = \{P_1, ..., P_n\}$ Output: upper and lower bounds on MPE

- 1. Initialize: Partition into buckets.
- 2. Process buckets from last to first:

3. Forward: Assign values in ordering d Lower bound $= P(\text{solution}).$

About approx-mpe(i)

 Complexity: $O(exp(2i))$ time and $O(exp(i))$ space.

Accuracy:

determined by Upper bound/Lower bound ratio. As *i* increase, accuracy increases.

Applications:

- As an anytime algorithm.
- As heuristics in Best-First Search.

Other probabilistic tasks:

mini-bucket idea can be used for approximate belief updating, finding MAP and MEU [Dechter and Rish,1997].

Anytime Approximations

anytime-mpe(ϵ)

- 1 Initialize: $i = 1$
- 2. While computation resources are available
- 3. Increase i
- 4. $U \leftarrow$ upper bound of approx-mpe(i)
- 5. $L \leftarrow$ lower bound of approx-mpe(i)
- 6. Retain best solution so far
- 7. If U=L , return solution
- 8 end-while
- 9. Return current maximum mpe.

anytime-mpe (1) is an exact algorithm. It can be orders of magnitude faster than elim-mpe.

Best-First Search

- Mini-bucket records upper-bound heuristics.
- The evaluation function over $\bar{x}_p = (x_1, ..., x_p)$:

$$
f(\bar{x}_p) = g(\bar{x}_p) \cdot h(\bar{x}_p)
$$

$$
g(\bar{x}_p) = \Pi_{i=1}^{p-1} P(x_i | x_{pa_i})
$$

$$
h(\bar{x}_p) = \Pi_{h_j \in bucket_p} h_j
$$

Best-First:

Expand a node with maximal evaluation function.

Properties:

- An exact algorithm.
- Better heuristics lead to more pruning.

Approximate Elimination for Belief Updating

- elim-bel is similar to elim-mpe where maximization is replaced by summation [UAI-96].
- Approximation idea: sum of products \le product of sums, i.e.

$$
\sum_{Xp} \Pi_{i=1}^j \lambda_i \le \Pi_{i=1}^j \sum_{Xp} \lambda_i
$$

Even better: bound by max

$$
\sum_{Xp} \Pi_{i=1}^j \lambda_i \le \sum_{Xp} \lambda_1 \cdot \Pi_{l=2}^j \max_{Xp} \lambda_l
$$

We can use min or $mean$, instead of max , yielding lower bounds and a mean value.

approx-bel-max(i):

Generates an upper bound to joint belief. Complexity: $O(exp(2i))$.

Empirical Evaluation

Test Problems:

- CPCS networks
- Uniform random networks
- Random noisy-OR networks
- Probabilistic decoding

Algorithms:

- \bullet elim-mpe
- \bullet approx-mpe(i)
- anytime-mpe (ϵ)

cpcs360 - 360 binary nodes, 729 edges cpcs422 - 422 binary nodes, 867 edges **Evidence (E)** $= 0$, 2, and 10 nodes

anytime-mpe(1) performance:

anytime-mpe(1) versus elim-mpe

- anytime-matrix is 100% accurate the matrix in the contract of the contract of
- 2-3 orders of magnitude more ecient than elim-mpe
- exact elim-mpe ran out of memory on cpcs422; anytime-mpe(1) found exact solution in $<$ 70 sec.

Noisy-OR Networks

Random noisy-OR generator:

Random graph: n nodes, e edges. **Noisy-OR** $P(x|pa(x))$ is defined by noise q: link probability $P(x = 1|pa_i(x) = 1) = 1 - q$, leak probability $P(x = 1|\forall ipa_i(x) = 0) = 0.$

Results on (50 nodes, 150 edges)-networks 10 evidence nodes, 200 instances

• elim-mpe ran out of memory;

approx-mpe(i) time: from 0.1 sec for $i = 9$ to 80 sec for $i = 21$.

- Accuracy increases with $q \to 0$, 100 % for $q = 0$ (Figure (a)).
- U/L is extreme: either really good $(=1)$ or really bad (>4) ;
- U/L becomes less extreme with increasing noise q (Figure (b)).

Random Networks

Random graphs (*n* nodes, *e* edges) and uniform random $P(x|pa(x))$.

approx-mpe(12)

 \bullet In \approx 80% of cases, approx-mpe is more efficient by 1-2 orders of magnitude while achieving accuracy factor of at least 2.

• approx-mpe effectiveness decreases with increasing density.

 Lower bound is usually closer to MPE than the Upper bound

Notation:

 $M/L\% = \%$ of instances s.t. MPE value / Lower Bound $\in [\epsilon - 1, \epsilon]$ U/M% = % of instances s.t. Upper Bound / MPE value $\in [\epsilon - 1, \epsilon]$ Mean T_e/T_a = Mean value of elim-mpe time/approx-mpe time (T_e/T_a) on the instances s.t. M/L (or U/M) $\in [\epsilon - 1, \epsilon]$

Iterative Belief Propagation (IBP)

Pearl's belief propagation (BP) algorithm records only unary dependencies. BP is exact for poly-trees.

Approximation scheme:

Iterative application of BP to a cyclic network.

Recent empirical results:

IBP is surprisingly successfull for probabilistic decoding (state-of-the art decoder).

Probabilistic Decoding

Goal:

Reliable communication over a noisy channel Reliable communication over a noisy channel

Technique: Error-correcting codes

 $U = (u_1, ..., u_k)$ - input *information* bits $X = (x_1, ..., x_n)$ - additional **code** bits **Codeword** (U, X) (channel input) is transmitted trough a noisy channel.

Result: real-valued channel output Y .

Decoding task: given Y, find U' s.t.:

1. (block-wise decoding) $u' = \arg \max_u P(u|y)$, or

2. (bit-wise decoding) $u_{\overline{k}} =$ arg max $u_{\overline{k}}$ $F(u_{\overline{k}} | y),$ $1 \leq \kappa \leq K$.

Bayesian Network Representation

Linear block code:

Problem parameters:

- k the number of the input information bits;
- n the number of code bits;
- p the number of parents of each code bit;
- σ the noisy channel parameter (Gaussian noise).

Encoding: parity check (pairwise XOR) $x = u_1 \oplus u_2 \oplus ... \oplus u_m$, where u_i are parents of x, and \oplus is summation modulo 2 (XOR).

Error measure: the bit error rate (BER).

Approx-mpe(i) outperforms iterative belief propagation $(IBP(I), I$ is the number of iterations) on structured problems with small parent set size:

BER for exact elim-mpe and approximate IBP(1), IBP(10), approxmpe(1) and approx-mpe(7) (1000 instances per point). Structured block codes with $R=1/2$ and (a) $K=25$, $P=4$, (b) $K=50$, $P=4$, (c) $K=25$, P=7, and (d) $K=25$, P=7. The induced width of the networks was 6 for (a) and (b), and 12 for (c) and (d).

Random (high- w^*) Codes and Hamming Codes

On the other hand, IBP outperforms approx-mpe(i) on random problems (high w^*) and on Hamming codes:

BER for exact elim-mpe and approximate IBP(1), IBP(5), approxmpe(1) and approx-mpe(7) (10000 instances per point). Random block codes with $R=1/2$ and (a) $K=50$, $P=4$, and Hamming codes with (b) $K=4$, N=7 and (c) $K=11$, N=15. w^* of Hamming networks was (a) 3 and (b) 9, respectively, while w^* of the random networks was $>$ 30.

Summary

\bullet CPCS networks:

approximate \mathcal{L} is a set of \mathcal{L} . The matrix is defined to the matrix in \mathcal{L} any α and α is the set α of α or α in a function by α is the set of α or α or ders of magnitude)

Noisy-OR networks:

approx-mpe(i) is more accurate than on random problems, especially for $q \to 0$

approx-mpe(i) is not very eective, especially with increasing network density

Coding networks:

approx-mpe(i) outperforms iterative belief propagation on low- w^* structured networks, but the opposite results are observed on indu- w -random coding networks.

"Road Map": Tasks and Methods

Decision-Theoretic Planning

Example: Robot Navigation

State $=$ { Location, Cluttered, Direction, Battery} Actions $= \{North, South, West, East\}$ Probability of Success $= P$

Task: reach the goal ASAP

Dynamic Belief Networks

Markov Decision Process

- $x = \{x_1, ..., x_n\}$ state, D goingin, $x_x = D$ state space
- $a = \{a_1, ..., a_m\}$ action, D_a domain, $\Delta z_a = D_a$ action space active and the control of t
- ^P ^a xy transition probabilities
- $r(x, a)$ reward of taking action a in state x
-

Problem: Find optimal policy

1. Finite-horizon MDP $(N < \infty)$

$$
\pi=(d^1,...,d^N),d^t:\Omega_x\rightarrow\Omega_a
$$

2. Infinite-horizon MDP $(N = \infty)$

$$
\pi:\Omega_x\to\Omega_a
$$

Criterion:

 m , m , m and m are m and m

$$
\max_{\pi} V_{\pi}(x) = r(x, \pi(x)) + \lambda \sum_{y \in \Omega_X} P(y|x, \pi(x)) V_{\pi}(y).
$$

Dynamic Programming:

Optimality Equation:

$$
V(x^{t}) = \max_{a^{t}} [r(x^{t}, a^{t}) + \sum_{x^{t}+1} P(x^{t+1}|x^{t}, a^{t})]V^{t+1},
$$

 $V^{\perp} = r^{\perp}(x^{\perp}).$

Complexity: $O(N|N\Delta\ell a||\Delta\ell X|) = O(N|D|a|/|D|)$.

 $t = 0$ $t = 1$ $t = 2$

Decomposability : $r(x^t, a^t) = \sum_{i=1}^n r_i(x_i^t, a_i^t)$ $P(x^t|x^{t-1}, a^{t-1}) = \prod_{i=1}^n P(x_i^t|pa(x_i^t))$

Bucket Elimination

Elim-meu

```
In the contract of the contract function \left( \begin{array}{ccc} 1 & i & j \\ 1 & 1 & j \end{array} \right) is a set of the contract of the c
ables D_1, ..., D_k.
Output: d_1, ..., d_k, maximizing expected utility.
   1. Initialize: Partition probability and utility ma-
           trices \lambda_1, ..., \lambda_j, \theta_1, ..., \theta_l.
   2. Backward: For p = n to 1 do
           for \lambda_1, ..., \lambda_j, \theta_1, ..., \theta_l in bucket_p do
               • If (observed variable), assign X_p = x_p.
                Else,
                     \lambda_p = \sum_{X_p} \mathsf{\Pi}_i \lambda_i<u>Product</u> the second contract of the s
                                               X_p \sqcap_{i=1}^J \lambda_i \sum_{j=1}^l \theta_j1
                     p \rightarrow q\sim \sim \sim\mathcal{D} buckets. The p to the total p to
   3. Forward: Assign values in ordering o using in-
           formation in buckets.
```
Elimination and Conditioning

- 1. Finite-horizon MDPs: Dynamic Programming $=$ elimination along temporal ordering (N slices).
- Value Iteration $=$ elimination along temporal ordering (iterative) Policy Iteration $=$ conditioning on A_i , elimnation on X_i (iterative).
- 3. Bucket elimination: "non-temporal" orderings. Complexity $O(exp(w^*)), n \leq w^* \leq 2n$ \sim Further research: conditioning; approximations.