Principles and Methods for
Automated Inference

Rina Dechter and Irina Rish
Information and Computer Science
University of California, Irvine
{dechter,irinar} @ics.uci.edu

Introduction

. Most Artificial Intelligence tasks are NP-hard.

. Elimination and conditioning: reasoning principles
common to many NP-hard tasks.

. Problems described by assigning values to variables
subject to a given set of dependencies (constraints,
clauses, probabilistic relations, utility functions).

. The dependency structure can be described by a
graph: variables - nodes, dependencies - edges
(constraint networks, belief networks, influence di-
agrams).

B C

Artificial Intelligence Tasks

Areas:
1. Automated theorem proving
2. Planning and Scheduling

3. Machine Learning

4. Robotics

5. Diagnosis

6. Explanation

Frameworks:
1. Propositional Logic

2. Constraint Networks

3. Belief Networks

4. Markov Decision Processes

Our Focus: Tasks

« CSP and SAT:

— Deciding if there is a solution (satisfiability).
— Finding one or all solution.

— Counting solutions.

« Belief Networks:
— Belief Updating (BEL)
— Most Probable Explanation (MPE)
— Maximum Aposteriory hypothesis (MAP).

o Influence Diagrams and MDPs:

— Finding Maximum Expected Utility (MEU) de-
cision.

— Finding optimal (MEU) policy.

Propositional SAT

Party Problem

If Alex goes, then Beki goes:
A— B

If Chris goes, then Alex goes:
C — A

Query:
Is it possible that Chris goes (C), but Beki is
not (=B) 7
Y
Is o = {—~AV B,-CV A,-B,C}
satisfiable?

Constraint Satisfaction

Map Coloring

Variables = {A,B,C,D,E, F,G}
Domain = {red, green, blue}
Constraints: A#= B, A# D, etc.

E

A.\ .9
~ o P
| ~ s
1 ~ 7
~

| -
-
| -
-
s
1 -
-
-
_
<
\

Constrained Optimization

Power Plant Scheduling

Unit | MinUp | Min Down
Time Time

1 3 2

2 2 1

3 4 1

Variables = {Xq,..., Xy}

Domain = {ON,OFF'}

Constraints: X1V Xo, X3V X4,
minimum-on and minimum-off time, etc.

Z P(X;) > Demand

()

Objective :
minimize Total_Fuel_Cost(Xq,..., XN)

Belief Networks

Medical diagnosis

visit to Asia smoking

(B

bronchitis
|

In lungs

dyspnea
(shortness of breath)

X-ray

Query:
P(T = yes|S = no, D = yes) =7

Decision-Theoretic Planning
Example: Robot Navigation

State = {X,Y, Battery Level}
Actions = {North, South, West, East}
Probability of Success = P

Task: reach the goal ASAP

r=1
GOAL

1 | START

Two Reasoning Principles:
Elimination and Conditioning

Inference vs. Search
Thinking vs. Guessing

Graph coloring
Elimination

7%

A

e
Adaptive consistency:
Bucket elimination

Bucket(E): E# D, E#C
Bucket(D): D # A
Bucket(C): C # B
Bucket(B): B # A,
Bucket(A):

Basic step: deduction, constraint recording.

Graph Coloring

Conditioning

= 7~
A B
-
Search tree:
0 E
1
1
C C
1 0
A /\

Algorithmic Principles

« Elimination:

Basic operation: eliminating variables.
Reduction to equivalent subproblems, propagating

constraints, probabilities.
Inference, deduction, “thinking’.

. Conditioning:
Basic operation: value assignment, conditioning.
“Guessing”, generating subproblems, search.

. Paradigm:

Most reasoning algorithms employ one or both of
those principles.

Satisfiability

Elimination

o =("AVB)AN(mAVE)AN(=BVCVD)A-C

Directional resolution (DR)
Bucket elimination

Bucket A A
Bucket B B
Bucket ¢ C
Bucket D D
Bucket E " E
Width w=3

Directional Extenson E _
rection ° Induced width w'=3

Induced width w%(A) = number of A’s parents
in the induced graph along ordering d

Satisfiability:

Conditioning

Guessing: conditioning on variables, search:

o =("AVB)A(-CVA)AN-BAC

Conditioning:
The Davis-Putnam procedure

Complexity

Backtracking Elimination
WOrsLCasel O(exp(n)) | O(nexp(W)
time .
w*< n
Average | better than same
time worst-case
O(n exp(W*))
Space oM w*< n
- knowledge
Output one solution compilation

Known examples

Elimination examples:

e Dynamic programming (optimization)

e Davis-Putnam, directional resolution (SAT)
e Fourier elimination, Gausian elimination

e Adaptive Consistency (CSP)

e Join-tree for belief updating and CSPs

Conditioning examples:

e Branch and Bound (optimization)

e Davis-Putnam backtracking

e Backtracking (CSP)

e Cycle-cutset scheme (CSPs, Belief networks)

Bucket elimination and
conditioning:

a uniform framework

e Understanding: commonality and differences.
e Ease of implementation

e Uniformity

e Technology transfer

e Allows uniform extensions to hybrids of con-
ditioning4elimination, and to approximations.

Outline; Road Map

MPE, |Solving
U e AT Optimi- | Belief | MAP | finear
Metho zation | updatingl MEU inequalifies
adaptive | directiona | gvnamic | join-tree, |join-tree, :
elimination | consistency | fesolution p%/ogram- VE, SPI, dim-mpe,gglljrisgran/
join-tree ming | elim-bel | dim-map | gimination
.| branch- branch-
.| backtracking gng- and-
conditioning backtracr:]klng (Davis- boun, bound,
Searc Putnam) best-first best-first
searc search
dimination | cycle-cutset| DCDR, loop-
+ BDR-DP cutset
conditioning L%Q’CVE[ﬂg
approximate] I-consistency bounded mini- mini- mini-
dimination (directional) buckets | buckets | buckets
resolution
approximate| 9r¢&dylocal gradient | stochastic gradient
conditioning] (GsaT) | CSAT escent | gimulation descent
approximate| GSAT +
(ellml_lr]atlon %%rgg spe%tcr:]
conditioning y

Constraint Satisfaction

Applications:

e Configuration and design problems

e [Temporal reasoning

e Scheduling

e Circuit diagnosis

e Scene labeling

e Natural language parsing

Constraint Networks

Constraint Network = {X, D, C}

Variables: X = {Xq,..., X}

Domains: D = {Dy,...,Dn}, D; = {v1,..., 01}
Constraints: ¢ = {Cq,...C}}

A constraint graph: A node per variables, an

edge between constrained variables.
B C

A solution: an assignment of a value to each
variable that does not violate any constraint.

T he Idea of Elimination

Eliminate variables one by one:

' D=1,B=1,C=3

| .
value assignment

Rppc =M(_pyRpp X Rpp X Rpc

T he Idea of Elimination

Eliminate variables one by one:

E
eliminating E
D ¢ D o C
gs Q@ \(?
A B

eliminating D
diminati A C
eliminating B Iminating C 7
/ Ve
- //
O AO—Q 5 O~ %B
A A

Solution generation process is backtrack-free

T he Idea of Elimination

Eliminate variables one by one:

1,2
{ } eliminating C

~ D B < ————— 22?? ///
113 s
O/ {12 = -
"2 / {12 R

{12} -
A=1 - = -

Solution genration process is backtrack-free

Bucket Operation:
Join followed by projection

Finding all solutions of constraints Rq,..., R, using join:

Solutions = Rq1 X Ry X,...,X R,

The operation in bucket E:
Join: REBC’D — Rpp X Rgpp W REC’
Project: Rpcp = NMpep(RBeDE)

Ry,: A B Ry,: A D
r g r g
g ¥ g T
Reo’ B\[A1/D

Q ==
&
Q —

Join complexity: exponential in the number of vari-
ables.

Adaptive Consistency
Bucket elimination

(Dechter and Pearl 1987, Seidel, 1981)

{1.2}

R
{1,2}@ # @ {1,2,3}
£
A B

£

£

{1,2} {1,2}

Bucket(E): E# D, E#C E # B
Bucket(D): D# A, ||, Rpca
Bucket(C): C # B || Racn
Bucket(B): B# A, || Ruap
Bucket(A): || Ry

Bucket(A): A#D, A# B

Bucket(D): D # FE, || Rpp
Bucket(C): C # B C # F,
Bucket(B): B# FE, || Rpgp, Rpg

Bucket(E): || , Rg

wWidth and Induced Width

e Width of an ordered graph: w(d)
The maximum number of earlier neighbors.

W(d) = 2
WH(d) = 2

e Induced width: w*(d).
The width in the ordered induced graph,
generated by recursively connecting parents.

wWidth and Induced Width

e Width of an ordered graph: w(d)
The maximum number of earlier neighbors.

(]
®
e

®
[©
©
®

®

e Induced width: w*(d).
The width in the ordered induced graph,
generated by recursively connecting parents.

width and induced width

e Width of an ordered graph: w(d)
The maximum number of earlier neighbors.

@ (b) (©

e Induced width: w*(d).
The width in the ordered induced graph,
generated by recursively connecting parents.

More on Induced-width
(tree-width)

Finding minimum w* is NP-complete (Arnborg, 1985).

Greedy ordering algorithms : min-width ordering,
min induced-width (Bertele, Briochi 1972, Freuder
1982).

Approximation orderings.

The induced width of a given ordering is easy to
compute.

n X n grids have width of 2 but induced-width of n.
Trees have induced-width of 1.

Tree-width equals induced-width +1.

Adaptive Consistency

Initialize: Partition constraints into bucketq,...bucket,,.
For p = n downto 1, process bucketp

for all relations Ry,...Rm € bucketp do

Rnew < Find solutions to bucket, and project out X,.
If Rhew 1S NOt empty, then add
to appropriate lower bucket.

Return Ujbucketj.

Rnew H(_Xp)(N;'nz_ll R])

Properties of Elimination:
Tractable classes

T heorem:
Adaptive-consistency generates a problem that can be
solved without deadends (backtrack-free).

Theorem:
The time and space complexity of Adaptive-consistency
along d is O(exp(w * (d))).

Conclusion:
Problems having bounded induced-width (w* < b) can
be solved in polynomial time.

Special cases:
Trees and series-parallel networks.

Solving Trees
(Mackworth and Freuder 1985)

Adaptive-consistency is linear for trees.

bucket©) Rog

bucket(F) Rep

Bud(E) Rpy
bucket®) Ry ; e
bucket(C) ;
RCA V QDC DC :.'
bucket(B '
® RBA.: Dg Dg
bucket(d) .-°D A D

Only domain (unary) constraints are recorded.
This is known as arc-consistency.

Adaptive consistency is equivalent to enforcing
directional arc-consistency for trees.

Arc-Consistency

When only domain (unary) constraints are recorded,
the operation is called arc-consistency.

Ry+—T4Rxp™X Dp

Example: R4 ={1,2,3}, Rg = {1,2,3},
A < B reduces domaln of A to Ry = {1, 2}

o —

€) (b)

Allows distributed message passing.

Crossword Puzzle

Ri2345=1{(H,0,SES), (LASER), (SHEET),
(S,N,ALL), (S,T,E,E,R)}

R36912 =1(HLK,E), (A,R,O,N), (K,EE,T), (E,A,R,N),
(S,A,l\/l,E)}

Rs711 ={(R,U,N), (SUN), (L,E,T), (Y,ES),
(E,A,T), (T,E,N)}

Rg 910,17 R36,9.12
Ri013 ={(N,O), (B,E), (U,S), (1LT)}
R1213 =Ri10,13

Crossword Puzzle

bucket(xq) 12345
il \
bucket(xo) Mozas
bucket(x,,) ¢
3 R3,6,9,12\H/ 345
bucket(x4) H 4,56,9,12
bucket(x;) R 5711 H 56012
bucket(x) He701112
bucket(x7) H /
7 7,9,11,12
bUCket(XS) Rg01011
N
bucket(x,) Ho10m H o110
\ /
bucket(xq H
10,13 10,11,12
T
bucket(x 1 empty relation... exit.
1
bucket(x 9
12,13

bu Cket(X]_%

The Power of Assignments

E={1,2}

E =1 is an assignment. An observation.

Bucket(E): E# D, E£C E# B, E=1
Bucket(D): D# A || Rp =12}
Bucket(C): C # B, || Rc={2,3}
Bucket(B): B# A, || Rg= {2}
Bucket(A):

Case of observed buckets:

Assign value to each relation separately

Graph effect:

Delete all arcs incident to observation.

Reduced complexity: based on wx* of modified graph.

The power of assignments

E=1Is

Bucket(E): E# D, E£C E# B, E=1
Bucket(D): D# A || Dp = {2}
Bucket(C): C # B , || Do ={2,3}
Bucket(B): B# A, || Dp =12}
Bucket(A):

Case of observed buckets:

Assign value to each relation seprately

Graph effect:

Delete all arcs incident to observation.

Reduced complexity: based on wx* of modified graph.

The idea of Conditioning:

Conditioning exploit the power of assign-
ment:

D=1 C=1
(D
E=0 g *
/ e #“ @

condi ti_:oni ng

on D=
= T _ _ ® (©
5 E=1 . .
(A—®

Basic step: guessing, conditioning.
Leads to backtracking search.
Complexity: exponential time, linear space.

Variety of Backtracking
Algorithms

Simple Backtracking +
variable/value ordering heuristics +
constraint propagation 4+ smart backjumping
+ learning no-goods+ ...

e Forward Checking [Haralick & Elliot, 1980]

e Backjumping [Gaschnig 1977, Dechter 1990, Prosser,
1993]

e Backmarking [Gaschnig 1977]
e BJ4+DVO [Frost & Dechter 1994]

e Constraint learning [Dechter 1990] [Frost & Dechter
1994] [Bayardo & Miranker, 1996]

Search Complexity
Distributions

Complexity histograms (deadends, time) =
continuous distributions [Frost, Rish, Vila, 1997]:

.020

015 - .

Frequency
.010 | .

.005 -

||||||| ||||||||||||"”Nm"“""|||||||||||||||||||||||||||I|I|I|IIIIII|||||||||||||||||muumm

0 1,000 3,000 6,000
Nodes in Search Space

BJ-DVO on unsolvable binary CSPs

Complexity Comparison

Backtracking Elimination
WOrs-Case| o exp(n)) | O(nexp(w*))
time N
w < n
Average better than same
time worst-case
O(n exp(W*))
=pace oM w*< n
Output one solution knowledge

compilation

Pair-wise Elimination
(Dechter and van Beek, 1997)

In certain problem pair-wise elimination suf-
fices.

Simultaneous Join-project elimination
Bucket(E) = {Rgp.Rpc, Rpap}

— Rapcep

Pair-wise elimination:
Bucket(E) = {Rgp.Rpc, Rpap}

— Rpc, Rapp, RacB

Pair-wise elimination is complete for:
e Linear inequalities

e propositional variables

e Crossword puzzles

Bucket elimination for linear
iInequalities

Bucket(x):

{x—y <17, ba+25y+2<84, t—ax <2} —

5t4+25y+52<94, t—y<19

Linear elimination:
Z P aZ:cZ- + arxy < c,
Z(T 1) biz; 4 bray < d.

by by
Z(—aia—r + b;)x; < —gctd
i=1
(If ar, by Opposite signs)

Fourier elimination:
Bucket elimination algorithm for linear inequalities. Com-
plexity is not bounded by the induced-width.

Temporal constraint networks:

A tractable case when inequalities are x —y < 16, = < 5.

Fourier Elimination:
Bucket-elim for Linear
Inequalities

Input: Linear inequalities set, O
Output: A back-track free set
Intialize: partition into buckets

B(r): z—y<17,5x24+2b5y+4+2=84,t—2 <2
B(t): t—2<19 5t 4+ 2.5y + 57 < 94

B(y) :
B(z) :

B(z): bx+4+25by+2<84
B(y): z—y <17

B(z): t—o2<2

B(t) :

B(t): t—x<2
B(r): z—y<17,5x2+25y+ 72 <84

B(y) :
B(z) :

Temporal Constraint
Networks
(Dechter, Meiri and Pearl 1990)

Variables: X1,...,Xn
Domains: Real numbers
Constraints: X; <b,X;—X;<c
binary difference inequalities

Algorithm for STP is Bucket elimination

B(z):z—y<b, x> 3, t—2<10
B(y) :y<10 || —y<2, t—y<15
B(z) :

B(t): || t<25

Algorithm records only Binary constraints of
same type

Complexity = 0(n3)
= 0(w*n?)

Summary

. Bucket elimination for CSPs = Adaptive consis-
tency

. Performance characterized by induced width of or-
dered graph. Time and space O(exp(w})).

. The bucket operation: join-project.

. Value assignments reduce induced width and reduce
complexity.

. Conditioning: backtracking search
Worst case time O(exp(n)), but much better on
average. Linear space.

. Bucket elimination for linear inequalities = Fourier
elimination.

Fourier Elimination

Initialize: partition inequalities into
bucket1, ..., buckety.

For p — n downto 1
for each pair {«a, B} C bucket;,

compute v = elimp(a, B).
If v has no solutions,
return inconsistency.
else add v to
the appropriate bucket.

return E,(p) «— U; bucket;.

“Road Map’:
Tasks and Methods

Takd o _ MPE. |Sqlving
Optimi- | Belief | MAP | linear
Metho Csp SAT zation updatingl MEU Fﬁé‘q‘?‘]ﬁ'ﬁ?’%
adaptive | directional | gynagmic | Join-tree, | join-tree, Gaussian/
dlimination | consistency | FeSOIULION | program. | VE, SPL, | dim-mpe, Fourier
join-tree ming elim-bel | elim-map | gimination
| backtracking becktracking kgnaQ_Ch' branch-
conditioning| "o 9 (Davis- B%Jtnﬂrst ngtnf?r <
Putnam) search search
elimination | cycle-cutset| DCDR, loop-
+ BDR-DP cutset
conditioning %revcvalrgg
approximatel I-consistency bounded mini- mini- mini-
alimination (directional) buckets | buckets | buckets
resolution
approximate| 96Sylocal gradient | stochastic gradient
conditioning| (GsaT) | GSAT escent | simulation descent
approximate] GSAT +
(eIimi+nation %%rrt]isa] e%tg
conditioning 4

Propositional Satisfiability

Conjunctive normal form (CNF)
o=(AVBVC)AN(AVBVE)AN(~-BVCVD)

Is ¢ satisfiable? If it is, find a solution (model).

CNF: conjunction of clauses
clause: disjunction of literals
literal: A or —A

Interaction graph:

B C

E
Variables (propositions) = nodes
Constraints (clauses) = cliques

Elimination: Resolution

The operation in a bucket: pair-wise resolution
(AVB)AN(mAVE)AN(AV-C):
(AVB)AN(mAVE)=(BVE),
(mAVE)AN(AV-C) = (EV--C).

Resolution creates clauses =
connectsB varialgles:

resolution
overa

Special case:
Unit resolution - resolution with unit clauses:
-AN(AVBVC)=(BVC)

Unit propagation - unit resolution until no
unit clause is left.

Directional Resolution

Bucket Elimination

0 = -CA(AVBVC)AN(mAVBVE)AN(~BVCVD)

Bucketa
Buckets

Bucketc

Bucketp
Buckete

| " BVCVD /BVCVE

Knowledge
compilation

|

|
|
|
I

Directional Extension
Eo

Model
generation

Resolution: logical inference (“thinking”)

DR Complexity

Bucket A

Bucket B

Bucket c

Bucket D

Bucket E

Width w=3

Directional Extension E .
rection 0 Induced width w'=3

|bucket;| = O(exp(w*)) = |FEo| = O(nexp(w™*))

Y
Time(DR) and Space(DR) = O(nexp(w*))

Directional Resolution (DR)
[Davis,Putnam, 1960] [Dechter, Rish, 1994]

Input: A cenf theory ¢, d =Q1,...,Qn.
Output: A directional extension E (p),
equivalent to ¢; E4(p) = 0 iff ¢ is unsatisfiable.
1. Initialize: generate a partition of clauses,
bucketq, ..., bucket,,, where bucket; contains
all the clauses whose highest literal is Q);.
2. For : =n to 1 do:

Resolve each pair

{(aVvQ;),(BV=Q;)} C bucket;.

If v =aVpis empty,

return E () = 0,

else add ~ to the appropriate bucket.
3.Return E;(p) «— |, bucket,;.

Conditioning: Assignment

Cconditioning adds a literal to ¢
A=0=-AANyp
A=1=ANp

Conditioning implies:
e unit resolution:
A=0=>-AN(AVBVC)= (BVC(C)
e deleting tautologies:
A=0=-AAN(—~AVBVE) = clause (WAVBVE)
IS deleted from .
e deleting a variable from the graph

B C B C

Conditioning
on A

Backtracking Search
Conditioning

o =("AVB)A(-CVA)AN-BAC

Search: *“guessing” (partial) solutions

T he Davis-Putnam
Procedure

[Davis, Logemann, Loveland, 1962]

DP(y)
Input: A cnf theory o.

Output: A decision of whether ¢ is satisfiable.
Unit_propagate(y);
If the empty clause generated return(false);
else if all variables are assigned return(true);
else

() = some unassigned variable;

return(DP(o A Q) V

DP(p A=Q))

NoOO kL=

Historical Perspective

e 1960 - resolution-based Davis-Putnam algorithm.

e 1962 - original Davis-Putnam was replaced by con-
ditioning procedure [Davis, Logemann and Love-
land, 1962] due to memory explosion, resulting in
a backtrack search known as the Davis-Putnam(-
Logemann-Loveland) procedure.

e The dependency on a graph parameter called in-
duced width was not known in 1960.

e 1994 - Directional Resolution, a rediscovery of the
original Davis-Putnam [Dechter and Rish, 1994].
Identification of tractable classes.

Experimental Results:

DP vs DR on k-CNFs
[Dechter and Rish, 1994

1. Uniform random 3-CNF: N variables, C clauses
2. Random (k,m)-tree: a tree of k + m-node cliques
with k-node intersections (clique separators)

Uniform random 3-CNFs: (k,m)-tree CNFs:
UNIFORM 3-CNFS DR vs. DP-backtracking
20 variables 3-CNF CHAINS

25 subtheories, 5 variablesin each

20 experiments per each point . .
50 experiments per each point

1000 3 -
E DP-backtracking 100000 —=— DR
]—B— DR .
— 4 —=— DP-backtracking
@ 1003 100007
8 10 % 1000 7
T &
£ 4 Q 1007
S5 Tz
o 2 107
01 . ; . . O
20 40 60 80 100 120 ""H—
Number of clauses 240 290 340 390 440 490 540 590 640 690

Number of clauses

wWhy Hybrids?

Backtracking Elimination

WO S8 O exp(n)) | Ofnexp(w*)
*
W*< N
time Worst-case

O(n exp(W*))

Space o(n) W
Output one solution Clgr]r?\é\i/:gtci]%ﬁ

Backtracking + Resolution =

Hybrids

Conditioning (backtracking)

+ Elimination (resolution)
[Rish and Dechter, 1996]

o =(AVBVC)A(mAVBVE)A(-BVCVD)
B,

A D B C
A=1
E
D
A=0=(BvC)AN(=BVCVD) B
A=1=(BVE)A(-BVCVD)
Idea:
conditioning reduces w*

I

elimination guarantees O(exp(w*)),w* < n

Conditioning+DR:

Algorithm DCDR(b)

Resolve if w*(X;) < b, otherwise condition.

I nput

Bucket A

Bucket B

Bucket ¢ , \ CVD

Bucket D

Bucket E ‘E

o Conditioning
Elimination

K bound b=2
E W(A) = 3
w*(B) =3

Time

DCDR(b):

Experimental Results

DCDR on uniform 3-cnfs
100 variables, 400 clauses
100 experiments per point

DCDR on (4,5)-trees, 40 cliques,

15 clauses per clique
23 experiments per point

DCDR on (4,8)-trees, 50 cliques
20 clauses per cliques
21 experiment per point

800 - 10000 - 2000
DCDR Time DCDR Time DCDR Time
600 <
B 10001
) o
2 S
400 = i= 1000
(]
.Eloof
200
T T T T T T 10 e
-1 0 1 2 3 4 5 6 7 8 910 -1 0 1 2 3 45 6 7 8 910 21012345678 910111213

(

a) uniform CNFs

10000

Time (log scale)

:

:

(b) (4Eioén3—trees (o) (4,8BST9£rees

Summary:

DCDR (-1), DCDR(5) , DCDR(13)

on different problem types

W DCDR(-1)
B DCDR(5)
@ DCDR(13)

Uniform 3-cnfs (2,5)-trees

Problem types

(4,8)-trees

b<O0: pure DP

b > w* :
0<b<w*

pure DR
pure DR

Time exp(b+ |cond(b)|), space exp(b)

Summary

1. Bucket elimination: Directional Resolution
(resolution-based Davis-Putnam).
Time and space O(exp(w})).

2. Conditioning: backtracking search
(backtracking-based Davis-Putnam Procedure).
Time O(exp(n)), better on average; space O(n).

3. Conditioning (Backtracking) +
Elimination (Resolution):
Conditioning when w™ > b, resolution otherwise.
Time exp(b+ |cond(b)|), space exp(b).

“Road Map’:
Tasks and Methods

Takd o _ MPE. |Sqlving
Optimi- | Belief | MAP | linear
Metho Csp SAT zation updatingl MEU Fﬁé‘q‘?‘]ﬁ'ﬁ?’%
adaptive | directional | gynagmic | Join-tree, | join-tree, Gaussian/
dlimination | consistency | FeSOIULION | program. | VE, SPL, | dim-mpe, Fourier
join-tree ming elim-bel | elim-map | gimination
| backtracking becktracking kgnaQ_Ch' branch-
conditioning| "o 9 (Davis- B%Jtnﬂrst ngtnf?r <
Putnam) search search
elimination | cycle-cutset| DCDR, loop-
+ BDR-DP cutset
conditioning %revcvalrgg
approximatel I-consistency bounded mini- mini- mini-
alimination (directional) buckets | buckets | buckets
resolution
approximate| 96Sylocal gradient | stochastic gradient
conditioning| (GsaT) | GSAT escent | simulation descent
approximate] GSAT +
(eIimi+nation %%rrt]isa] e%tg
conditioning 4

Belief Networks

e Belief networks are acyclic directed graphs

annotated with conditional probability tables.
P(a)

Moralize ("marry parents')

P(bla) P(cla)

@l:.@

P(d|b,a)

Tasks (NP-hard):

e belief-updating (BEL)

e Finding most probable explanation (M PFE)

e Finding maximum aposteriori hypothesis (M AP)
e Finding maximum expected utility (M EU)

Common Queries

1. Belief assessment:
Find bel(x;) = P(X; = x;|e).

2. Most probable explanation (MPFE):
Find z° s.t. p(z°) = maxg, NI P(x;|Tpa;,e).

3. Maximum aposteriori hypothesis (M AP):
Given A = {Aq,...A;} C X, find a° = (a°4,...a%) s.t.
p(a®) = maxg, Y, Ty P(wiltpa, e).

4. Maximum expected utility (MEU):
. _ ‘ : ici 0
Given u(x) = ZQ]EQ f](:cQj), find decisions d

(d°1,...,d%)

Belief Updating

P(ale =0) = aP(a,e = 0).
P(a)

Moralize ("marry parents')

P(cla)

P(d|b,a)

Ordering: a, b, c, d, e
P(a’7 € — O) — Zb,c,d,e:O P(a’7 b7 C, d7 6)
= X2 2rd2e=0 P(elb, c)P(d|a,b)P(cla) P(bla)P(a)

= p(a) 2p P(bla) Xoc P(cla) g P(d[b, a) Ye=0 P(elb,)

Ordering: a, e, d, c, €
P(a,e =0) = Ye=0.dcp Pla,b,c,d e)

P(a,e = 0) = P(a) Xe Xq 2 P(cla) Xp P(bla) P(d|a,b)

P(e|b, c)

Backwards Computation =
Elimination

Ordering: a, b, ¢, d, e
P(a) 3y P(bla) 3. P(cla) 34 P(d]b, a) Y=o P(elb, c)

= P(a) >y, P(bla) > P(c|la)P(e = 0lb,c) > g P(d|b, a)
= P(a) X P(bla)Ap(a,b) X P(cla)P(e = 0lb, c)
= P(a) Xy P(bla)Ap(a,b)c(a,b)

= P(a)Ap(a)

The Bucket elimination process:

bucket(E) = P(e|b,c), e=0
bucket(D) = P(d|a,b)
bucket(C) = P(cla)
bucket(B) = P(bla)

bucket(A) = P(a)

Backwards Computation,
Different Ordering

Ordering: a, e, d, c, b

P(a,e = 0) = P(a) YXe=02q 2 P(cla) 32 P(bla)
P(d|a,b)P(elb,c)

P(a) Y e=02>a>cP(cla)rp(a,d, c,e)
P(a) Ye=02>d c(a,d,e)

P(a) Y e=0Ap(a,e)

P(a)Ap(a,e = 0)

T he bucket elimination Process:

bucket(B) = P(e|b,c), P(d|a,b), P(bla)
bucket(C) = P(cla) || Ag(a,d,c,e)
bucket(D) = | Ac(a,d,e)
bucket(E) = e=0 || Ap(a,e)

bucket(A) = P(a) || Ap(a,e=0)

Bucket Elimination and
Induced Width

>

©
Ordering: a, b, ¢, d, e
bucket(E) = P(elb,c), e=0
bucket(D) = P(d|a,b)
bucket(C') = P(cla) || P(e =0]|b,c)
bucket(B) = P(bla) || Ap(a.b), Ac(b,e)
bucket(A) = P(a) || Ag(a)

Ordering: a, e, d, c, b

bucket(B) = P(e|b, c), P(d|a,b), P(bla)
bucket(C) = P(cla) || Ag(a,c,d,e)
bucket(D) = | A\c(a,d,e)

bucket(F) = e=0 || A\p(a,c)

bucket(A) = P(a) || Ag(a)

Bucket Elimination and
Induced Width

Handling Observations

i

Observing b =1

Ordering: a, e, d, c, b

bucket(B) = P(e|b, ¢), P(d|a,b), P(bla),b=1
bucket(C) = P(cla), || P(elb=1,c)

bucket(D) = || P(d|a,b=1)

bucket(F) = e=0 || Ac(e,a)

bucket(A) = P(a), || P(b=1|a) Ap(a), A\g(e,a)

Ordering: a, b, ¢, d, e

bucket(E) = P(elb,c), e=0

bucket(D) = P(d|a,b)

bucket(C') = P(cla) || Ag(b,c)

bucket(B) = P(a),b=1 || Ap(a,b),Ac(a,b)

bucket(A) = P(a) || Ag(a)

The Bucket Operation

Elimination: multiply and sum
bucket(B) = {P(elb,c), P(d|a,b), P(bla)} —
Ap(a, ¢, d, e) = Y P(bla)P(d|a, b) P(elb, c)

C) dah P(dlab) abl P(bla)
000 00 0
) 01 r
11 010 q ;
multiply L
abcde P=P(eb,c) P(dla,b) P(bla) acdeP
000
sum
””” = 010 P + P,

Observed bucket:
bucket(B) = {P(el|b,c), P(d|a,b), P(bla),b =1} —

Ap(a) = P(b = 1]a)
Ag(a,d) = P(dla,b=1)
Ag(e,c) = P(elb=1,c¢).

Elim-bel

Input: A belief network {P4q, ..., Py}, d,e.
Output: belief of X7 given e.
1. Initialize:
2. Process buckets fromp=nto 1l
for matrices Aq, Ap,..., A; in bucketp dO
o If (Observed variable) X, = xp assign
Xp = zp 1O €ach A;.
e Else, (multiply and sum)
Ap = XX, I‘IgzlAi.
Add \p to its bucket.

3. Return Bel(azl) = OzP(ZIZl) : Hi)\i(aﬁl)

Irrelevant buckets for
elim-bel

Buckets that sum to 1 are irrelevant.
Identification: no evidence, no new functions.

Recursive recognition : (bel(ale))

bucket(E) = P(e|b,c), e=0

bucket(D) = P(dla,b),...skipable bucket
bucket(C) = P(cla)

bucket(B) = P(bla)

bucket(A) = P(a)

Complexity: Use induced width in moral graph
without irrelevant nodes, then update for evi-
dence arcs.

Finding the MPE

(An optimization task)

(@)

Moralize ("marry parents')

P(cl)
c B —c

(E) Pelb,c) (E)
D)

P(bla)

P(d|b,a)

Ordering: a, b, c, d, e
m = MaXqpcde=0F(a,b,c d e) =
= maXq P(a) maxy P(bla) max. P(c|la) max, P(d|b, a)

maX.—qg P(elb, ¢)
Ordering: a, e, d, c, b

m = MaXg ¢=0.d.cb(a,b,cde)
m = maXq P(a) maxe maxg -

max. P(c|la) maxy, P(bla)P(d|a,b)P(e|b,c)

Algorithm Elim-mpe

Input: A Belief network P = {Py, ..., Pn}
Output: MPE

1. Initialize: Partition into buckets.

2. Process buckets from last to first:

max_ [
()
bucket B P(E|B,C) P(DIA ,\B)/P(BlA)
bucketc P(C|A) he (A,D,C,E)
bucket D h® (A,D,E)
bucket E E=0 hP (A,E)
bucket A P(A) h™ (A)
Width w=4
MPE Induced widthw"= 4

3. Forward: Assign values in ordering d

Generating the MPE Tuple

maxB |_|
bucket B I;(E B,C) P(D|A,\B)/P(B|Aj)
bucket ¢ P(CIA) h® (A,D,C,E)
bucket D h® (A,D,E)
bucket E = E= 0\ h® (A,E)
bucket A P(A) h- (A)
\ / Width w =4
MPE Induced widthw*"= 4
Step 3:
ag = argmazxqP(a) - h(a)
€0 — E=0

do = argmazgh(ag, d, eg)
co = argmazeP(clag) - hag, do, ¢, eg)
bo = argmax,P(eglb, cg) - P(doglag,b) - P(blag)

Return aq, eg, dg, co, bg

Elim-mpe

Input: A belief network {Pq, ..., Pu}; d; e.
Output: mpe
1. Initialize:

2. Process buckets: for p=n to 1 do
for matrices hq, ho, ..., h; in bucket, do
o If (Observed variable) assign X, = xp
to each h; and put in buckets.
e Else, (multiply and maximize)
hp = maXx, I‘Igzlhi.
:ngt = a,rgma,:z:Xphp.
Add hyp to its bucket.

3. Forward: Assign values in ordering d

Theorem: Elim-mpe finds the value of the
most probable tuple and a corresponding tuple.

Cost Networks and Dynamic
Programming

Belief networks and cost networks
P(a,b,c,d,e) = P(a)P(bla)P(cla)P(e|b,c)P(d|a,b)
C(a,b,c,d, e) = —logP = C(a)+C(b,a)+C(c,a)+

0(67 b7 C) +C(d7 a, b)
P(a)

Moralize ("marry parents')

P(d|b,a)

e Minimize sum-of-costs.

Elim-opt, Dynamic
Programming
(Bertele and Briochi, 1972)

Algorithm elim-opt

Input: A cost network (X, D,C), C = {C4,...,C}};
ordering o; e.

Output: The minimal cost assignment.

1. Initialize: Partition the cost components into
buckets.

2. Process buckets from p «— n downto 1

For costs hq,hp, ..., hj in bucketp, do:

e If (observed variable) X, = =z, assign X, = zp
to each h; and put in buckets.
e Else, (sum and minimize)

P — Y J .
hP = minx,) ji—1 h;.
pt

:cg :argminxphp.
Add hP to its bucket.

3. Forward: Assigh minimizing values in or-
dering o

Algorithm ElIim-Opt

(Dechter, Ijcaio7)

Ming d.cbe=0C(a,b,c,d,e) = ming g4

C(a,c) + C(a,b,d) + C(b,e) + C(b,c) + C(c,e)

1. Partition C = {Cq,...,Cr} into buckets
2. Process buckets from last to first:

bucket B

bucket c

bucket D

bucket E

bucket A

maXB |_|
()

P(E|B,C) P(D|A,\B)/P(B|A)

P(CIA) he (A,D,C,E)

hS (A,D,E)

P(A) h™ (A)

Width w =4
MPE Induced widthw*= 4

3. Forward: Assign values in ordering d

Finding the MAP

(An optimization task)

(@)

Moralize ("marry parents')

P(cl)
c B —c

(E) Pelb,c) (E)
D)

P(bla)

P(d|b,a)

Variables A and B are the hypothesis variables.
Ordering: a, b, c, d, e
ma’xa,bP(aw b,e =0) = MaXg b 2e,d,e=0 P(a,b,c,d,e)

= maXq P(a) maxy P(bla) Y. P(cla) >4 P(d|b, a)
ZGIO P(€|b7 C)

Ordering: a, e, d, c, b illegal ordering
max, , P(a,e,e = 0) = max, ;> p(a,b,c,d,e)

maxayb P(a,7 b7 o O) = MaXgq P(a,) Maxy P(b|a,) Zd°

max. P(c|la)P(d|a,b)P(e = 0|b, ¢)

Elim-map

Maximum aposteriori hypothesis (MAP):
Given A = {Al, Ak} C X, find a° = (a,ol, ...aok)
s.t. p(a®) = maxg, Xu,_, N1 P(z;|Tpa;, €).

Input: A belief network and hypothesis A =
{A1,..., A}, d, e.
Output: An map.

1. Initialize:

2. Process buckets : forp=n to 1 do

for matrices (34, 82, ..., B; in buckety, do
e If observed variable, assign X, = xp.

e Else, (multiply and sum or max)
(Xp € A) Bp = maxy, n_,5
ad = argma:cxpﬂp.
Add B, to its bucket.
3. Forward: Assign values to A.

Variable ordering is restricted: max-buckets should
preceede (processed after) summation buckets.

Complexity of bucket
elimination

Theorem

Given a belief network having n variables, ob-
servations e, the complexity of elim-mpe, elim-
bel, elim-map along d, is time and space

O(n - exp(w * (d))

where w* (d) is the induced width of the moral
graph whose edges connecting evidence to ear-
lier nodes, were deleted.

Bucket-Elimination for trees
and Poly-Trees

Elim-bel, elim-mpe, elim-map are linear for poly-trees.

They are similar to single root query of Pearl’s propa-

gation on poly-trees, if using topological ordering (and
super-bucket processing of parents.)

Example:
Z Z Z ZB
A S C% zZ, 0O

U1 UZCD/% Yl
Uy
Ex
1

Ov

1 Us

@ (b)

Relationship with join-tree
clustering
(constraint networks and belief networks)

Ordering: a, b, ¢, d, e

bucket(E) = P(elb, c)

bucket(D) = P(d|a,b)

bucket(C) = P(cla), || Ag(a,b)
bucket(B) = P(bla), || Ac(a,b)
bucket(A) = P(a), || Ag(a)

e

A cligue in tree-clustering can be viewed as a
set of buckets.

Conditioning: Generates the
Probability Tree

P(a,e =0) =
P(a) 3 P(bla) X P(cla) g P(d|b, a) 3e=q P(elb, c)

d=0 O e=0
o T O oo

c=
O

— 0
" et P PAPUAPCPUabIPEbY

Complexity of conditioning:
Time: exponential
Space: linear.

Conditioning-+ Elimination

P(a,e =0) =

P(a) Xy P(bla) Xc P(cla) g P(d[b, a) Ye=0 P(e|b, c)
A'B C D E

P(A) P(bla) P(cla) P(dlab) P(efb,c) P(a,6=0| b=0=0)

sum //P(a,e=0|b20)

O
3 p(0fe) P(a,e=0| b=0,c=0)
m
10 mo/
Q_S” AL P(a,e=0b=1)

Method: Search until a problem having a small
w* is created.

Conditioning 4+ Elimination
Trading space for time

e Algorithm elim-cond(b), b bounds width:
When b > width, apply conditioning.

e b = 0 is full conditioning,

e b = w* is pure bucket elimination

e b =1 Iis the cycle-cutset method.

o Time exp(b+ |cond(b)|), space exp(d)

bound = 2 A @ P(alb,e)
conditioning B P(c|b)
C L P(d|b)
D @

E

Super-Bucket Elimination
Trading space for time

(Dechter and EI Fattah, UAI 1996)

e Eliminating a few variables “at once’.

P(alb,€) A @ P@abe

P(clb) P(d|b) h(b,e) CB @

P(clb)P(d|b) h(b,e)

h(c,d.e)
h(d,e) h(d.e)
E h(e) h(e)
time: exp(3) time: exp(4)
space: exp(3) space: exp(2)

e Here conditioning is local to super-buckets.

The Super-Bucket Idea

Larger super-buckets (cligues) means more time
and less space:

@)
B B
BD BD
b (@
£l
(o
@ 10 b T 0

Complexity:

1. Time: exponential in cligue and super-bucket
Size

2. Space: exponential in separator size.

Application: Circuit
Diagnosis

Problem: Given a circuit and unexpected output, iden-
tify faulty components. The problem can be modeled as
a constraint optimization problem and solved by bucket

elimination.
C432

Benchmark Circuits

Circuit Circuit Total Input | Output
Name Function Gates Lines Lines
Clv 6 5 2
C432 Priority Decoder 160 (18 EXOR) 36 7
C499 ECAT 202 (104 EXOR) 41 32
C880 ALU and Control 383 60 26
C1355 ECAT 546 41 32
C1908 ECAT 880 33 25
C2670 ALU and Control 1193 233 140
C3540 ALU and Control 1669 50 22
C5h315 ALU and Selector 2307 178 123
C6288 16-bit Multiplier 2406 32 32
C7552 ALU and Control 3512 207 108

Secondary Trees for C432

Separator size 11

o [0 E E E E E E EE [
g
= 7 4'(X N
9] 8l 7] 9] o] | 1s]\[e] [l] 9]
1’ 1 A N Tl N\ N\
el [/ B [/ []e]fe] dicamtpaicdiaiaig N 8] [T\ [
51 (8] (7] [s] [e] Is] 17f 1] (e {s] {e] {s] (&) (7] (=] (e (=] 1ef 1ef 17 1s] (e] (7] (o] =] &) (&1 (7] (8] 7] 1] 1] 1] 171 e] 5] [e]
Sl BlElE]E s EBE B (sl sl sl s BB e s s s (5] 5] [E]
Al [[(Bl [4 [A 1l BB E] 144 4]

Separator size 7

T El] (] (e (el e (] (el o] (s] (7] (2] 18] (3] (5] (e] [e] [e] [5] (5] [e]
71 ST 0] (o1 (o (51 (] (] (s] s] e] 1e] (5] (e] (=1 (51 (5] (71 (5] [e] (6] 1s] 5] 1s] {s] {s] (=] (5] 51 (3] [5] [2]
SlEENE] CIEIEEICE] Bl B Bl 5l [l E] 5] 5]

didigigidigiaigigigigigigiaidiamaidmmed 4] 4] 4 4] 4]
Separator size 3

172

AL L] E] L (af ta] L] fad fed L fed L] L2 o] L] (2 o] 1] (2 12 3
3|

Time-Space tradeoff for
Circuits

“Road Map’:
Tasks and Methods

Takd o _ MPE. |Sqlving
Optimi- | Belief | MAP | linear
Metho Csp SAT zation updatingl MEU Fﬁé‘q‘?‘]ﬁ'ﬁ?’%
adaptive | directional | gynagmic | Join-tree, | join-tree, Gaussian/
dlimination | consistency | FeSOIULION | program. | VE, SPL, | dim-mpe, Fourier
join-tree ming elim-bel | elim-map | gimination
| backtracking becktracking kgnaQ_Ch' branch-
conditioning| "o 9 (Davis- B%Jtnﬂrst ngtnf?r <
Putnam) search search
elimination | cycle-cutset| DCDR, loop-
+ BDR-DP cutset
conditioning %revcvalrgg
approximatel I-consistency bounded mini- mini- mini-
alimination (directional) buckets | buckets | buckets
resolution
approximate| 96Sylocal gradient | stochastic gradient
conditioning| (GsaT) | GSAT escent | simulation descent
approximate] GSAT +
(eIimi+nation %%rrt]isa] e%tg
conditioning 4

Approximation algorithms

e Approximating conditioning:
Random search, GSAT, stochastic simulation.

e Approximating elimination:
_ocal consistency algorithms, bounded resolu-
tion, the mini-buckets approach.

e Approximation of hybrids of conditioning
—+elimination.

«

Approximating conditioning:
Randomized Hill-climbing search
(Hopfield 1982, kirkpatrick et. al, 1983)
(Minton et. al. 1990, Selman et. al, 1992)

For CSP and SAT:

GSAT: (one try)

1. Guess an assignment to all the variables.

2. Improve assignment by fliping a value using a guiding
hill-climbing function: the number of conflicting con-
straints.

3. Use randomization to get out of local minimas.

4. After a fixed time stop and start a new try.

Randomized hill climbing frequently solve large and hard
satisfiable problems.

Distributed version: Energy minimization in a Hopfiled
neural network (Hopfiled, 1982), Boltzman machines.

Approximating Conditioning
with elimination

Energy minimization in Neural networks
(Pinkas and Dechter, JAIR 1995)

e Cutset nodes run the original greedy update
function relative to neighbors. The rest of the
nodes run the arc-consistency algorithm fol-
lowed by value assignment, distributedly.

«

Approximating Conditioning
in a Hybrid

GSAT with Cycle-Cutset
(Kask and Dechter, AAAI 1996)

Algorithm (GSAT +-cycle-cutset)
Input: A CSP, variables divided into cycle cutset and
tree variables

Output: An assignment to all the variables.

One try:

Create a random initial assignment, and then alter-
natively executes these two steps:

1. Run Tree Algorithm on the problem, where the
values of cycle cutset variables are fixed.

2. Run GSAT on the problem, where the values of
tree variables are fixed.

«

GSAT with cycle-cutset
(Kask and Dechter, AAAI 1996)

Binary CSP, 100 instances per line, 100 variables, 8 values, tigh
number of average Time GSAT GSAT time | GSATHCC
constraints | cutset size Bound solved | per solvable solved

125 11 % 29 sec 46 10 sec 90
130 12 % 46 sec 29 16 sec 77
135 14 % 65 sec 13 23 sec 52

Binary CSP, 100 instances per line, 100 variables, 8 values, tight
number of average Time GSAT GSAT time | GSATHCC
constraints | cutset size Bound solved | per solvable solved

160 20 % 52 sec 33 20 sec 90
165 21 % 60 sec 13 30 sec 80
170 22 % 70 sec 4 40 sec 54

Binary CSP, 100 instances per line, 100 variables, 8 values, tigh
number of average Time GSAT GSAT time | GSATHCC
constraints | cutset size Bound solved | per solvable solved

235 34 % 52 sec 69 14 sec 66
240 35 % 76 sec 57 22 sec 57
245 36 % 113 sec 40 43 sec 40

Binary CSP, 100 instances per line, 100 variables, 8 values, tigh
number of average Time GSAT GSAT time | GSATHCC
constraints | cutset size Bound solved | per solvable solved

290 41 % 55 sec 74 13 sec 30
204 42 % 85 sec 80 25 sec 23
300 43 % 162 sec 63 45 sec 19

GSAT with cycle-cutset
(Kask and Dechter, AAAI 1996)

“Road Map’:
Tasks and Methods

Takd o _ MPE. |Sqlving
Optimi- | Belief | MAP | linear
Metho Csp SAT zation updatingl MEU Fﬁé‘q‘?‘]ﬁ'ﬁ?’%
adaptive | directional | gynagmic | Join-tree, | join-tree, Gaussian/
dlimination | consistency | FeSOIULION | program. | VE, SPL, | dim-mpe, Fourier
join-tree ming elim-bel | elim-map | gimination
| backtracking becktracking kgnaQ_Ch' branch-
conditioning| "o 9 (Davis- B%Jtnﬂrst ngtnf?r <
Putnam) search search
elimination | cycle-cutset| DCDR, loop-
+ BDR-DP cutset
conditioning %revcvalrgg
approximatel I-consistency bounded mini- mini- mini-
alimination (directional) buckets | buckets | buckets
resolution
approximate| 96Sylocal gradient | stochastic gradient
conditioning| (GsaT) | GSAT escent | simulation descent
approximate] GSAT +
(eIimi+nation %%rrt]isa] e%tg
conditioning 4

Approximating Elimination:
Local Inference

e Problem: bucket elimination (inference)
algorithms are intractable when w* is large.

e Approximation idea:
bound the arity of recorded dependencies
(constraints/probabilities/utilities), i.e.
perform local inference.

CSPs: local consistency;
SAT: bounded resolution;
Belief networks, optimization:
mini-buckets.

CSP: from Global to Local

Consistency
D
B
C g Globd consistency
G
A
local consistency
approximations
ARC-CONSISTENCY

I-CONSISTENCY

I-consistency

e i-consistency:
Any consistent assignment to any :—1 vari-
ables is consistent with at least one value
of any :-th variable.

Arc-consistency < 2-consistency
Path-consistency < 3-consistency

e Strong i-consistency:
k-consistency for every k <1

e directional i-consistency:
Given an ordering, X Is ¢-consistent with
any ¢+ — 1 previous variables.

e strong directional i-consistency:
Given an ordering, X, is strongly i-consistent
with any ¢ — 1 previous variables.

Enforcing Directional
I-consistency

e Directional z-consistency bounds the size of
recorded constraints by 2.

e For: > w*, directional i-consistency is equiv-
alent to adaptive consistency (bucket elim-
ination).

Consistency Algorithms

SAT: Bounded Directional
Resolution (BDR(i))

e BDR(i) enforces directional i-consistency

e Bucket Operation: bounded resolution.

Resolvents on more than z variables are not
recorded:

e.d., (AVBV-C)A(mAVDVE)— (BV-CVDVE)
is not recorded by BDR(3).

e Non-directional version: k-closure [van Gelder,
1996]. Enforces full k-consistency.

Preprocessing by
I-consistency

Complete algorithm BDR-DP (i) runs BDR(i)
as a preprocessing before DP-backtracking.

Experimental Results:

Uniform random CNFs (k,m)-tree CNFs
DR and BDR-DP on uniform DP, DR and BDR-DP on
3-cnfs (150 variables) (2,5)-chains (25 subtheories)
50 10000

Time

B DP-Backtracking

B BDR-DP (bound=3) bp

DR
BDR-DP (bound=3)

M1

1000 3

Time (log scale)

A
249 299 349 399 449 499 549 599

Number of clauses

Probabilistic Inference:

Mini-Bucket Approximation

Idea:

bound the size of probabilistic components by splitting
a bucket into mini-buckets.

MPE example:
bucket (X) =

5 h]_,...,hr ,hr+1,..., hn }

{hy, .. h} {Nret,e, hin}
r n -~
9= (\m;nx | Thiy -(max [1hi)
K <df

o Complexity decrease:

O(e") — O(e") + 0(e"™")

Approx-mpe(i)

[Dechter and Rish, 1997]

I - max number of variables in a mini-bucket

Input: A Belief network P = {Pq,..., P}
Output: upper and lower bounds on MPE
1. Initialize: Partition into buckets.

2. Process buckets from last to first:

Mini-buckets Max variables
N In a mini-bucket
max [
() ()
bucket B P(E|B,C) P(DJA,B) P(BIA) 3
()
bucketc P(CJA) h8(E,C) 3
bucket D he (D,A) 2
()
bucket E E=0 hC(E,A) 2
(')
bucket A P({ //hE(} hP(A) 1
U = Upper bound (MPE) Complexity
O (exp(3))

3. Forward: Assign values in ordering d

Lower bound = P(solution).

About approx-mpe(i)

Complexity:
O(exp(21)) time and O(exp(7)) space.

AcCcuracy:
determined by Upper bound/Lower bound ratio.
AsS 7 increase, accuracy increases.

Applications:
e As an anytime algorithm.
e As heuristics in Best-First Search.

Other probabilistic tasks:
mini-bucket idea can be used for approximate be-
lief updating, finding MAP and MEU [Dechter and
Rish,1997].

Anytime Approximations

anytime-mpe(¢)

1. Initialize: : = 1.

2. While computation resources are available
3. Increase 1

4. U «— upper bound of approx-mpe(i)

5. L — lower bound of approx-mpe(i)

6. Retain best solution so far

7. If U/L < ¢, return solution

8. end-while

9. Return current maximum mpe.

anytime—mpe(l) is an exact algorithm.
It can be orders of magnitude faster than elim-mpe.

Best-First Search

e Mini-bucket records upper-bound heuristics.

e The evaluation function over z, = (z1,...,zp):

f(iEp) — 9(5;0) : h(fp)
g(Zp) = NP_1P(x;|zpa,)

h(fp) — thEbucketphj

Best-First:

Expand a node with maximal evaluation function.

Properties:

e An exact algorithm.
e Better heuristics lead to more pruning.

Approximate Elimination for
Belief Updating

e elim-bel is similar to elim-mpe where maximization
is replaced by summation [UAI-96].

e Approximation idea:
sum of products < product of sums, i.e.

J . J .
POUEE ALY PPy
Xp Xp
Even better: bound by max

J , J
Z Mi_1Ai < ZAl Th— ”)‘(?DX Al

We can use min or mean, instead of max, yielding lower
bounds and a mean value.

e approx-bel-max(i):

Generates an upper bound to joint belief.
Complexity: O(exp(21)).

Empirical Evaluation

Test Problems:

CPCS networks

Uniform random networks
Random noisy-OR networks
Probabilistic decoding

Algorithms:

o clim-mpe
e approx-mpe(i)
e anytime-mpe(e)

CPCS Networks

cpcs360 - 360 binary nodes, 729 edges
cpcs422 - 422 binary nodes, 867 edges
Evidence (E) = 0, 2, and 10 nodes

anytime-mpe(1) performance:

2.

8 4 | IL | | | |

—]

@ 20]

5 2|| gpesil :

5 1.8+ .

_ 1.6f :
<

% 1.4}] -

- > &

= 12t -

)

% 1 I I I I I I

> 0 10 20 Bq_i mng 50 60 /0

anytime-mpe(1) versus elim-mpe

Time (sec)
Algorithm cpcs360 cpcs42?2
E=0] E =10 E=0 E =2
anytime-mpe(1) 33.5 108 68.6 234.8
elim-mpe 443.8 263.6 > 405.6 | > 416.3

e anytime-mpe(1) is 100% accurate

e 2-3 orders of magnitude more efficient than elim-mpe
e exact elim-mpe ran out of memory on cpcs422;
anytime-mpe(1) found exact solution in < 70 sec.

i nstances U/ L

% of

Noisy-OR Networks

Random noisy-OR generator:

Random graph: n nodes, e edges.
Noisy-OR P(z|pa(z)) is defined by noise g:
link probability P(z = 1|pa;(z) =1) =1 —g,
leak probability P(z = 1|Vipa;(z) = 0) = 0.

Results on (50 nodes, 150 edges)-networks
10 evidence nodes, 200 instances

e elim-mpe ran out of memory;
approx-mpe(i) time: from 0.1 sec for i = 9 to 80 sec for i = 21.

e Accuracy increases with ¢ — 0, 100 % for ¢ = 0 (Figure (a)).

e U/L is extreme: either really good (=1) or really bad (> 4);
U/L becomes less extreme with increasing noise g (Figure (b)).

100
1064
< 80 B g<05
60 £ 70
—
5 60
40 § 50-
&8 40
|4
20 =9 =
8- o 204 15%
»*— o 9
O]]]]]]]]] > 104 = 4% =
0 0. 10. 20. 30. 40. 50. 60. 70. 80.9 1 [
Noi se q 0 1 2 3 4 X
[0.] [12] 23 [34] [4, 0]

(a) (b)

Random Networks

Random graphs (n nodes, e edges) and uniform random P(z|pa(z)).

approx-mpe(12)

60 nodes, 90 edges, 200 instances
[e — 1, ¢] i Lower bound Upper bound
M/L % | Mean Te/Tq | U/M Y% | Mean Te/1q
[1,2] 12 85.5 24 .4 81 23.5
[2, 3] 12 11.5 29.7 13.5 29.1
[3, 4] 12 0.5 11.4 5 37.3
[4, o0] 12 2.5 21.1 0.5 14.0

e In =~ 80% of cases, approx-mpe is more efficient by
1-2 orders of magnitude while achieving accuracy factor
of at least 2.

30 nodes, 80 edges, 200 instances
[e — 1, ¢] i Lower bound Upper bound
M/L % | Mean Te/Tq | U/M % | Mean Te/Tq
[1,2] 12 51 41.3 29 27.0
[2, 3] 12 15 41.3 32 50.5
[3, 4] 12 11 69.2 17 45 .4
[4, o0] 12 23 44.5 22 60.6

e approx-mpe effectiveness decreases with increasing den-
Sity.

e Lower bound is usually closer to MPE than the Upper
bound

Notation:

M/L% = % of instances s.t. MPE value / Lower Bound € [e—1, €]
U/M% = % of instances s.t. Upper Bound / MPE value € [e—1,¢]
Mean Te/Tq = Mean value of elim-mpe time/approx-mpe time (
Te/Ta) on the instances s.t. M/L (or U/M) € [e — 1,]

Probabilistic Inference:
Iterative Belief Propagation

(IBP)

Pearl’'s belief propagation (BP) algorithm records only
unary dependencies. BP is exact for poly-trees.

Approximation scheme:

Iterative application of BP to a cyclic network.

Recent empirical results:

IBP is surprisingly successfull for probabilistic decoding
(state-of-the art decoder).

Probabilistic Decoding

Goal:

Reliable communication over a noisy channel

Technique:
Error-correcting codes

U= (uy,...,u;) - input information bits

X = (x1,...,zn) - additional code bits

Codeword (U, X) (channel input) is transmitted trough
a hoisy channel.

Result: real-valued channel output Y.

Decoding task: given Y, find U’ s.t.:
1. (block-wise decoding)

u' = arg max,, P(uly), or

2. (bit-wise decoding)
ujp = arg maxy, Pugly),1 <k < K.

Bayesian Network
Representation

Linear block code:

Problem parameters:

k - the number of the input information bits;

n - the number of code bits;

p - the number of parents of each code bit;

o - the noisy channel parameter (Gaussian noise).

Encoding: parity check (pairwise XOR)
r=u1 Dur P ... Hum, Where u; are parents of =z, and P
is summation modulo 2 (XOR).

Structured Low-w™* Codes

Error measure: the bit error rate (BER).

Approx-mpe(i) outperforms iterative belief propagation
(IBP(I), I is the number of iterations) on structured
problems with small parent set size:

Strucutred (50,25) block code, P=4 Structured (100,50) block code, P=4
10 ° 10 *
107 107
x 107 r 1073
]]
m m
3 -3
10 —s— 1BP(Y) 10
—=— |BP(10) —=— IBP(1)
104 —©— approx-mpe(1) 104 —=— |BP(10)
elim-mpe, approx-mpe(7) —e— approx-mpe(1)
. . elim-mpe, approx-mpe(7)
10° T T T T 107°+® T T T T
02 03 04 05 06 07 02 03 04 05 06 07
sigma sigma
(a) (b)
Structured (50,25) block code, P=7 Structured (100,50) block code, P=7
10 ° 10 °
107 1074
x 1079 p x 10795
Wy &0
104 —&— IBP(1) 104
] —=— |BP(10) f
o) elim-mpe 104 —=— [BP(10)
&® —©— approx-mpe(i),i=1land 7 elim-mpe
—©— approx-mpe(i), i=1and 7
10° w \ \ \ 10°° : ‘ ‘ ‘
02 03 04 05 06 07 02 03 04 05 06 07
sigma sigma

(c) (d)

BER for exact elim-mpe and approximate IBP(1), IBP(10), approx-
mpe(1l) and approx-mpe(7) (1000 instances per point). Structured
block codes with R=1/2 and (a) K=25, P=4, (b) K=50, P=4,
(c) K=25, P=7, and (d) K=25, P=7. The induced width of the
networks was 6 for (a) and (b), and 12 for (¢) and (d).

Random (high-w*) Codes and
Hamming Codes

On the other hand, IBP outperforms approx-mpe(i) on
random problems (high w*) and on Hamming codes:

Random (100,50) block code, P=4

10 °

1074

4
W 107
IBP(1)
10 —=— |BP(10)
—&— approx-mpe(1)
—©— approx-mpe(7)
10" ‘ ‘ : :
0.2 03 0.4 05 0.6 0.7
sigma
(a)
(7,4) Hamming code (15,11) Hamming code
0. 0.
0 T—— 1BPO) 15— 1B
—s=— |BP(5) —&— |BP(5)
— ¢elim-mpe, approx-mpe(7) elim-mpe
—e— approx-mpe(1) {—2— approx-mpe(i), i=1 and 7
107 1074
i i
0 0
10 102
107 w \ \ 107 : ‘ ‘ ‘ :
0.2 03 0.4 05 0.6 028 032 040 045 050
sigma sigma

(b) (c)

BER for exact elim-mpe and approximate IBP(1), IBP(5), approx-
mpe(1l) and approx-mpe(7) (10000 instances per point). Random
block codes with R=1/2 and (a) K=50, P=4, and Hamming codes
with (b) K=4, N=7 and (c) K=11, N=15. w™ of Hamming net-
works was (a) 3 and (b) 9, respectively, while w* of the random
networks was > 30.

Summary

o CPCS networks:

approx-mpe(i) finds MPE for low i =

anytime-mpe(1) outperforms elim-mpe (often by 1-2 or-
ders of magnitude)

e Noisy-OR networks:
approx-mpe(i) is more accurate than on random prob-
lems, especially for ¢ — 0O

¢ Random networks:
approx-mpe(i) is not very effective, especially with in-
creasing network density

e Coding networks:

approx-mpe(i) outperforms iterative belief propagation
on low-w™* structured networks, but the opposite results
are observed on high-w* random coding networks.

“Road Map’:
Tasks and Methods

Takd o _ MPE. |Sqlving
Optimi- | Belief | MAP | linear
Metho Csp SAT zation updatingl MEU Fﬁé‘q‘?‘]ﬁ'ﬁ?’%
adaptive | directional | gynagmic | Join-tree, | join-tree, Gaussian/
dlimination | consistency | FeSOIULION | program. | VE, SPL, | dim-mpe, Fourier
join-tree ming elim-bel | elim-map | gimination
| backtracking becktracking kgnaQ_Ch' branch-
conditioning| "o 9 (Davis- B%Jtnﬂrst ngtnf?r <
Putnam) search search
elimination | cycle-cutset| DCDR, loop-
+ BDR-DP cutset
conditioning %revcvalrgg
approximatel I-consistency bounded mini- mini- mini-
alimination (directional) buckets | buckets | buckets
resolution
approximate| 96Sylocal gradient | stochastic gradient
conditioning| (GsaT) | GSAT escent | simulation descent
approximate] GSAT +
(eIimi+nation %%rrt]isa] e%tg
conditioning 4

Decision-Theoretic Planning

Example: Robot Navigation

State = { Location, Cluttered, Direc-
tion, Battery}

Actions = {North, South, West, East}
Probability of Success = P

Task: reach the goal ASAP

r=1
GOAL

1 | START

Dynamic Belief Networks

Cluttered ‘ ‘ ‘ ‘ ‘

T ENENININT
Direction (A) ’ o ‘4'5’
Battery ‘Zﬂi ‘17 ‘li)

t t+1

C

r, Q C
L L
D D
B B
I’2

A A

Two-stage influence diagram interaction graph

Markov Decision Process

e v = {xq,..,xn} - state, D - domain, 2, = D" - state
space

e a = {ay,...,am} - action, D, - domain, Q, = D} -
action space

e Pp, - transition probabilities
e 7(x,a) - reward of taking action a in state x
e N - number of time slices

Problem: Find optimal policy

1. Finite-horizon MDP (N < o0)
r=(d....dV),d" : Qs — Qa
2. Infinite-horizon MDP (N = o)

7w Qe — Q2,4

Criterion:
maximum expected total (discounted) reward

max Ve(z) = r(z,m(2)) + A Y Plyle, n(2))Vr(y).
yEQX

Dynamic Programming:
Elimination

Optimality Equation:

Vi(zt) = m?x[r(:ct,at) + Z P(:ct+1|:ct,at)]vt+1,
4 t+1
x

v = ’I“N(ZCN).

Complexity:
O(N|Qa||Q2x]%) = O(N|D|™|D|?™).

Decomposability :
r(at,a’) = 377 ri(al, al)
P(at|zt1, et 1) = TTin, P(al|pa(al))

Bucket Elimination

1 1,2 2
2

1 1 1 2
0= (X1 X5 X3 ATA X1 X5 X3)

P(xZ |x1 Al) r,(x2 x r

\

X2 P(X2| X3 A7) P(xz\xzx A7) f(x2 X1 A

X2 . e . Q(X X3 AL X| A
\ /
Complexity: O(exp(w*))

Elim-meu

Input: A belief network {Pq,..., P,}; decision vari-
ables Dq,...,Dy,.
Output: dq,...,d;, maximizing expected utility.
1. Initialize: Partition probability and utility ma-
trices Ay, ..., Aj, 01,..., 0.
2. Backward: For p=n to 1 do
for Aq,...;A;,01,...,0; in bucketp do
e If (observed variable), assign X, = xp.

e Else,
AP—ZX A
p = =% x, Mo X D5 07

Add Gp and A\, to their buckets.
3. Forward: Assign values in ordering o using in-
formation in buckets.

Elimination and Conditioning

1. Finite-horizon MDPs:
Dynamic Programming = elimination along tempo-
ral ordering (N slices).

2. Infinite-horizon MDPs:
Value Iteration = elimination along temporal order-

ing (iterative)
Policy Iteration = conditioning on A;, elimnation on

X; (iterative).

3. Bucket elimination: “non-temporal” orderings.

Complexity O(exp(w*)),n < w* < 2n
Il

Further research: conditioning; approximations.

