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Introduction

1. Most Arti�cial Intelligence tasks are NP-hard.

2. Elimination and conditioning: reasoning principles

common to many NP-hard tasks.

3. Problems described by assigning values to variables

subject to a given set of dependencies (constraints,

clauses, probabilistic relations, utility functions).

4. The dependency structure can be described by a

graph: variables - nodes, dependencies - edges

(constraint networks, belief networks, in
uence di-

agrams).
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Arti�cial Intelligence Tasks

Areas:

1. Automated theorem proving

2. Planning and Scheduling

3. Machine Learning

4. Robotics

5. Diagnosis

6. Explanation

Frameworks:

1. Propositional Logic

2. Constraint Networks

3. Belief Networks

4. Markov Decision Processes



Our Focus: Tasks

� CSP and SAT:

{ Deciding if there is a solution (satis�ability).

{ Finding one or all solution.

{ Counting solutions.

� Belief Networks:

{ Belief Updating (BEL)

{ Most Probable Explanation (MPE)

{ Maximum Aposteriory hypothesis (MAP).

� In
uence Diagrams and MDPs:

{ Finding Maximum Expected Utility (MEU) de-

cision.

{ Finding optimal (MEU) policy.



Propositional SAT

Party Problem

If Alex goes, then Beki goes:

A! B

If Chris goes, then Alex goes:

C ! A

Query:

Is it possible that Chris goes ( C), but Beki is

not (:B ) ?

+

Is ' = f:A _B;:C _A;:B;Cg

satis�able?



Constraint Satisfaction

Map Coloring

Variables = fA;B; C;D; E; F;Gg

Domain = fred; green; blueg

Constraints: A 6= B, A 6= D, etc.
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Constrained Optimization

Power Plant Scheduling

   x x x

x x x

x x x

11 x12 13 14

21 22 23 x24

31 32 33 34

Unit
#

Min Up
Time

Min Down
Time

1 3 2

2 12

3 14

Variables = fX1; :::; XNg

Domain = fON;OFFg

Constraints: X1 _X2;:X3 _X4,

minimum-on and minimum-o� time, etc.

X

i

P(Xi) � Demand

Objective :

minimize Total Fuel Cost(X1; :::; XN)



Belief Networks

Medical diagnosis

T

X

A

V S

BC

D

visit to Asia smoking

lung
cancer

abnormality
in  lungs

dyspnea
(shortness of breath)X-ray

bronchitis

tuberculosis

Query:

P(T = yesjS = no;D = yes) =?



Decision-Theoretic Planning

Example: Robot Navigation

State = fX; Y;Battery Levelg

Actions = fNorth; South;West;Eastg

Probability of Success = P

Task: reach the goal ASAP

1

2

3

1 2 3 4

4 GOAL

L
U

D R

r = 1
r =  - 0.1

START



Two Reasoning Principles:
Elimination and Conditioning

Inference vs. Search

Thinking vs. Guessing



Graph coloring
Elimination

C

A B

E

D

Adaptive consistency:

Bucket elimination

Bucket(E): E 6= D, E 6= C

Bucket(D): D 6= A

Bucket(C): C 6= B

Bucket(B): B 6= A,

Bucket(A):

Basic step: deduction, constraint recording.



Graph Coloring
Conditioning

C

A B

E

D

0

0 1

C

A
0 1

B
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1

B
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1
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C
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0 1

0

0

1

1

D
0 E

Search tree:



Algorithmic Principles

� Elimination:
Basic operation: eliminating variables.

Reduction to equivalent subproblems, propagating

constraints, probabilities.

Inference, deduction, \thinking".

� Conditioning:

Basic operation: value assignment, conditioning.

\Guessing", generating subproblems, search.

� Paradigm:
Most reasoning algorithms employ one or both of

those principles.



Satis�ability
Elimination

' = (:A _B) ^ (:A _E) ^ (:B _ C _D) ^ :C

Directional resolution (DR)

Bucket elimination

B

C

A

D

E

w = 3*Induced  width

B C D

EDCC

D E

Input

B

C

A

D

E

Bucket

Bucket

Bucket

Bucket

Bucket

E oExtensionDirectional

ECA B BA

B EC

Width w = 3

Induced width w�d(A) = number of A's parents

in the induced graph along ordering d



Satis�ability:
Conditioning

Guessing: conditioning on variables, search:

' = (:A _B) ^ (:C _A) ^ :B ^ C

Conditioning:

The Davis-Putnam procedure

0 1

0 1

1

0 1

0

A

B B

C



Complexity

O(n)
w*O( n exp( ))

w*O( n exp( ))
w* n

w* n

Worst-case
time

Average 
time

exp( n )O( )

knowledge

Space

better  than
worst-case

same

Backtracking

compilationone  solution

Elimination

Output



Known examples

Elimination examples:

� Dynamic programming (optimization)

� Davis-Putnam, directional resolution (SAT)

� Fourier elimination, Gausian elimination

� Adaptive Consistency (CSP)

� Join-tree for belief updating and CSPs

Conditioning examples:

� Branch and Bound (optimization)

� Davis-Putnam backtracking

� Backtracking (CSP)

� Cycle-cutset scheme (CSPs, Belief networks)



Bucket elimination and
conditioning:

a uniform framework

� Understanding: commonality and di�erences.

� Ease of implementation

� Uniformity

� Technology transfer

� Allows uniform extensions to hybrids of con-

ditioning+elimination, and to approximations.



Outline; Road Map

approximate
elimination

conditioning
approximate

inequalities
equalities/

linear
Solving

Gaussian/
Fourier
elimination

consistency
adaptive directional

resolution

SAT

backtracking

DCDR

GSAT

bounded

resolution
(directional)

BDR-DP
,

dynamic

descent
gradient

Optimi-
zation

program-
ming

mini-
buckets

updating
Belief

stochastic
simulation

loop-
cutset

mini-
buckets

join-tree ,
VE , SPI,
elim-bel

join-tree ,
elim-mpe ,
elim-map

mini-
buckets

gradient
descent

MPE,
MAP
MEU

,

i-consistency

+

Tasks

approximate

conditioning

elimination

Methods CSP

checking 
forward

cycle-cutset,

backtracking
search

GSAT

greedylocal
search

(GSAT)

+
partial path-
consistency

,
join-tree

(Davis-
Putnam)

+
conditioning

elimination

elimination

conditioning

(

)

branch-
and-

,bound
best-first
search

branch-
and-
bound,
best-first
search



Constraint Satisfaction

Applications:

� Con�guration and design problems

� Temporal reasoning

� Scheduling

� Circuit diagnosis

� Scene labeling

� Natural language parsing



Constraint Networks

Constraint Network = fX;D;Cg

Variables: X = fX1; :::; Xng

Domains: D = fD1; :::; Dng, Di = fv1; :::; vkg

Constraints: C = fC1; :::Clg

A constraint graph: A node per variables, an

edge between constrained variables.

A

B C

D

E

A solution: an assignment of a value to each

variable that does not violate any constraint.



The Idea of Elimination

Eliminate variables one by one:

E D B C
1  2  2  2
1  2  2  3
2  2  2  2
2  1  1  3

E

D

B

E

D

B

D

B

C

C

C

eliminating E

{1,2}

{1,2,3}

{1,2}

{1,2}

= R

DBC
R

D B  C
2  2   2
2  2   3
1  1   3

DBC

value assignment

E = 2

D = 1, B =1, C=3

RDBC = �(�E)RED 1 REB 1 REC



The Idea of Elimination

Eliminate variables one by one:

E

D
C

A
B

D C

A B

C

B
A

BA
A

eliminating E

eliminating D

eliminating C
eliminating B

Solution generation process is backtrack-free



The Idea of Elimination

Eliminate variables one by one:

E D B C
1  2  2  2
1  2  2  3
2  2  2  2
2  1  1  3

2  2  3
1  1  3

D B  C

E

D

E

D

C

C

C

eliminating E

{1,2}

{1,2,3}

{1,2}

{1,2}

= R

D B  C
2  2   2
2  2   3
1  1   3

DBC

E

A
A

D

B

B

D
DBC

R

A
B

{1,2}

D = B

A =1       B = 2 D = 2

C =3 

= 1

{1,2,3}

eliminating C

BA
{1,2}

{1,2}

A
{1,2}

{1,2}B

{1,2}

{1,2,3}

Solution genration process is backtrack-free



Bucket Operation:

Join followed by projection

Finding all solutions of constraints R1; :::; Rn using join:

Solutions = R1 1 R2 1; :::;1 Rm

The operation in bucket E:

Join: REBCD  REB 1 RED 1 REC

Project: RBCD = �BCD(RBCDE)

g
A

r

RBD

RAB RADA B :
r g
g r

A
g

g r
r

D

B
r
g

r
g

D:

:

Join complexity: exponential in the number of vari-

ables.



Adaptive Consistency
Bucket elimination

( Dechter and Pearl 1987, Seidel, 1981)

C

A B

D

E

{1,2}

{1,2,3}{1,2}

{1,2} {1,2}

Bucket(E): E 6= D, E 6= C E 6= B
Bucket(D): D 6= A, jj , RDCB

Bucket(C): C 6= B jj RACB

Bucket(B): B 6= A, jj RAB

Bucket(A): jj RA

Bucket(A): A 6= D, A 6= B
Bucket(D): D 6= E, jj RDB

Bucket(C): C 6= B C 6= E,
Bucket(B): B 6= E, jj RBE, RBE

Bucket(E): jj , RE



Width and Induced Width

� Width of an ordered graph: w(d)

The maximum number of earlier neighbors.

E

D

A

D

C

B

A

C

B

E 

W(D) = 1

W*(D)= 3

W(D) = 1
W*(D)= 2

W(d) =3
W*(d) = 3

W(d) = 2
W*(d) = 2

� Induced width: w�(d).

The width in the ordered induced graph,

generated by recursively connecting parents.



Width and Induced Width

� Width of an ordered graph: w(d)

The maximum number of earlier neighbors.
E

D

C

B

A

A

D

C

B

E 

� Induced width: w�(d).

The width in the ordered induced graph,

generated by recursively connecting parents.



Width and induced width

� Width of an ordered graph: w(d)

The maximum number of earlier neighbors.

A

B

C

D

E

F

F

A

E

B

C

D

A

F

(a) (b) (c)

B

C

D

E

� Induced width: w�(d).

The width in the ordered induced graph,

generated by recursively connecting parents.



More on Induced-width

(tree-width)

� Finding minimum w* is NP-complete (Arnborg, 1985).

� Greedy ordering algorithms : min-width ordering,

min induced-width (Bertele, Briochi 1972, Freuder

1982).

� Approximation orderings.

� The induced width of a given ordering is easy to

compute.

� n�n grids have width of 2 but induced-width of n.

� Trees have induced-width of 1.

� Tree-width equals induced-width +1.



Adaptive Consistency

Initialize: Partition constraints into bucket1; :::bucketn.
For p= n downto 1, process bucketp

for all relations R1; :::Rm 2 bucketp do
Rnew  Find solutions to bucketp and project out Xp.

If Rnew is not empty, then add

to appropriate lower bucket.

Return [jbucketj.

Rnew  �(�Xp)
(1

m�1
j=1 Rj)



Properties of Elimination:
Tractable classes

Theorem:

Adaptive-consistency generates a problem that can be

solved without deadends (backtrack-free).

Theorem:

The time and space complexity of Adaptive-consistency

along d is O(exp(w � (d))).

Conclusion:

Problems having bounded induced-width (w� � b) can

be solved in polynomial time.

Special cases:

Trees and series-parallel networks.



Solving Trees
(Mackworth and Freuder 1985)

Adaptive-consistency is linear for trees.

A

B C

D E F G
bucket(G)

bucket(F)

Bucket(E)

bucket(C)

bucket(B)

R
CG

R CF

R
EB

R 
DB

R
CA

R
BA D B

D
A

D
A

CD

bucket(A)

bucket(D)

D
C

DB

Only domain (unary) constraints are recorded.

This is known as arc-consistency.

Adaptive consistency is equivalent to enforcing

directional arc-consistency for trees.



Arc-Consistency

When only domain (unary) constraints are recorded,

the operation is called arc-consistency.

RA �ARAB 1 DB

Example: RA = f1;2;3g, RB = f1;2;3g,

A < B reduces domain of A to RA = f1;2g.

1

2

3

1

2

3

1

x

x < y

y

1

2 2

3

x y

x < y

(a) (b)

(a) (b)

X

Y Z

X

Y Z

Allows distributed message passing.



Crossword Puzzle

R1;2;3;4;5=f(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T),

(S,N,A,I,L), (S,T,E,E,R)g

R3;6;9;12=f(H,I,K,E), (A,R,O,N), (K,E,E,T), (E,A,R,N),

(S,A,M,E)g

R5;7;11 =f(R,U,N), (S,U,N), (L,E,T), (Y,E,S),

(E,A,T), (T,E,N)g

R8;9;10;11=R3;6;9;12

R10;13 =f(N,O), (B,E), (U,S), (I,T)g

R12;13 =R10;13

1 2 3 4 5

6 7

8 9 10 11

12 13



Crossword Puzzle

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

bucket(x  )

1

2

3

4

5

6

7

8

9

10

11

12

13

R

R

R

R

R

R

1,2,3,4,5

3,6,9,12

5,7,11

8,9,10,11

10,13

12,13

H

H

H

H

H

H

H

H

2,3,4,5

3,4,5

4,5,6,9,12

5,6,9,12

6,7,9,11,12

7,9,11,12

9,11,12

10,11,12

H
9,10,11

empty  relation... exit.



The Power of Assignments

C

A B

D

E

C

A B

D

E

E= {1,2} E = 1

E = 1 is an assignment. An observation.

Bucket(E): E 6= D, E 6= C E 6= B, E = 1

Bucket(D): D 6= A jj RD = f2g

Bucket(C): C 6= B , jj RC = f2;3g
Bucket(B): B 6= A, jj RB = f2g

Bucket(A):

Case of observed buckets:

Assign value to each relation separately

Graph e�ect:

Delete all arcs incident to observation.

Reduced complexity: based on w� of modi�ed graph.



The power of assignments

E

D

C

B

A

E = 1 is an assignment. An observation.

Bucket(E): E 6= D, E 6= C E 6= B, E = 1

Bucket(D): D 6= A jj DD = f2g

Bucket(C): C 6= B , jj DC = f2;3g
Bucket(B): B 6= A, jj DB = f2g

Bucket(A):

Case of observed buckets:

Assign value to each relation seprately

Graph e�ect:

Delete all arcs incident to observation.

Reduced complexity: based on w� of modi�ed graph.



The idea of Conditioning:

Conditioning exploit the power of assign-

ment:

C

A B

E

D

C

A B

D = 1 C = 1
D

C

A B

D
D = 0 C = 0

0

0 1

C

A
0 1

B
10

1

B
0 1

1
D

C

A

0 1

0

0

1

1

D
0 E

E 1

Eon 
conditioning

E 0

Search tree:

Basic step: guessing, conditioning.

Leads to backtracking search.

Complexity: exponential time, linear space.



Variety of Backtracking
Algorithms

Simple Backtracking +

variable/value ordering heuristics +

constraint propagation + smart backjumping

+ learning no-goods+ ...

� Forward Checking [Haralick & Elliot, 1980 ]

� Backjumping [Gaschnig 1977, Dechter 1990, Prosser,

1993]

� Backmarking [Gaschnig 1977]

� BJ+DVO [Frost & Dechter 1994]

� Constraint learning [Dechter 1990] [Frost & Dechter

1994] [Bayardo & Miranker, 1996]



Search Complexity

Distributions

Complexity histograms (deadends, time) )

continuous distributions [Frost, Rish, Vila, 1997]:

Frequency

Nodes in Search Space

0 1,000 3,000 6,000

.005

.010

.015

.020

BJ-DVO on unsolvable binary CSPs



Complexity Comparison

O(n)
w*O( n exp( ))

w*O( n exp( ))
w* n

w* n

Worst-case
time

Average 
time

exp( n )O( )

knowledge

better  than
worst-case

same

Backtracking

compilationone  solution

Elimination

Output

Space



Pair-wise Elimination
(Dechter and van Beek, 1997)

In certain problem pair-wise elimination suf-

�ces.

Simultaneous Join-project elimination

Bucket(E) = fRED; REC; REABg

! RABCD

Pair-wise elimination:

Bucket(E) = fRED; REC; REABg

! RDC ; RADB; RACB

Pair-wise elimination is complete for:

� Linear inequalities

� propositional variables

� Crossword puzzles



Bucket elimination for linear

inequalities

Bucket(x):

fx� y � 17; 5x+2:5y+ z � 84; t� x � 2g !

5t+ 2:5y+5z � 94; t� y � 19

Linear elimination:P(r�1)
i=1

aixi+ arxr � c,
P(r�1)

i=1 bixi+ brxr � d.

r�1X

i=1

(�ai
br
ar

+ bi)xi � �
br
ar
c+ d:

(If ar, br opposite signs)

Fourier elimination:
Bucket elimination algorithm for linear inequalities. Com-

plexity is not bounded by the induced-width.

Temporal constraint networks:
A tractable case when inequalities are x�y � 16, x � 5.



Fourier Elimination:
Bucket-elim for Linear

Inequalities

Input: Linear inequalities set, 0

Output: A back-track free set

Intialize: partition into buckets

B(x) : x� y � 17;5x+ 2:5y+ Z = 84; t� x � 2

B(t) : t� x � 19 5t+ 2:5y+ 5Z � 94

B(y) :

B(z) :

B(z) : 5x+ 2:5y+ z � 84

B(y) : x� y � 17

B(x) : t� x � 2

B(t) :

B(t) : t� x � 2

B(x) : x� y � 17;5x+ 2:5y+ Z � 84

B(y) :

B(z) :



Temporal Constraint
Networks

(Dechter, Meiri and Pearl 1990)

Variables: X1; . . . ; Xn

Domains: Real numbers

Constraints: Xi � b;Xi �Xj � c

binary di�erence inequalities

Algorithm for STP is Bucket elimination

B(x) : x� y � 5; x > 3; t� x � 10

B(y) : y � 10 jj � y � 2; t� y � 15

B(z) :

B(t) : jj t � 25

Algorithm records only Binary constraints of

same type

Complexity ) 0(n3)

) 0(w�n2)



Summary

1. Bucket elimination for CSPs = Adaptive consis-

tency

2. Performance characterized by induced width of or-

dered graph. Time and space O(exp(w�
d
)).

3. The bucket operation: join-project.

4. Value assignments reduce induced width and reduce

complexity.

5. Conditioning: backtracking search

Worst case time O(exp(n)), but much better on

average. Linear space.

6. Bucket elimination for linear inequalities = Fourier

elimination.



Fourier Elimination

Initialize: partition inequalities into

bucket1, . . . , bucketn.

For p n downto 1

for each pair f�; �g � bucketi,

compute 
 = elimp(�; �).

If 
 has no solutions,

return inconsistency.

else add 
 to

the appropriate bucket.

return Eo(') 
S
i bucketi.



\Road Map":

Tasks and Methods

approximate
elimination

conditioning
approximate

inequalities
equalities/
linear

Solving

Gaussian/
Fourier
elimination

consistency
adaptive directional

resolution

SAT

backtracking

DCDR

GSAT

bounded

resolution
(directional)

BDR-DP
,

dynamic

descent
gradient

Optimi-
zation

program-
ming

mini-
buckets

updating
Belief

stochastic
simulation

loop-
cutset

mini-
buckets

join-tree ,
VE , SPI,
elim-bel

join-tree ,
elim-mpe ,
elim-map

mini-
buckets

gradient
descent

MPE,
MAP
MEU

,

i-consistency

+

Tasks

approximate

conditioning

elimination

Methods CSP

checking 
forward

cycle-cutset,

backtracking
search

GSAT

greedylocal
search

(GSAT)

+
partial path-
consistency

,
join-tree

(Davis-
Putnam)

+
conditioning

elimination

elimination

conditioning

(

)

branch-
and-

,bound
best-first
search

branch-
and-
bound,
best-first
search



Propositional Satis�ability

Conjunctive normal form (CNF)

'= (A _B _ C) ^ (:A _B _E) ^ (:B _ C _D)

Is ' satis�able? If it is, �nd a solution (model).

CNF: conjunction of clauses

clause: disjunction of literals

literal: A or :A

Interaction graph:

A

B C

D

E

Variables (propositions) ) nodes

Constraints (clauses) ) cliques



Elimination: Resolution

The operation in a bucket: pair-wise resolution

(A _B) ^ (:A _E) ^ (A _ :C) :

(A _B) ^ (:A _E)) (B _E);

(:A _E) ^ (A _ :C)) (E _ :C):

Resolution creates clauses )

connects variables:

A

B C

D

E

resolution
over A

A

B C

D

E

Special case:

Unit resolution - resolution with unit clauses:

:A ^ (A _B _ C)) (B _ C)

Unit propagation - unit resolution until no

unit clause is left.



Directional Resolution

Bucket Elimination

'= :C^(A_B_C)^(:A_B_E)^(:B_C_D)

=  E 0

C =  0

A =  0

B =  1B C D

EDCC

D E

Input

Directional Extension

E o

compilation
Knowledge

D=  1

generation
Model

A B C A EB

B C E

Bucket

Bucket

Bucket

Bucket

Bucket

B

C

A

D

E

Resolution: logical inference (\thinking")



DR Complexity

B

C

A

D

E

w = 3*Induced  width

B C D

EDCC

D E

Input

B

C

A

D

E

Bucket

Bucket

Bucket

Bucket

Bucket

E oExtensionDirectional

ECA B BA

B EC

Width w = 3

jbucketij = O(exp(w�))) jEoj = O(nexp(w�))

+

Time(DR) and Space(DR) = O(nexp(w�))



Directional Resolution (DR)
[Davis,Putnam, 1960] [Dechter, Rish, 1994]

Input: A cnf theory ', d= Q1; :::; Qn.

Output: A directional extension Ed('),
equivalent to '; Ed(') = ; i� ' is unsatis�able.

1. Initialize: generate a partition of clauses,

bucket1; :::; bucketn, where bucketi contains
all the clauses whose highest literal is Qi.

2. For i= n to 1 do:

Resolve each pair

f(� _Qi); (� _ :Qi)g � bucketi.
If 
 = � _ � is empty,

return Ed(') = ;,
else add 
 to the appropriate bucket.

3.Return Ed(') 
S
i
bucketi.



Conditioning: Assignment

Conditioning adds a literal to '

A= 0 ) :A ^ '

A= 1 ) A ^ '

Conditioning implies:

� unit resolution:

A= 0 ) :A ^ (A _B _ C)) (B _ C)

� deleting tautologies:

A= 0) :A^(:A_B_E)) clause (:A_B_E)

is deleted from '.

� deleting a variable from the graph

B C

D

E

A

B C

D

E

Conditioning
on  A



Backtracking Search

Conditioning

' = (:A _B) ^ (:C _A) ^ :B ^ C

0 1

0 1

1

0 1

0

A

B B

C

Search: \guessing" (partial) solutions



The Davis-Putnam
Procedure

[Davis, Logemann, Loveland, 1962]

DP(')
Input: A cnf theory '.

Output: A decision of whether ' is satis�able.

1. Unit propagate(');
2. If the empty clause generated return(false);

3. else if all variables are assigned return(true);

4. else

5. Q = some unassigned variable;

6. return( DP( ' ^Q) _
7. DP(' ^ :Q) )



Historical Perspective

� 1960 - resolution-based Davis-Putnam algorithm.

� 1962 - original Davis-Putnam was replaced by con-

ditioning procedure [Davis, Logemann and Love-

land, 1962] due to memory explosion, resulting in

a backtrack search known as the Davis-Putnam(-

Logemann-Loveland) procedure.

� The dependency on a graph parameter called in-

duced width was not known in 1960.

� 1994 - Directional Resolution, a rediscovery of the

original Davis-Putnam [Dechter and Rish, 1994].

Identi�cation of tractable classes.



Experimental Results:

DP vs DR on k-CNFs
[Dechter and Rish, 1994

1. Uniform random 3-CNF: N variables, C clauses

2. Random (k,m)-tree: a tree of k+m-node cliques

with k-node intersections (clique separators)

Uniform random 3-CNFs: (k,m)-tree CNFs:
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Why Hybrids?

O(n)
w*O( n exp( ))

w*O( n exp( ))
w* n

w* n

Worst-case
time

Average 
time

exp( n )O( )

knowledge

better  than
worst-case

same

Backtracking

compilationone  solution

Elimination

Output

Space

Backtracking + Resolution =
Hybrids



Conditioning (backtracking)

+ Elimination (resolution)
[Rish and Dechter, 1996]

'= (A _B _ C) ^ (:A _B _E) ^ (:B _ C _D)

A

B C

D

E

B C

D

B C

D

E

A = 0

A = 1

A= 0) (B _ C) ^ (:B _ C _D)
A= 1) (B _E) ^ (:B _ C _D)

Idea:
conditioning reduces w�

+

elimination guarantees O(exp(w�)); w� < n



Conditioning+DR:

Algorithm DCDR(b)

Resolve if w�(Xi) < b, otherwise condition.

B

C

A

D

E

C D

B

C

A

D

E

Bucket

Bucket

Bucket

Bucket

Bucket

ECA B BA

B C D

C

C

A

DC

D

Input

D

B B E

E

B

B

A

Conditioning
Elimination

w(A) = 3
w*(B) = 3

bound b=2



DCDR(b):

Experimental Results
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     20 clauses per cliques
    21 experiment per point 
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(a) uniform CNFs (b) (4,5)-trees (c) (4,8)-trees

Summary:

Uniform  3-cnfs (2,5)-trees (4,8)-trees
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1000
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DCDR (-1), DCDR(5) , DCDR(13)
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b < 0 : pure DP

b � w� : pure DR
0 � b < w� : pure DR

Time exp(b+ jcond(b)j), space exp(b)



Summary

1. Bucket elimination: Directional Resolution

(resolution-based Davis-Putnam).

Time and space O(exp(w�o)).

2. Conditioning: backtracking search

(backtracking-based Davis-Putnam Procedure).

Time O(exp(n)), better on average; space O(n).

3. Conditioning (Backtracking) +

Elimination (Resolution):

Conditioning when w� � b, resolution otherwise.

Time exp(b+ jcond(b)j), space exp(b).



\Road Map":

Tasks and Methods

approximate
elimination

conditioning
approximate

inequalities
equalities/
linear

Solving

Gaussian/
Fourier
elimination

consistency
adaptive directional

resolution

SAT

backtracking

DCDR

GSAT

bounded

resolution
(directional)

BDR-DP
,

dynamic

descent
gradient

Optimi-
zation

program-
ming

mini-
buckets

updating
Belief

stochastic
simulation

loop-
cutset

mini-
buckets

join-tree ,
VE , SPI,
elim-bel

join-tree ,
elim-mpe ,
elim-map

mini-
buckets

gradient
descent

MPE,
MAP
MEU

,

i-consistency

+

Tasks

approximate

conditioning

elimination

Methods CSP

checking 
forward

cycle-cutset,

backtracking
search

GSAT

greedylocal
search

(GSAT)

+
partial path-
consistency

,
join-tree

(Davis-
Putnam)

+
conditioning

elimination

elimination

conditioning

(

)

branch-
and-

,bound
best-first
search

branch-
and-
bound,
best-first
search



Belief Networks

� Belief networks are acyclic directed graphs

annotated with conditional probability tables.

E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)

E
D

B

A

C

Moralize ("marry parents")

Tasks (NP-hard):

� belief-updating (BEL)

� Finding most probable explanation (MPE)

� Finding maximum aposteriori hypothesis (MAP)

� Finding maximum expected utility (MEU)



Common Queries

1. Belief assessment:

Find bel(xi) = P (Xi = xije).

2. Most probable explanation (MPE):
Find xo s.t. p(xo) = max�xn �

n

i=1P (xijxpai; e).

3. Maximum aposteriori hypothesis (MAP):
Given A = fA1; :::Akg � X, �nd ao = (ao1; :::a

o
k) s.t.

p(ao) = max�a
k

P
xX�A

�n

i=1P (xijxpai; e).

4. Maximum expected utility (MEU):
Given u(x) =

P
Qj2Q

fj(xQj
), �nd decisions do =

(do1; :::; d
o
k)

maxd
P

x
k+1;:::;xn

�n

i=1P (xijxpai;d
)u(x).



Belief Updating

P(aje = 0) = �P(a; e= 0).

E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)

E
D

B

A

C

Moralize ("marry parents")

Ordering: a; b; c; d; e

P(a; e = 0) =
P
b;c;d;e=0 P (a; b; c; d; e)

=
P
b
P
c
P
d
P
e=0 P(ejb; c)P(dja; b)P(cja)P(bja)P(a)

= p(a)
P
b P(bja)

P
cP(cja)

P
dP(djb; a)

P
e=0 P(ejb; c)

Ordering: a; e; d; c; e

P(a; e = 0) =
P
e=0;d;c;b P(a; b; c; d; e)



P(a; e = 0) = P(a)
P
e
P
d
P
cP(cja)

P
b P(bja)P(dja; b)

P(ejb; c)



Backwards Computation =
Elimination

Ordering: a, b, c, d, e

P(a)
P
b P(bja)

P
cP(cja)

P
dP(djb; a)

P
e=0 P(ejb; c)

= P(a)
P
b P(bja)

P
cP(cja)P(e= 0jb; c)

P
dP(djb; a)

= P(a)
P
b P(bja)�D(a; b)

P
c P(cja)P(e = 0jb; c)

= P(a)
P
b P(bja)�D(a; b)�C(a; b)

= P(a)�B(a)

The Bucket elimination process:

bucket(E) = P(ejb; c); e= 0

bucket(D) = P(dja; b)

bucket(C) = P(cja)

bucket(B) = P(bja)

bucket(A) = P(a)



Backwards Computation,
Di�erent Ordering

Ordering: a, e, d, c, b

P(a; e = 0) = P(a)
P
e=0

P
d
P
cP(cja)

P
b P(bja)

P(dja; b)P (ejb; c)

P(a)
P
e=0

P
d
P
c P(cja)�B(a; d; c; e)

P(a)
P
e=0

P
d �C(a; d; e)

P(a)
P
e=0 �D(a; e)

P(a)�D(a; e = 0)

The bucket elimination Process:

bucket(B) = P (ejb; c); P(dja; b); P(bja)

bucket(C) = P(cja) jj �B(a; d; c; e)

bucket(D) = jj �C(a; d; e)

bucket(E) = e= 0 jj �D(a; e)

bucket(A) = P(a) jj �D(a; e = 0)



Bucket Elimination and
Induced Width

E
D

B

A

C

Ordering: a, b, c, d, e

bucket(E) = P (ejb; c); e = 0

bucket(D) = P (dja; b)
bucket(C) = P (cja) jj P (e = 0jb; c)
bucket(B) = P (bja) jj �D(a; b); �C(b; c)
bucket(A) = P (a) jj �B(a)

Ordering: a, e, d, c, b

bucket(B) = P (ejb; c); P (dja; b); P (bja)
bucket(C) = P (cja) jj �B(a; c; d; e)
bucket(D) = jj �C(a; d; e)
bucket(E) = e = 0 jj �D(a; c)
bucket(A) = P (a) jj �E(a)



Bucket Elimination and
Induced Width

E

D

C

B

A

B

C

D

E

A

w* = 2

w* = 4

E

D

C

B

A

B

C

D

E

A

w* = 2

w* = 4

B

C

D

E

A

w* = 2

E

D

C

B

A

w* = 2



Handling Observations

E
D

B

A

C

Observing b= 1

Ordering: a, e, d, c, b

bucket(B) = P (ejb; c); P (dja; b); P (bja); b= 1

bucket(C) = P (cja), jj P (ejb = 1; c)
bucket(D) = jj P (dja; b= 1)

bucket(E) = e = 0 jj �C(e; a)
bucket(A) = P (a), jj P (b = 1ja) �D(a); �E(e; a)

Ordering: a, b, c, d, e

bucket(E) = P (ejb; c); e = 0

bucket(D) = P (dja; b)
bucket(C) = P (cja) jj �E(b; c)
bucket(B) = P (bja); b = 1 jj �D(a; b); �C(a; b)
bucket(A) = P (a) jj �B(a)



The Bucket Operation

Elimination: multiply and sum

bucket(B) = fP (ejb; c); P(dja; b); P(bja)g !

�B(a; c; d; e) =
P
b P(bja)P(dja; b)P(ejb; c)

1
+ p

2

e  b  c  P(e|b,c)
0 0 0   
....
 1 1 1     p

d a b  P(d|a,b)
0 0 0
   ;

;
0 1 0   q

a b  P(b|a)
0 0
0 1    r
 ;

a b c d e   P = P(e|b,c) P(d|a,b) P(b|a)
0 0 0 0 0 
     ;
     ;
0 1 1 0 1 
o o 1 o 1  

p
1

p 2

a c d  e  P

0 0 0 0 

0 1 0 1   p

multiply

sum

Observed bucket:

bucket(B) = fP (ejb; c); P(dja; b); P(bja); b= 1g !

�B(a) = P(b= 1ja)

�B(a; d) = P(dja; b= 1)

�B(e; c) = P(ejb = 1; c).





Elim-bel

Input: A belief network fP1; :::; Png, d,e.

Output: belief of X1 given e.

1. Initialize:

2. Process buckets from p = n to 1

for matrices �1; �2; :::; �j in bucketp do

� If (observed variable) Xp = xp assign

Xp = xp to each �i.

� Else, (multiply and sum)

�p =
P
Xp

�
j
i=1�i.

Add �p to its bucket.

3. Return Bel(x1) = �P(x1) ��i�i(x1)



Irrelevant buckets for
elim-bel

Buckets that sum to 1 are irrelevant.

Identi�cation: no evidence, no new functions.

Recursive recognition : ( bel(aje))

bucket(E) = P(ejb; c); e= 0

bucket(D) = P(dja; b),...skipable bucket

bucket(C) = P(cja)

bucket(B) = P(bja)

bucket(A) = P(a)

Complexity: Use induced width in moral graph

without irrelevant nodes, then update for evi-

dence arcs.



Finding the MPE
(An optimization task)

E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)

E
D

B

A

C

Moralize ("marry parents")

Ordering: a; b; c; d; e

m=maxa;b;c;d;e=0 P(a; b; c; d; e) =

= maxa P (a)maxb P(bja)maxcP(cja)maxdP(djb; a)

maxe=0P (ejb; c)

Ordering: a; e; d; c; b

m=maxa;e=0;d;c;b P(a; b; c; d; e)

m=maxa P(a)maxemaxd �



maxcP(cja)maxb P(bja)P(dja; b)P(ejb; c)



Algorithm Elim-mpe

Input: A Belief network P = fP1; :::; Png

Output: MPE

1. Initialize: Partition into buckets.

2. Process buckets from last to �rst:

C

B

D

E

A

Width
Induced  width

w = 4
*w = 4

P(A)
Eh (A)

E = 0 h (A,E)D

h (A,D,E)C

P(C|A) h (A,D,C,E)B

MPE

max
B

P(E|B,C)    P(D|A,B)   P(B|A)

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

3. Forward: Assign values in ordering d



Generating the MPE Tuple

C

B

D

E

A

Width
Induced  width

w = 4
*w = 4

P(A)
Eh (A)

E = 0 h (A,E)D

h (A,D,E)C

P(C|A) h (A,D,C,E)B

MPE

max
B

P(E|B,C)    P(D|A,B)   P(B|A)

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

Step 3:

a0 = argmaxaP(a) � h(a)

e0 = E = 0

d0 = argmaxdh(a0; d; e0)

c0 = argmaxcP(cja0) � h(a0; d0; c; e0)

b0 = argmaxbP (e0jb; c0) � P(d0ja0; b) � P (bja0)

Return a0; e0; d0; c0; b0



Elim-mpe

Input: A belief network fP1; :::; Png; d; e.

Output: mpe

1. Initialize:

2. Process buckets: for p = n to 1 do

for matrices h1; h2; :::; hj in bucketp do

� If (observed variable) assign Xp = xp

to each hi and put in buckets.

� Else, (multiply and maximize)

hp = maxXp
�
j
i=1hi.

x
opt
p = argmaxXp

hp.

Add hp to its bucket.

3. Forward: Assign values in ordering d

Theorem: Elim-mpe �nds the value of the

most probable tuple and a corresponding tuple.



Cost Networks and Dynamic
Programming

Belief networks and cost networks

P(a; b; c; d; e) = P(a)P(bja)P(cja)P(ejb; c)P(dja; b)

C(a; b; c; d; e) = �logP = C(a)+C(b; a)+C(c; a)+

C(e; b; c)+C(d; a; b)

E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)

E
D

B

A

C

Moralize ("marry parents")

� Minimize sum-of-costs.



Elim-opt, Dynamic
Programming

(Bertele and Briochi, 1972)

Algorithm elim-opt

Input: A cost network (X;D;C), C = fC1; :::; Clg;
ordering o; e.
Output: The minimal cost assignment.

1. Initialize: Partition the cost components into

buckets.

2. Process buckets from p n downto 1

For costs h1; h2; :::; hj in bucketp, do:

� If (observed variable) Xp = xp, assign Xp = xp
to each hi and put in buckets.

� Else, (sum and minimize)

hp = minXp
Pj

i=1
hi.

x
opt
p = argminXph

p.

Add hp to its bucket.

3. Forward: Assign minimizing values in or-

dering o



Algorithm Elim-Opt
(Dechter, Ijcai97)

mina;d;c;b;e=0C(a; b; c; d; e) = mina;d;c;b

C(a; c) + C(a; b; d) + C(b; e) + C(b; c) + C(c; e)

1. Partition C = fC1; :::; Crg into buckets

2. Process buckets from last to �rst:

C

B

D

E

A

Width
Induced  width

w = 4
*w = 4

P(A)
Eh (A)

E = 0 h (A,E)D

h (A,D,E)C

P(C|A) h (A,D,C,E)B

MPE

max
B

P(E|B,C)    P(D|A,B)   P(B|A)

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

3. Forward: Assign values in ordering d



Finding the MAP
(An optimization task)

E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)

E
D

B

A

C

Moralize ("marry parents")

Variables A and B are the hypothesis variables.

Ordering: a; b; c; d; e

maxa;bP(a; b; e = 0) = maxa;b
P
c;d;e=0P(a; b; c; d; e)

= maxa P (a)maxb P(bja)
P
c P(cja)

P
d P(djb; a)P

e=0 P(ejb; c)

Ordering: a; e; d; c; b .... illegal ordering

maxa;b P (a; e; e= 0) = maxa;b
P
P(a; b; c; d; e)



maxa;b P (a; b; e= 0) = maxaP(a)maxb P(bja)
P
d �

maxcP(cja)P(dja; b)P(e = 0jb; c)



Elim-map

Maximum aposteriori hypothesis (MAP):

Given A= fA1; :::Akg � X, �nd ao = (ao1; :::a
o
k)

s.t. p(ao) = max�ak

P
xX�A

�n
i=1P(xijxpai; e).

Input: A belief network and hypothesis A =

fA1; :::; Akg, d, e.
Output: An map.

1. Initialize:

2. Process buckets : for p= n to 1 do

for matrices �1; �2; :::; �j in bucketp do
� If observed variable, assign Xp = xp.

� Else, (multiply and sum or max)

�p =
P

Xp
�
j

i=1�i,

(Xp 2 A) �p =maxXp�
j

i=1
�i

a0 = argmaxXp�p.

Add �p to its bucket.

3. Forward: Assign values to A.

Variable ordering is restricted: max-buckets should

preceede (processed after) summation buckets.



Complexity of bucket
elimination

Theorem

Given a belief network having n variables, ob-

servations e, the complexity of elim-mpe, elim-

bel, elim-map along d, is time and space

O(n � exp(w � (d))

where w �(d) is the induced width of the moral

graph whose edges connecting evidence to ear-

lier nodes, were deleted.



Bucket-Elimination for trees
and Poly-Trees

Elim-bel, elim-mpe, elim-map are linear for poly-trees.

They are similar to single root query of Pearl's propa-

gation on poly-trees, if using topological ordering ( and

super-bucket processing of parents.)

Example:

Z 1 Z 2 Z

U U U3

1

Y

Z

Z

Y

U

U

U

X
1

(a) (b)

3

2
Z

21

X

3

2

1

1

1

1

3



Relationship with join-tree
clustering

(constraint networks and belief networks)

Ordering: a, b, c, d, e

bucket(E) = P(ejb; c)

bucket(D) = P(dja; b)

bucket(C) = P(cja), jj �E(a; b)

bucket(B) = P(bja), jj �C(a; b)

bucket(A) = P(a), jj �B(a)

ABC

ADB BCE

AB BC

A clique in tree-clustering can be viewed as a

set of buckets.



Conditioning: Generates the
Probability Tree

P(a; e= 0) =

P(a)
P
b P(bja)

P
cP(cja)

P
dP(djb; a)

P
e=0 P(ejb; c)

b=0

b=1

c=0

c=1

d=0
d=1

P(a)
P(b|a)

P(c|a)
P(d|a,b)

e=0

P(e|b,c) P(a)P(b|a)P(c|a)P(d|a,b)P(e|b,c)

...

...

...

...

a=0

a=1

e=0

Complexity of conditioning:

Time: exponential

Space: linear.



Conditioning+ Elimination

P(a; e = 0) =

P(a)
P
b P(bja)

P
cP(cja)

P
dP(djb; a)

P
e=0 P(ejb; c)

p(0|a)

P(1|a)

P(1|a)

P(1|0,1)

sum

sum
sum

sum

P(a,e=0|b=1)

P(a,e=0| b=0,c=0)

P(a,e=0| b=0,c=0)

A
P(A)

D
P(d|a,b)

E
P(e|b,c)

p(0|a)

P(b|a)
CB

P(c|a)

sum

P(a,e=0|b=0)

Method: Search until a problem having a small

w� is created.



Conditioning + Elimination
Trading space for time

� Algorithm elim-cond(b), b bounds width:

When b > width, apply conditioning.

� b= 0 is full conditioning,

� b= w� is pure bucket elimination

� b= 1 is the cycle-cutset method.

� Time exp(b+ jcond(b)j), space exp(b)

A

B

C

D

E

conditioning

P(a|b,e)

P(c|b)

P(d|b)

bound = 2



Super-Bucket Elimination
Trading space for time

(Dechter and El Fattah, UAI 1996)

� Eliminating a few variables \at once".

P(a|b,e)A

B

D

E

A

B

C

D

E

P(a|b,e)

P(c|b) C,P(d|b) h(b,e)

h(c,d,e)

h(d,e)

h(e)

P(c|b)P(d|b) h(b,e)

h(d,e)

h(e)

time: exp(3)

space: exp(3)

time: exp(4)
space: exp(2)

� Here conditioning is local to super-buckets.



The Super-Bucket Idea

Larger super-buckets (cliques) means more time

and less space:

AB

BCD

BDG

GDEF

GEFH

B

BD

GD
GFE

AB

BCD

BDG

GDEFH

AB

BCDGEFH

B

BD

GD

B

(a) (b) (c)T0 T1 T2

Complexity:

1. Time: exponential in clique and super-bucket

size

2. Space: exponential in separator size.



Application: Circuit
Diagnosis

Problem: Given a circuit and unexpected output, iden-

tify faulty components. The problem can be modeled as

a constraint optimization problem and solved by bucket

elimination.

Circuit C432



Benchmark Circuits

Circuit Circuit Total Input Output
Name Function Gates Lines Lines

C17 6 5 2
C432 Priority Decoder 160 (18 EXOR) 36 7
C499 ECAT 202 (104 EXOR) 41 32
C880 ALU and Control 383 60 26
C1355 ECAT 546 41 32
C1908 ECAT 880 33 25
C2670 ALU and Control 1193 233 140
C3540 ALU and Control 1669 50 22
C5315 ALU and Selector 2307 178 123
C6288 16-bit Multiplier 2406 32 32
C7552 ALU and Control 3512 207 108



Secondary Trees for C432



Time-Space tradeo� for
circuits
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Approximation algorithms

� Approximating conditioning:

Random search, GSAT, stochastic simulation.

� Approximating elimination:

Local consistency algorithms, bounded resolu-

tion, the mini-buckets approach.

� Approximation of hybrids of conditioning

+elimination.



Approximating conditioning:
Randomized Hill-climbing search

(Hop�eld 1982, kirkpatrick et. al, 1983)

(Minton et. al. 1990, Selman et. al, 1992)

For CSP and SAT:

GSAT: (one try)

1. Guess an assignment to all the variables.

2. Improve assignment by 
iping a value using a guiding

hill-climbing function: the number of con
icting con-

straints.

3. Use randomization to get out of local minimas.

4. After a �xed time stop and start a new try.

Randomized hill climbing frequently solve large and hard

satis�able problems.

Distributed version: Energy minimization in a Hop�led

neural network (Hop�led, 1982), Boltzman machines.



Approximating Conditioning
with elimination

Energy minimization in Neural networks

(Pinkas and Dechter, JAIR 1995)

� Cutset nodes run the original greedy update

function relative to neighbors. The rest of the

nodes run the arc-consistency algorithm fol-

lowed by value assignment, distributedly.



Approximating Conditioning
in a Hybrid

GSAT with Cycle-Cutset
(Kask and Dechter, AAAI 1996)

Algorithm (GSAT +cycle-cutset)

Input: A CSP, variables divided into cycle cutset and

tree variables

Output: An assignment to all the variables.

One try:

Create a random initial assignment, and then alter-

natively executes these two steps:

1. Run Tree Algorithm on the problem, where the

values of cycle cutset variables are �xed.

2. Run GSAT on the problem, where the values of

tree variables are �xed.



GSAT with cycle-cutset
(Kask and Dechter, AAAI 1996)

Binary CSP, 100 instances per line, 100 variables, 8 values, tight
number of average Time GSAT GSAT time GSAT+CC
constraints cutset size Bound solved per solvable solved

125 11 % 29 sec 46 10 sec 90
130 12 % 46 sec 29 16 sec 77
135 14 % 65 sec 13 23 sec 52

Binary CSP, 100 instances per line, 100 variables, 8 values, tight
number of average Time GSAT GSAT time GSAT+CC
constraints cutset size Bound solved per solvable solved

160 20 % 52 sec 33 20 sec 90
165 21 % 60 sec 13 30 sec 80
170 22 % 70 sec 4 40 sec 54

Binary CSP, 100 instances per line, 100 variables, 8 values, tight
number of average Time GSAT GSAT time GSAT+CC
constraints cutset size Bound solved per solvable solved

235 34 % 52 sec 69 14 sec 66
240 35 % 76 sec 57 22 sec 57
245 36 % 113 sec 40 43 sec 40

Binary CSP, 100 instances per line, 100 variables, 8 values, tight
number of average Time GSAT GSAT time GSAT+CC
constraints cutset size Bound solved per solvable solved

290 41 % 55 sec 74 13 sec 30
294 42 % 85 sec 80 25 sec 23
300 43 % 162 sec 63 45 sec 19



GSAT with cycle-cutset
(Kask and Dechter, AAAI 1996)
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Approximating Elimination:

Local Inference

� Problem: bucket elimination (inference)

algorithms are intractable when w� is large.

� Approximation idea:

bound the arity of recorded dependencies

(constraints/probabilities/utilities), i.e.

perform local inference.

CSPs: local consistency;

SAT: bounded resolution;

Belief networks, optimization:

mini-buckets.



CSP: from Global to Local
Consistency
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F
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i-consistency

� i-consistency:

Any consistent assignment to any i�1 vari-

ables is consistent with at least one value

of any i-th variable.

Arc-consistency , 2-consistency

Path-consistency , 3-consistency

� strong i-consistency:

k-consistency for every k � i

� directional i-consistency:

Given an ordering, Xk is i-consistent with

any i� 1 previous variables.

� strong directional i-consistency:

Given an ordering, Xk is strongly i-consistent

with any i� 1 previous variables.



Enforcing Directional
i-consistency

� Directional i-consistency bounds the size of

recorded constraints by i.

� For i > w�, directional i-consistency is equiv-

alent to adaptive consistency (bucket elim-

ination).



Consistency Algorithms



SAT: Bounded Directional
Resolution (BDR(i))

� BDR(i) enforces directional i-consistency

� Bucket Operation: bounded resolution.

Resolvents on more than i variables are not

recorded:

e.g., (A_B _:C)^ (:A_D _E)! (B _:C _D_E)

is not recorded by BDR(3).

� Non-directional version: k-closure [van Gelder,

1996]. Enforces full k-consistency.



Preprocessing by
i-consistency

Complete algorithm BDR-DP(i) runs BDR(i)

as a preprocessing before DP-backtracking.

Experimental Results:

Uniform random CNFs (k,m)-tree CNFs
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Probabilistic Inference:

Mini-Bucket Approximation

Idea:

bound the size of probabilistic components by splitting

a bucket into mini-buckets.

MPE example:

X

X

hr, ... ,h1

hr, ... ,h1

hn... ,hr+1 ,

hr+1 ... , hn
n

.
X

himax( )
X

hi

r

 i=1
max( )

i=r+1
g   =

X  i=1

bucket (X)  =   

<hX gX

h   = max h i

n

},{

{ } { , }

� Complexity decrease:

O(en)! O(er) +O(en�r)



Approx-mpe(i)
[Dechter and Rish, 1997]

i - max number of variables in a mini-bucket

Input: A Belief network P = fP1; :::; Png
Output: upper and lower bounds on MPE

1. Initialize: Partition into buckets.

2. Process buckets from last to �rst:

MPE( )Upper bound

h B (D,A)

h B (E,C)

Dh (A)hE(A)

max
B

h C(E,A)

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

Mini-buckets

in a mini-bucket
Max variables

Complexity

O ( exp(3) )

U  =

P(C|A)

P(A)

P(E|B,C)    P(D|A,B)   P(B|A)

E = 0

3

3

2

2

1

3. Forward: Assign values in ordering d

Lower bound = P(solution).



About approx-mpe(i)

� Complexity:
O(exp(2i)) time and O(exp(i)) space.

� Accuracy:
determined by Upper bound/Lower bound ratio.

As i increase, accuracy increases.

� Applications:
� As an anytime algorithm.

� As heuristics in Best-First Search.

� Other probabilistic tasks:
mini-bucket idea can be used for approximate be-

lief updating, �nding MAP and MEU [Dechter and

Rish,1997].



Anytime Approximations

anytime-mpe(�)

1. Initialize: i= 1.

2. While computation resources are available

3. Increase i

4. U  upper bound of approx-mpe(i)

5. L lower bound of approx-mpe(i)

6. Retain best solution so far

7. If U=L � �, return solution

8. end-while

9. Return current maximum mpe.

anytime-mpe(1) is an exact algorithm.

It can be orders of magnitude faster than elim-mpe.



Best-First Search

� Mini-bucket records upper-bound heuristics.

� The evaluation function over �xp = (x1; :::; xp):

f(�xp) = g(�xp) � h(�xp)

g(�xp) = �
p�1
i=1

P (xijxpai)

h(�xp) = �hj2bucketp
hj

Best-First:
Expand a node with maximal evaluation function.

Properties:
� An exact algorithm.

� Better heuristics lead to more pruning.



Approximate Elimination for
Belief Updating

� elim-bel is similar to elim-mpe where maximization

is replaced by summation [UAI-96].

� Approximation idea:

sum of products � product of sums, i.e.

X

Xp

�
j

i=1�i � �
j

i=1

X

Xp

�i

Even better: bound by max

X

Xp

�
j

i=1
�i �

X

Xp

�1 � �
j

l=2
max
Xp

�l

We can use min or mean, instead of max, yielding lower

bounds and a mean value.

� approx-bel-max(i):

Generates an upper bound to joint belief.

Complexity: O(exp(2i)).



Empirical Evaluation

Test Problems:

� CPCS networks

� Uniform random networks

� Random noisy-OR networks

� Probabilistic decoding

Algorithms:

� elim-mpe

� approx-mpe(i)

� anytime-mpe(�)



CPCS Networks

cpcs360 - 360 binary nodes, 729 edges

cpcs422 - 422 binary nodes, 867 edges

Evidence (E) = 0, 2, and 10 nodes

anytime-mpe(1) performance:
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cpcs360
cpcs422

anytime-mpe(1) versus elim-mpe

Time (sec)
Algorithm cpcs360 cpcs422

E = 0 E = 10 E = 0 E = 2
anytime-mpe(1) 33.5 108 68.6 234.8

elim-mpe 443.8 263.6 > 405.6 > 416.3

� anytime-mpe(1) is 100% accurate
� 2-3 orders of magnitude more e�cient than elim-mpe
� exact elim-mpe ran out of memory on cpcs422;
anytime-mpe(1) found exact solution in < 70 sec.



Noisy-OR Networks

Random noisy-OR generator:

Random graph: n nodes, e edges.

Noisy-OR P(xjpa(x)) is de�ned by noise q:

link probability P(x = 1jpai(x) = 1) = 1� q;

leak probability P(x = 1j8ipai(x) = 0) = 0:

Results on (50 nodes, 150 edges)-networks

10 evidence nodes, 200 instances

� elim-mpe ran out of memory;

approx-mpe(i) time: from 0.1 sec for i = 9 to 80 sec for i = 21.

� Accuracy increases with q ! 0, 100 % for q = 0 (Figure (a)).

� U/L is extreme: either really good (=1) or really bad (> 4);

U/L becomes less extreme with increasing noise q (Figure (b)).
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Random Networks

Random graphs (n nodes, e edges) and uniform random P(xjpa(x)).

approx-mpe(12)

60 nodes, 90 edges, 200 instances

[�� 1; �] i Lower bound Upper bound
M/L % Mean Te=Ta U/M % Mean Te=Ta

[1;2] 12 85.5 24.4 81 23.5
[2;3] 12 11.5 29.7 13.5 29.1
[3;4] 12 0.5 11.4 5 37.3
[4;1] 12 2.5 21.1 0.5 14.0

� In � 80% of cases, approx-mpe is more e�cient by

1-2 orders of magnitude while achieving accuracy factor

of at least 2.

30 nodes, 80 edges, 200 instances

[�� 1; �] i Lower bound Upper bound
M/L % Mean Te=Ta U/M % Mean Te=Ta

[1;2] 12 51 41.3 29 27.0
[2;3] 12 15 41.3 32 50.5
[3;4] 12 11 69.2 17 45.4
[4;1] 12 23 44.5 22 60.6

� approx-mpe e�ectiveness decreases with increasing den-

sity.

� Lower bound is usually closer to MPE than the Upper

bound

|||||

Notation:

M/L% = % of instances s.t. MPE value / Lower Bound 2 [��1; �]

U/M% = % of instances s.t. Upper Bound / MPE value 2 [��1; �]

Mean Te=Ta = Mean value of elim-mpe time/approx-mpe time (

Te=Ta) on the instances s.t. M/L (or U/M) 2 [�� 1; �]



Probabilistic Inference:
Iterative Belief Propagation

(IBP)

Pearl's belief propagation (BP) algorithm records only

unary dependencies. BP is exact for poly-trees.

Approximation scheme:

Iterative application of BP to a cyclic network.

Recent empirical results:

IBP is surprisingly successfull for probabilistic decoding

(state-of-the art decoder).



Probabilistic Decoding

Goal:

Reliable communication over a noisy channel

Technique:
Error-correcting codes

U = (u1; :::; uk) - input information bits

X = (x1; :::; xn) - additional code bits

Codeword (U;X) (channel input) is transmitted trough
a noisy channel.

Result: real-valued channel output Y .

Decoding task: given Y , �nd U 0 s.t.:

1. (block-wise decoding)

u0 = argmaxu P (ujy), or

2. (bit-wise decoding)

u�
k
= argmaxu

k
P (ukjy); 1 � k � K.



Bayesian Network
Representation

Linear block code:

x x x x x

u u u u u0 1 2 3 4

0 1 2 3 4

y y y y y

y y y y y

u u u u u
0

0

1 2 3 4

1 2 3 4
x x x x x

Problem parameters:

k - the number of the input information bits;

n - the number of code bits;

p - the number of parents of each code bit;

� - the noisy channel parameter (Gaussian noise).

Encoding: parity check (pairwise XOR)

x = u1 � u2 � ::: � um, where ui are parents of x, and �
is summation modulo 2 (XOR).



Structured Low-w� Codes

Error measure: the bit error rate (BER).

Approx-mpe(i) outperforms iterative belief propagation

(IBP(I), I is the number of iterations) on structured

problems with small parent set size:
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(c) (d)

BER for exact elim-mpe and approximate IBP(1), IBP(10), approx-

mpe(1) and approx-mpe(7) (1000 instances per point). Structured

block codes with R=1/2 and (a) K=25, P=4, (b) K=50, P=4,

(c) K=25, P=7, and (d) K=25, P=7. The induced width of the

networks was 6 for (a) and (b), and 12 for (c) and (d).



Random (high-w�) Codes and
Hamming Codes

On the other hand, IBP outperforms approx-mpe(i) on

random problems (high w�) and on Hamming codes:
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(b) (c)

BER for exact elim-mpe and approximate IBP(1), IBP(5), approx-

mpe(1) and approx-mpe(7) (10000 instances per point). Random

block codes with R=1/2 and (a) K=50, P=4, and Hamming codes

with (b) K=4, N=7 and (c) K=11, N=15. w
� of Hamming net-

works was (a) 3 and (b) 9, respectively, while w
� of the random

networks was � 30.



Summary

� CPCS networks:

approx-mpe(i) �nds MPE for low i )
anytime-mpe(1) outperforms elim-mpe (often by 1-2 or-

ders of magnitude)

� Noisy-OR networks:

approx-mpe(i) is more accurate than on random prob-

lems, especially for q ! 0

� Random networks:

approx-mpe(i) is not very e�ective, especially with in-

creasing network density

� Coding networks:

approx-mpe(i) outperforms iterative belief propagation

on low-w� structured networks, but the opposite results

are observed on high-w� random coding networks.
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Decision-Theoretic Planning

Example: Robot Navigation

State = f Location, Cluttered, Direc-

tion, Batteryg

Actions = fNorth; South;West; Eastg

Probability of Success = P

Task: reach the goal ASAP
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L
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Dynamic Belief Networks
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Markov Decision Process

� x = fx1; :::; xng - state, D - domain, 
x = Dn - state

space

� a = fa1; :::; amg - action, Da - domain, 
a = Dn
a -

action space

� P a
xy - transition probabilities

� r(x; a) - reward of taking action a in state x

� N - number of time slices

Problem: Find optimal policy

1. Finite-horizon MDP (N <1)

� = (d1; :::; dN); dt : 
x ! 
a

2. In�nite-horizon MDP (N =1)

� : 
x ! 
a

Criterion:

maximum expected total (discounted) reward

max
�

V�(x) = r(x; �(x)) + �
X

y2
X

P (yjx; �(x))V�(y):



Dynamic Programming:
Elimination

Optimality Equation:

V (xt) = max
at

[r(xt; at) +
X

xt+1

P (xt+1jxt; at)]V t+1;

V N = rN(xN ):

Complexity:

O(N j
ajj
X j
2) = O(N jDaj

mjDj2n).

X1
1

X3
1

X2

X1
2

X2
2

X3

t = 0 t = 1 t = 2

1

2

X0 X1 X3

X0
1

0X2
0X3

1
21

1 1
2

2
2

a
a

a
a

Decomposability :

r(xt; at) =
P

n

i=1 ri(x
t

i
; at

i
)

P (xtjxt�1; at�1) =
Q
n

i=1P (x
t

i
jpa(xt

i
))



Bucket Elimination
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Complexity: O(exp(w�))



Elim-meu

Input: A belief network fP1; :::; Png; decision vari-

ables D1; :::; Dk.

Output: d1; :::; dk, maximizing expected utility.

1. Initialize: Partition probability and utility ma-

trices �1; :::; �j, �1; :::; �l.
2. Backward: For p= n to 1 do

for �1; :::; �j; �1; :::; �l in bucketp do
� If (observed variable), assign Xp = xp.
� Else,

�p =
P

Xp
�i�i

�p =
1

�p

P
Xp

�
j

i=1
�i
P

l

j=1 �j,

Add �p and �p to their buckets.

3. Forward: Assign values in ordering o using in-

formation in buckets.



Elimination and Conditioning

1. Finite-horizon MDPs:

Dynamic Programming = elimination along tempo-

ral ordering (N slices).

2. In�nite-horizon MDPs:

Value Iteration = elimination along temporal order-

ing (iterative)

Policy Iteration = conditioning on Ai, elimnation on

Xj (iterative).

3. Bucket elimination: \non-temporal" orderings.

Complexity O(exp(w�)); n � w� � 2n
+

Further research: conditioning; approximations.


