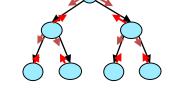
Algorithms for Reasoning with Probabilistic Graphical Models

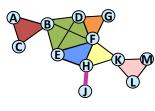
International Summer School on Deep Learning July 2017

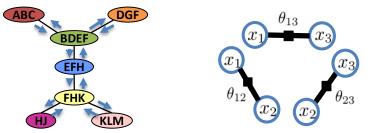
Prof. Rina Dechter Prof. Alexander Ihler

Outline of Lectures

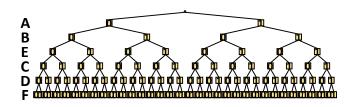
• Class 1: Introduction and Inference

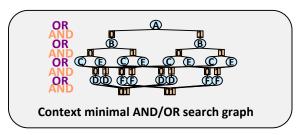




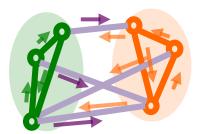


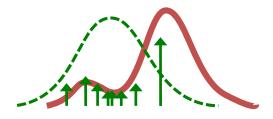
Class 2: Search





Class 3: Variational Methods and Monte-Carlo Sampling

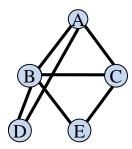


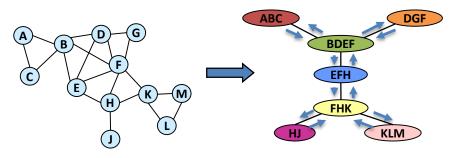


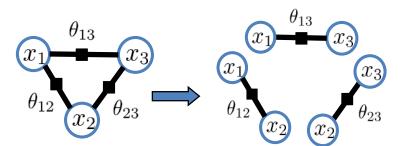
Dechter & Ihler

RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2

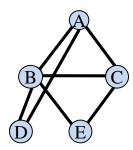


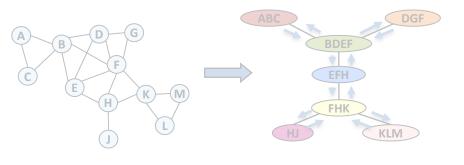


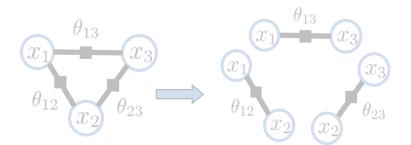


RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2

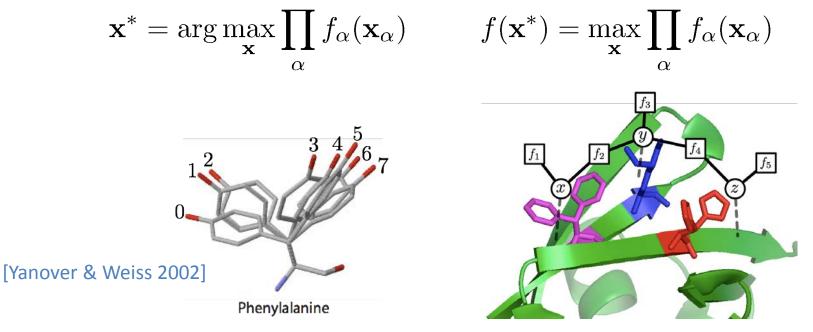






- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence
- Examples & Tasks
 - Maximization (MAP): compute the most probable configuration



Dechter & Ihler

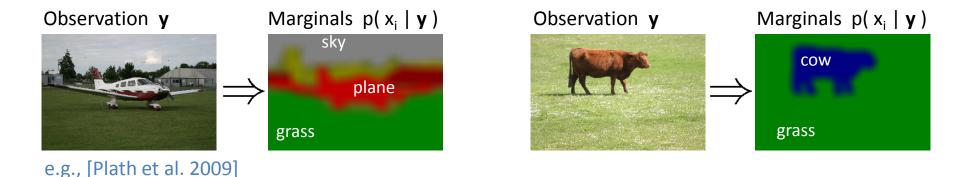
DeepLearn 2017

- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence
- Examples & Tasks
 - Summation & marginalization

"partition function"

$$p(x_i) = rac{1}{Z} \sum_{\mathbf{x} \setminus x_i} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$
 and

 $Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

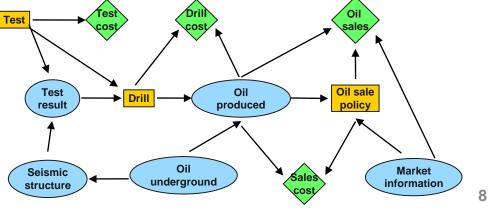


- Describe structure in large problems
 - Large complex system F(X)
 - Made of "smaller", "local" interactions $f_{lpha}(x_{lpha})$
 - Complexity emerges through interdependence
- Examples & Tasks
 - Mixed inference (marginal MAP, MEU, ...)

$$f(\mathbf{x}_{M}^{*}) = \max_{\mathbf{x}_{M}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$$

Influence diagrams & optimal decision-making

(the "oil wildcatter" problem) e.g., [Raiffa 1968; Shachter 1986]



Dechter & Ihler

DeepLearn 2017

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{--variables}$ $D = \{D_1, \dots, D_n\} \quad \text{--domains} \quad \text{(we'll assume discrete)}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \text{--functions or "factors"}$ Example: $A \in \{0, 1\}$ $B \in \{0, 1\}$ $C \in \{0, 1\}$ $f_{AB}(A, B), \quad f_{BC}(B, C)$

and a combination operator

The *combination operator* defines an overall function from the individual factors, e.g., "+" : $F(A, B, C) = f_{AB}(A, B) + f_{BC}(B, C)$

Notation:

Discrete Xi values called states

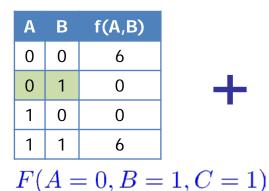
Tuple or configuration: states taken by a set of variables Scope of f: set of variables that are arguments to a factor f often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha})$, $X_{\alpha} \subseteq X$

A graphical model consists of: $A \in \{0, 1\}$ $X = \{X_1, \dots, X_n\}$ -- variables $B \in \{0, 1\}$ $D = \{D_1, \dots, D_n\}$ -- domains (we'll assume discrete) $C \in \{0, 1\}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$ -- functions or "factors" $f_{AB}(A, B), f_{BC}(B, C)$

and a combination operator

$$F(A, B, C) = f_{AB}(A, B) + f_{BC}(B, C)$$

For discrete variables, think of functions as "tables" (though we might represent them more efficiently)



В	С	f(B,C)
0	0	6
0	1	0
1	0	0
1	1	6

Α	В	С	f(A,B,C)
0	0	0	12
0	0	1	6
0	1	0	0
0	1	1	6
1	0	0	6
1	0	1	0
1	1	0	6
1	1	1	12

Example:

= 0 + 6

Dechter & Ihler

Canonical forms

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{-- variables}$ $D = \{D_1, \dots, D_n\} \quad \text{-- domains}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \text{-- functions or "factors"}$

and a combination operator

Typically either multiplication or summation; mostly equivalent:

$$f_{\alpha}(X_{\alpha}) \ge 0$$
$$F(X) = \prod_{\alpha} f_{\alpha}(X_{\alpha})$$

 $\theta_{\alpha}(X_{\alpha}) = \log f_{\alpha}(X_{\alpha}) \in \mathbb{R}$ $\theta(X) = \log F(x) = \sum_{\alpha} \theta_{\alpha}(X_{\alpha})$

Sum of factors (costs, utilities, etc.)

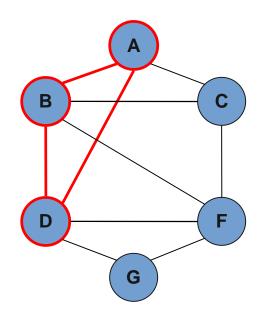
Graphical visualization

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{--variables}$ $D = \{D_1, \dots, D_n\} \quad \text{--domains}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \text{--functions or "factors"}$

and a combination operator

Primal graph: variables \rightarrow nodes factors \rightarrow cliques

 $F(A, B, C, D, F, G) = f_1(A, B, D) + f_2(D, F, G) + f_3(B, C, F) + f_4(A, C)$



Example: Map Coloring

 $X_i \in \{\textit{red}, \textit{green}, \textit{blue}\}$ $f_{ij}(X_i, X_j) = (X_i \neq X_j) \ \ \text{for adjacent regions i,j}$

Overall function is "and" of individual constraints: $F(X) = f_{01}(X_0, X_1) \land f_{12}(X_1, X_2) \land f_{02}(X_0, X_2) \land \dots$

"Tabular" form:

$$f_{ij}(X_i, X_j) = \begin{cases} 1.0 & X_i \neq X_j \\ 0.0 & X_i = X_j \end{cases}$$
$$F(X) = \prod_{ij} f_{ij}(X_i, X_j) = \begin{cases} 1.0 & \text{all valid} \\ 0.0 & \text{any invalid} \end{cases}$$

Tasks: "max": is there a solution? "sum": how many solutions?

Dechter & Ihler

			x_3 x_4 x_5 x_6
Xo	X ₁	f(X ₀ ,X ₁)	
0	0	0	
0	1	1	
0	2	1	
1	0	1	
1	1	0	
1	2	1	
2	0	1	
2	1	1	
2	2	0	13

 \wedge

DeepLearn 2017

Example: Bayesian Networks

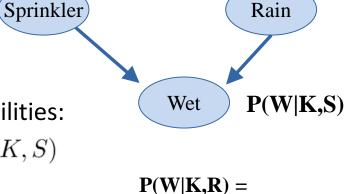
Random variables S,K,R,W S has states: {Fall, Winter, Spring, Summer} R, K, W have states: {True, False}

Overall function is product of conditional probabilities: $P(S, K, R, W) = P(S) \cdot P(K|S) \cdot P(R|S) \cdot P(W|K, S)$

Typical tasks:

Observe some variables' outcome Reason about the change in probability of others

"max": what's the most probable (MAP) state?
"sum": what's the probability it rained, given it's wet out?
 (sometime called a "belief")



P(S)

 $P(\mathbf{R}|\mathbf{S})$

Season

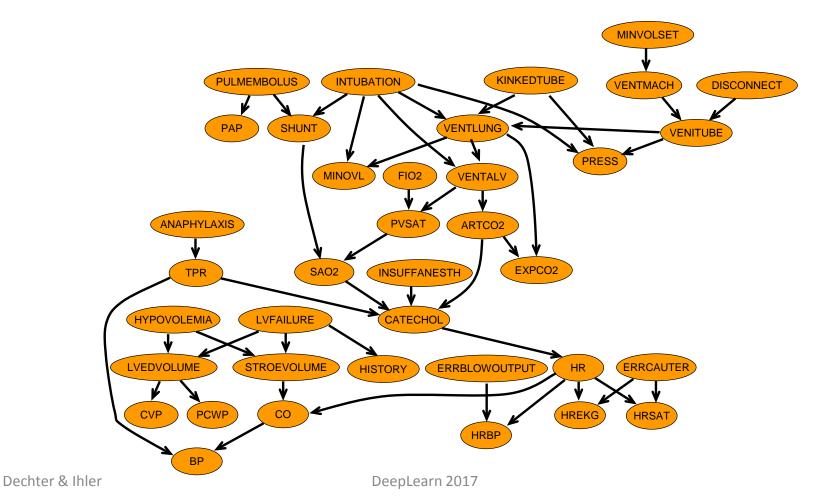
P(K|S)

K	R	W=0	W=1
0	0	1.0	0.0
0	1	0.2	0.8
1	0	0.1	0.9
1	1	0.01	0.99

Alarm network [Beinlich et al., 1989]

Bayes nets: compact representation of large joint distributions

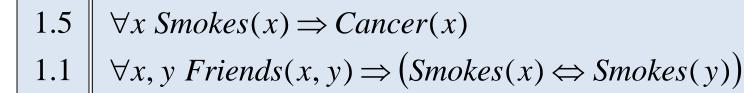
The "alarm" network: 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)

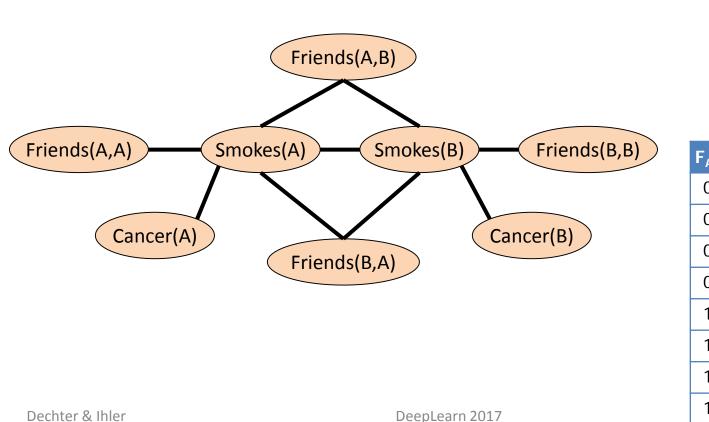


Example: Markov logic

Two constants: Anna (A) and Bob (B)

[Richardson & Domingos 2005]





$\mathbf{S}_{\mathbf{A}}$	C _A	$f(S_A, C_A)$
0	0	exp(1.5)
0	1	exp(1.5)
1	0	1.0
1	1	exp(1.5)

F _{AB}	S _A	S _B	f(.)
0	0	0	exp(1.1)
0	0	1	exp(1.1)
0	1	0	exp(1.1)
0	1	1	exp(1.1)
1	0	0	exp(1.1)
1	0	1	1.0
1	1	0	1.0
1	1	1	exp(1 ₁₆)

Example domains for graphical models

- Natural Language processing
 - Information extraction, semantic parsing, translation, topic models, ...
- Computer vision
 - Object recognition, scene analysis, segmentation, tracking, ...
- Computational biology
 - Pedigree analysis, protein folding and binding, sequence matching, ...
- Networks
 - Webpage link analysis, social networks, communications, citations,
- Robotics
 - Planning & decision making

Graphical visualization

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{-- variables}$ $D = \{D_1, \dots, D_n\} \quad \text{-- domains}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \text{-- functions or "factors"}$

and a combination operator

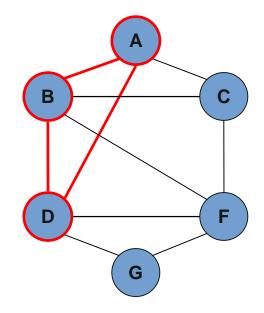
Primal graph:

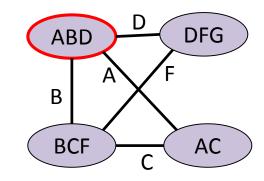
variables \rightarrow nodes factors \rightarrow cliques

 $F(A, B, C, D, F, G) = f_1(A, B, D) + f_2(D, F, G) + f_3(B, C, F) + f_4(A, C)$

Dual graph:

factor scopes \rightarrow nodes edges \rightarrow intersections (separators)

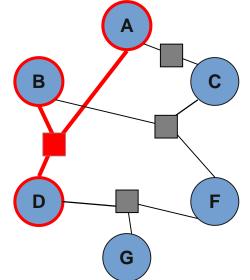




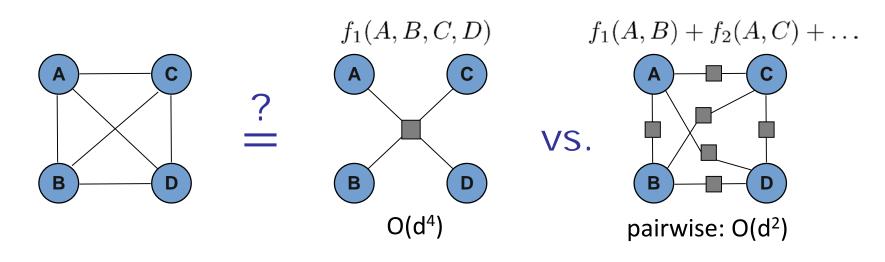
Graphical visualization

"Factor" graph: explicitly indicate the scope of each factor variables → circles factors → squares

$$F(A, B, C, D, F, G) = f_1(A, B, D) + f_2(D, F, G) + f_3(B, C, F) + f_4(A, C)$$



Useful for disambiguating factorization:



DeepLearn 2017

Ex: Boltzmann machines

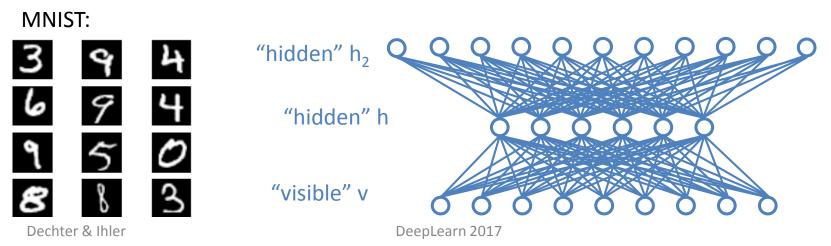
• Boltzmann machines:

$$p(x) = \frac{1}{Z} \exp\left[\sum_{i} a_{i}x_{i} + \sum_{ij} w_{ij}x_{i}x_{j}\right]$$
$$= \frac{1}{Z} \prod_{i} f_{i}(x_{i}) \prod_{ij} f_{ij}(x_{i}, x_{j})$$

X _i	f(X _i)
0	1.0
1	exp(a _i)

X _i	X _j	f(X _i ,X _j)
0	0	1.0
0	1	1.0
1	0	1.0
1	1	exp(w _{ij})

• Deep Boltzmann machines: $p(v, h_1, h_2) = \frac{1}{Z} \exp \left[\sum_{ij} w_{1ij} v_i h_{1j} + \sum_{jk} w_{2jk} h_{1j} h_{2k} + \dots \right]$



Graphical visualization

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{-- variables}$ $D = \{D_1, \dots, D_n\} \quad \text{-- domains}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \text{-- functions or "factors"}$

Operators:

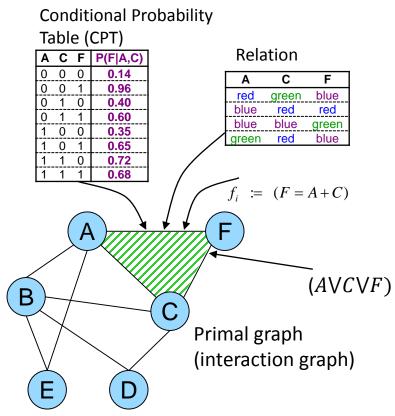
combination operator (sum, product, join, ...)

elimination operator

(projection, sum, max, min, ...)

Types of queries:

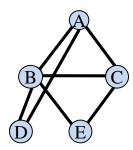
Marginal: $Z = \sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$ MPE / MAP: $f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$ Marginal MAP: $f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})$

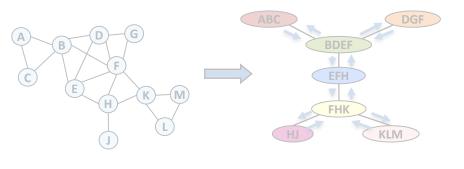


- All these tasks are NP-hard
 - exploit problem structure
 - identify special cases
 - approximate

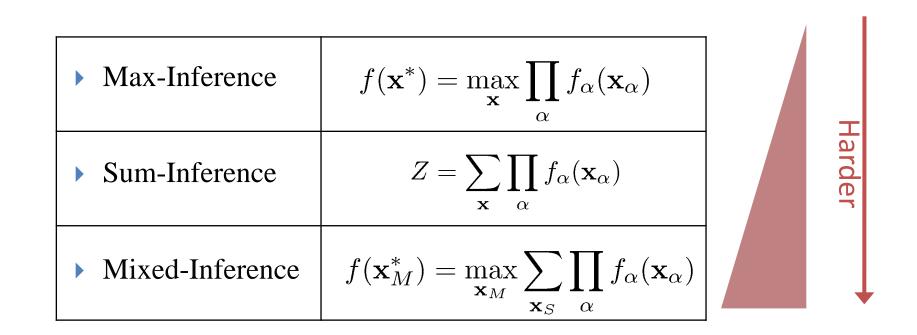
RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2



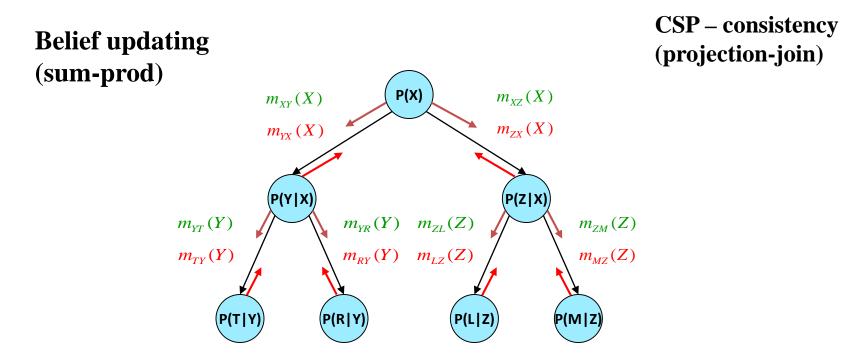


Types of queries



- **NP-hard**: exponentially many terms
- We will focus on **approximation** algorithms
 - Anytime: very fast & very approximate ! Slower & more accurate

Tree-solving is easy



MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory

Dechter & Ihler

DeepLearn 2017

Transforming into a Tree

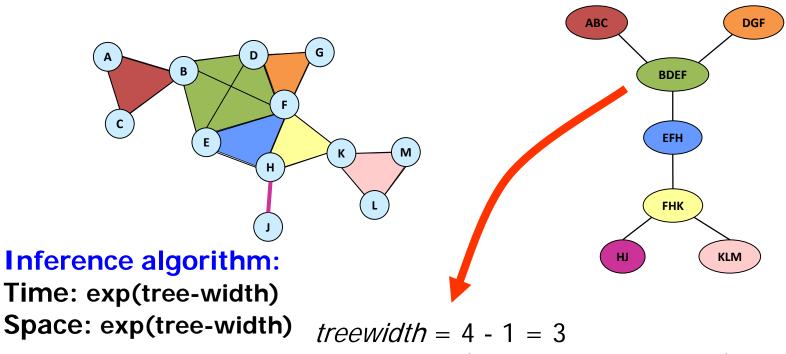
• By Inference (thinking)

 Transform into a single, equivalent tree of subproblems

• By Conditioning (guessing)

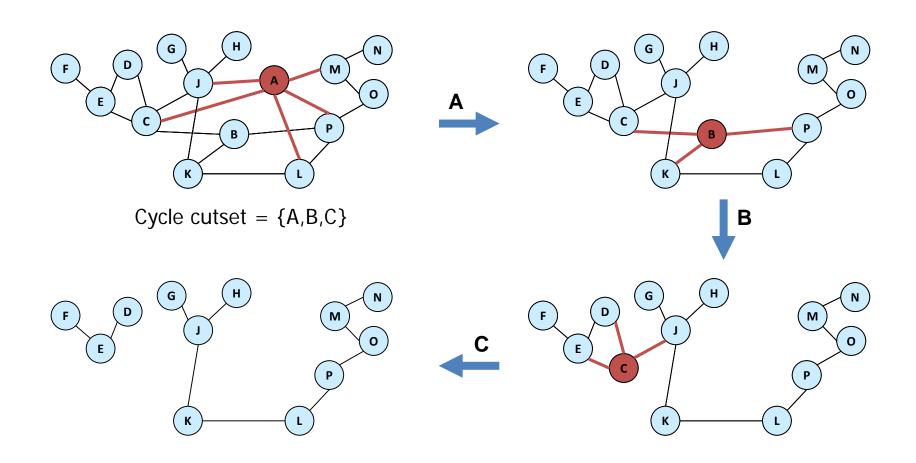
- Transform into many tree-like sub-problems.

Inference and Treewidth

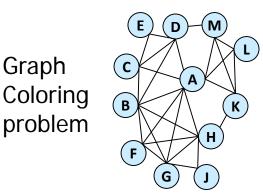


treewidth = (maximum cluster size) - 1

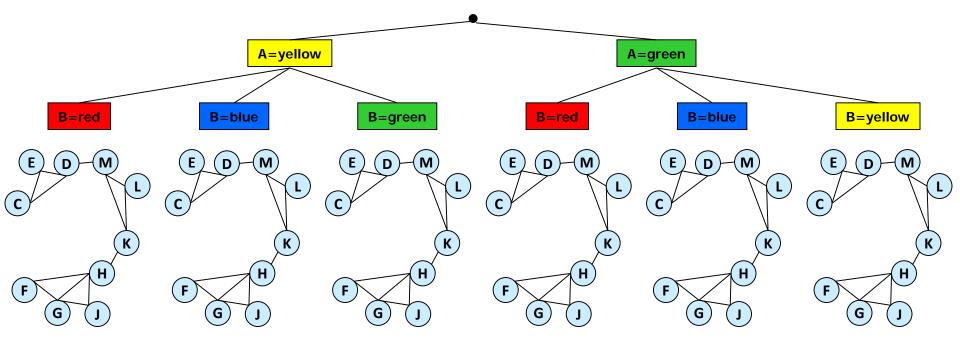
Conditioning and Cycle cutset



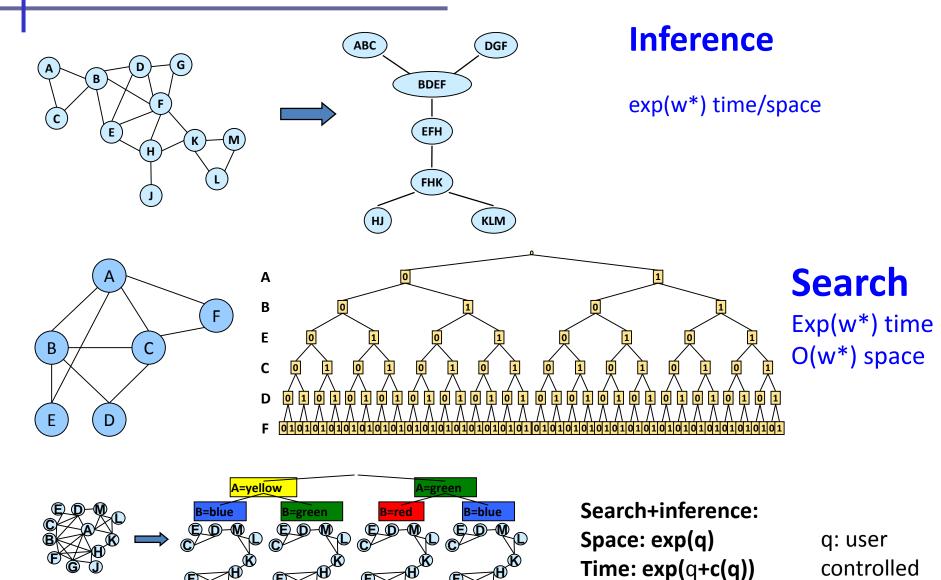
Search over the Cutset



- Inference may require too much memory
- Condition on some of the variables



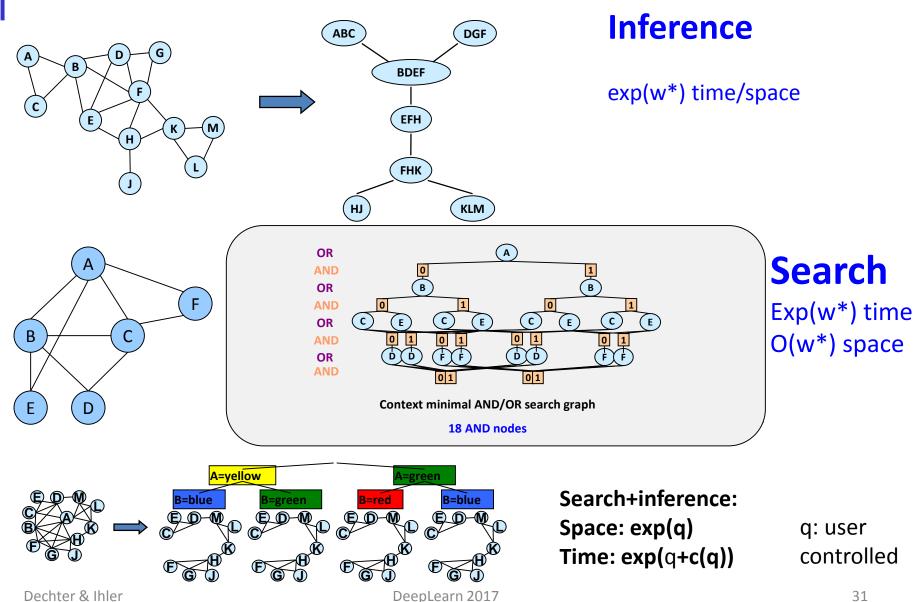
Bird's-eye View of Exact Algorithms



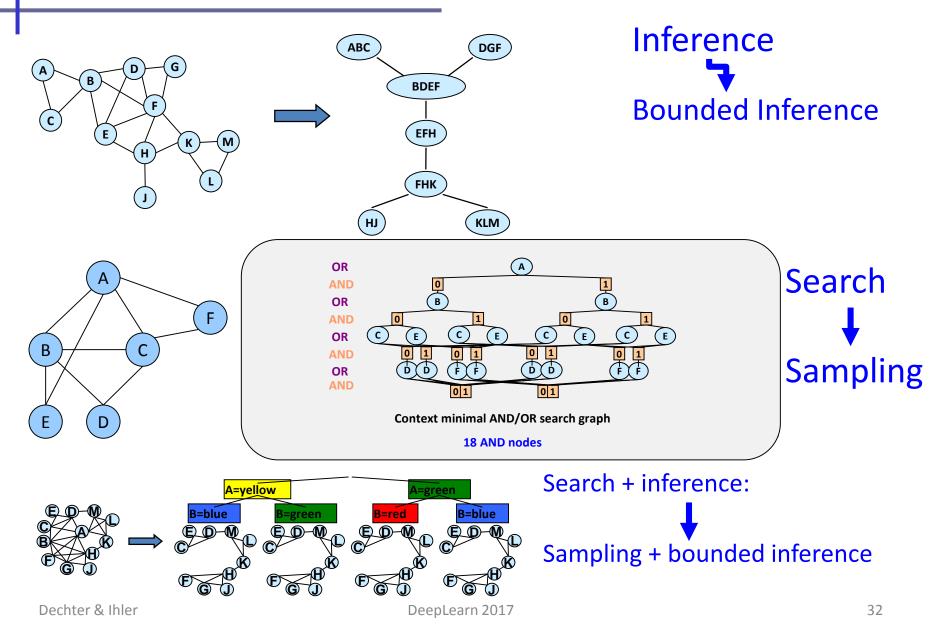
DeepLearn 2017

Dechter & Ihler

Bird's-eye View of Exact Algorithms



Bird's-eye View of Approximate Algorithms



The Conditioning and Elimination Operators

Conditioning on Observations

- Observing a variable's value
 - Reduces the scope of the factor

$$p(X) = \frac{1}{Z} \left[f_{12}(X_1, X_2) f_{13}(X_1, X_3) f_{24}(X_2, X_4) f_{34}(X_3, X_4) \right]$$

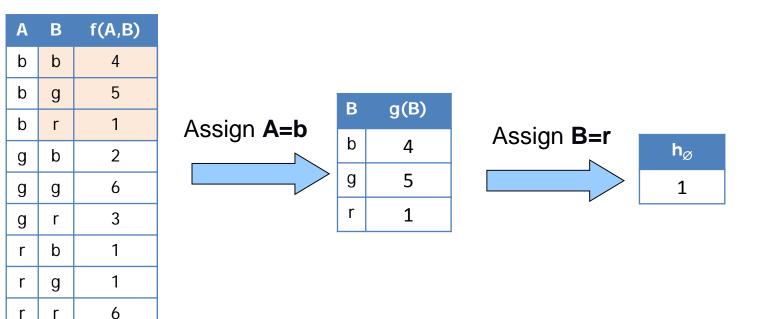
$$p(x_1, X_{2:4}) = \frac{1}{Z} \left[f_{12}(x_1, X_2) f_{13}(x_1, X_3) f_{24}(X_2, X_4) f_{34}(X_3, X_4) \right]$$

$$p(X_{2:4} | x_1) = \frac{1}{Z'} \left[g_2(X_2) \cdot g_3(X_3) \cdot f_{24}(X_2, X_4) f_{34}(X_3, X_4) \right]$$

 x_2

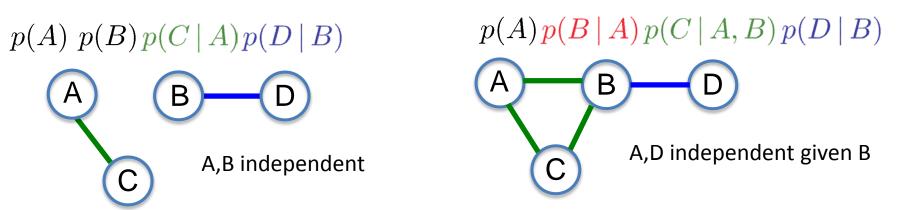
 x_1

Conditioning on Observations



Conditional independence

- Undirected graphs have very simple conditional independence
 - X conditionally independent of Y given Z?
 - Check all paths from X to Y
 - A path is "inactive" (blocked) if it passes through a variable node in Z
 - If no path from X to Y, conditionally independent
- Examples:



Markov blanket of X: set of variables directly connected to X

Combination of Factors

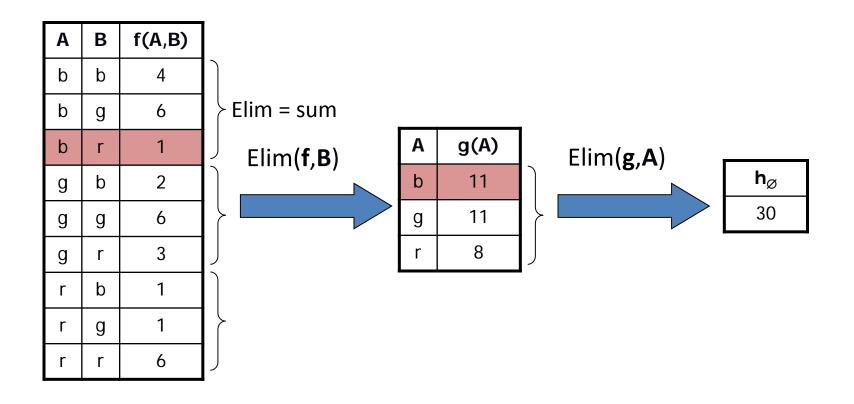
Α	В	f(A,B)
b	b	0.4
b	g	0.1
g	b	0
g	g	0.5

-	_			-
Α	В	С	f(A,B,C)	
b	b	b	0.1	
b	b	g	0	
b	g	b	0	
b	g	g	0.08	=
g	b	b	0	
g	b	g	0	
g	g	b	0	
g	g	g	0.4	

В	С	f(B,C)
b	b	0.2
b	g	0
g	b	0
g	g	0.8

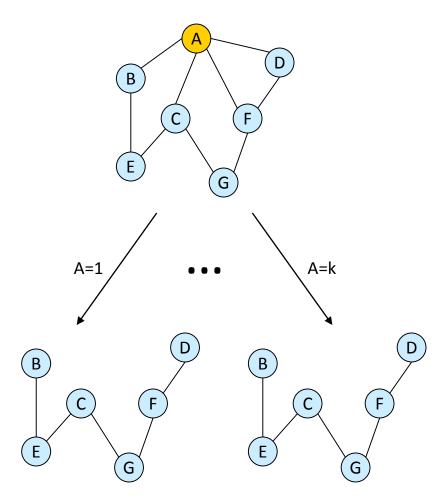
 $= 0.1 \times 0.8$

Elimination in a Factor

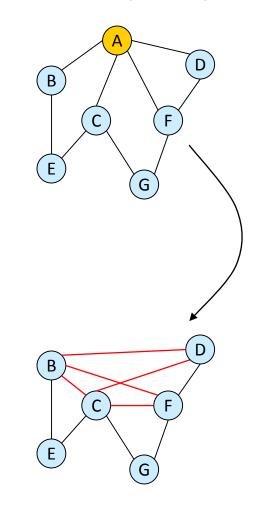


Conditioning versus Elimination

Conditioning (search)



k "sparser" problems Dechter & Ihler Elimination (inference)

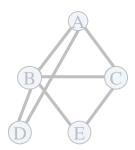


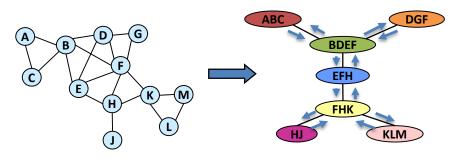
1 "denser" problem

DeepLearn 2017

RoadMap: Introduction and Inference

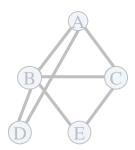
- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2

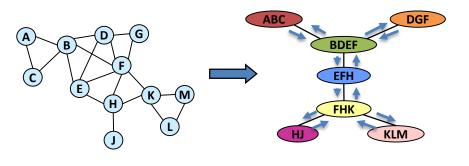




RoadMap: Introduction and Inference

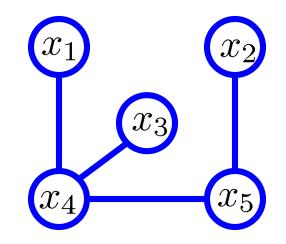
- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2





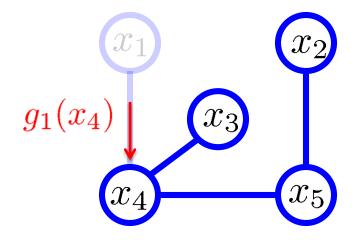
(Use distributive rule to calculate efficiently:)

 $= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$



(Use distributive rule to calculate efficiently:)

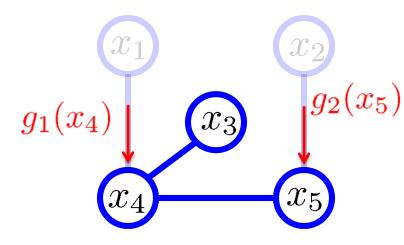
$$= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$$
$$= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$$



(Use distributive rule to calculate efficiently:)

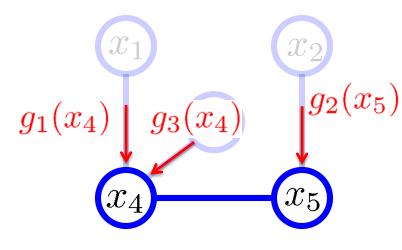
$$= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$$
$$= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$$

$$= \max_{x_4...x_5} f_{45} g_1(x_4) g_2(x_5) \left[\max_{x_3} f_{34} \right]$$



(Use distributive rule to calculate efficiently:)

- $= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$
- $= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$
- $= \max_{x_4...x_5} f_{45} g_1(x_4) g_2(x_5) \left[\max_{x_3} f_{34} \right]$
- $= \max_{x_5} \ g_2(x_5) \ \left[\max_{x_4} f_{45} \ g_1(x_4) \ g_3(x_4) \right]$



(Use distributive rule to calculate efficiently:)

 $\max_{x_1...x_5} f_{14} f_{25} f_{34} f_{45}$

- $= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$
- $= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$
- $= \max_{x_4...x_5} f_{45} g_1(x_4) g_2(x_5) \left[\max_{x_3} f_{34} \right]$
- $= \max_{x_5} g_2(x_5) \left[\max_{x_4} f_{45} g_1(x_4) g_3(x_4) \right]$

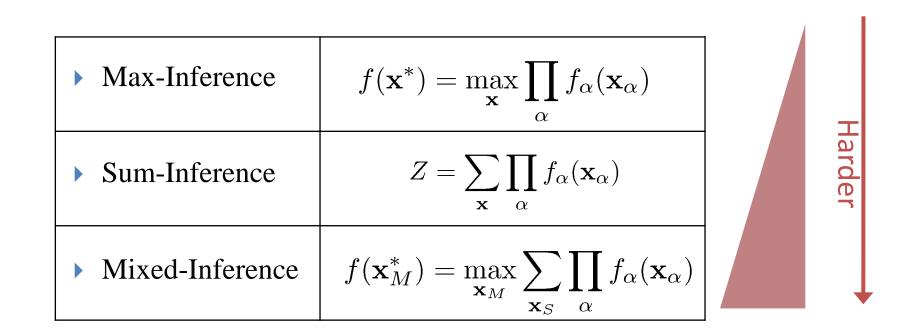
 $\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \hline \\ g_4(x_5) \end{array} \begin{array}{c} x_2 \\ g_2(x_5) \\ x_5 \end{array}$

 $= \max_{x_5} g_2(x_5) g_4(x_5)$

For trees:

Efficient elimination order (leaves to root); computational complexity same as model size

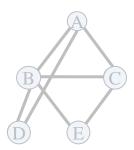
Types of queries

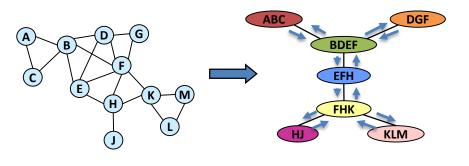


- **NP-hard**: exponentially many terms
- We will focus on **approximation** algorithms
 - Anytime: very fast & very approximate ! Slower & more accurate

RoadMap: Introduction and Inference

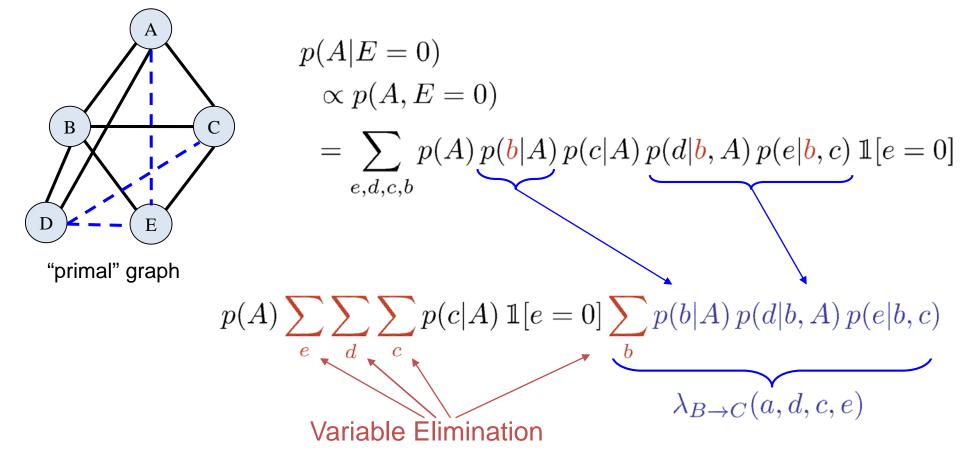
- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2



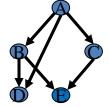


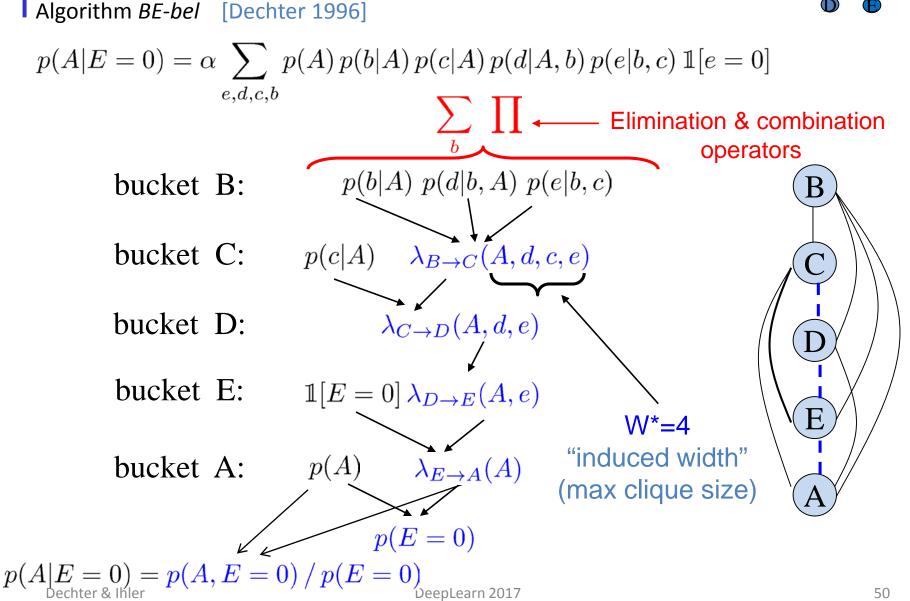
Belief Updating

• p(X | Evidence) = ?



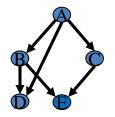
Bucket Elimination

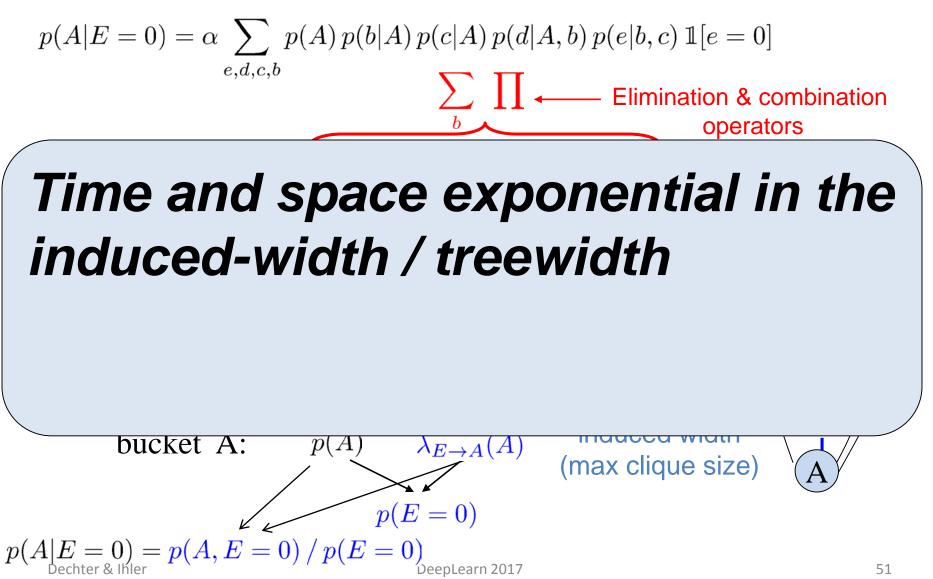


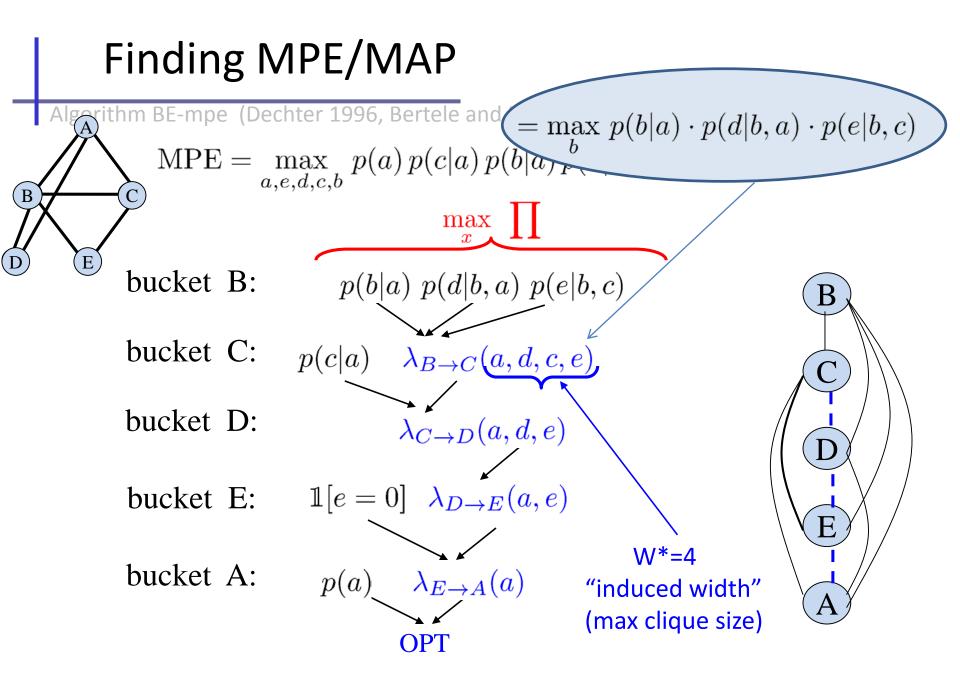


Bucket Elimination

Algorithm *BE-bel* [Dechter 1996]







Generating the Optimal Assignment

Given BE messages, select optimum config in reverse order

B:

C:

E:

$$\mathbf{b}^* = \arg \max_{b} p(b|a^*) p(d^*|b, a^*) p(e^*|b, c^*)$$
$$\mathbf{c}^* = \arg \max_{c} p(c|a^*) \lambda_{B \to C}(a^*, c, d^*, e^*)$$
$$\mathbf{d}^* = \arg \max_{d} \lambda_{C \to D}(a^*, d, e^*)$$
$$\mathbf{e}^* = \arg \max_{e} \mathbb{1}[e = 0] \lambda_{D \to E}(a^*, e)$$
$$\mathbf{a}^* = \arg \max_{a} p(a) \cdot \lambda_{E \to A}(a)$$

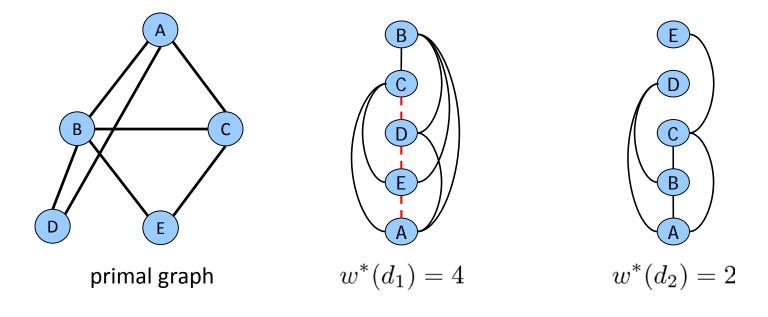
Return optimal configuration (a^{*},b^{*},c^{*},d^{*},e^{*})

B:
$$p(b|a) p(d|b,a) p(e|b,c)$$

C: $p(c|a) \qquad \lambda_{B \to C}(a, c, d, e)$
D: $\lambda_{C \to D}(a, d, e)$
E: $1[e = 0] \qquad \lambda_{D \to E}(a, e)$
A: $p(a) \qquad \lambda_{E \to A}(a)$
OPT = optimal value

Induced Width

- Width is the max number of parents in the ordered graph
- Induced-width is the width of the induced ordered graph: recursively connecting parents going from last node to first.
- Induced-width w*(d) is the max induced-width over all nodes in ordering d
- Induced-width of a graph, w* is the min w*(d) over all orderings d



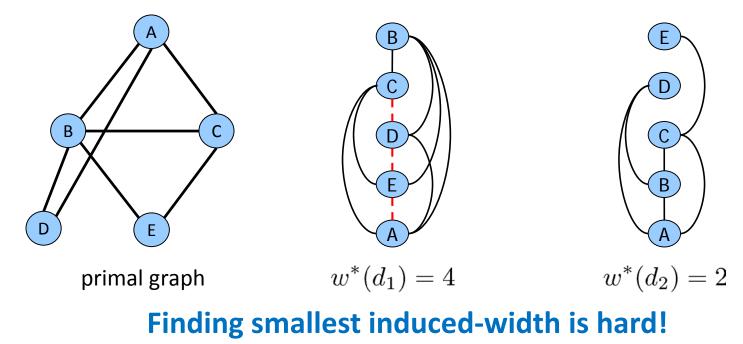
Complexity of Bucket Elimination

Bucket-Elimination is **time** and **space** $O(r \exp(w_d^*))$

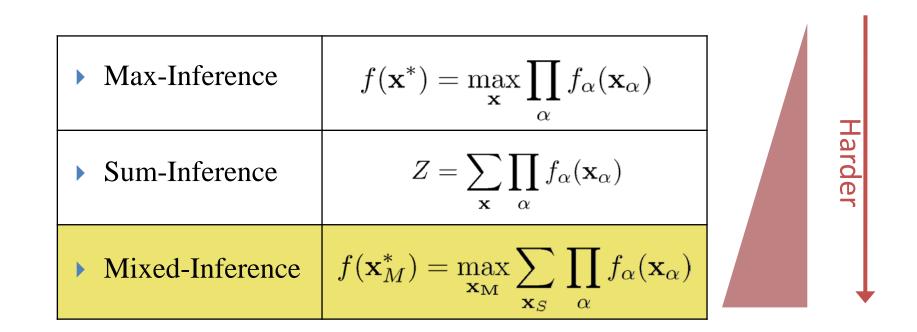
 $w_d^*\colon$ the induced width of the primal graph along ordering d

r = number of functions

The effect of the ordering:



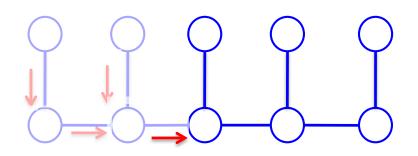
Types of queries



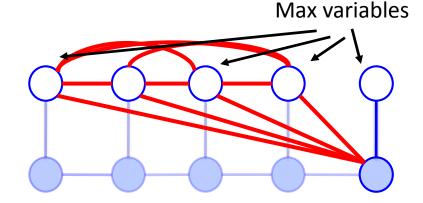
• **NP-hard**: exponentially many terms

Marginal MAP is not easy on trees

- Pure MAP or summation tasks
 - Dynamic programming
 - Ex: efficient on trees

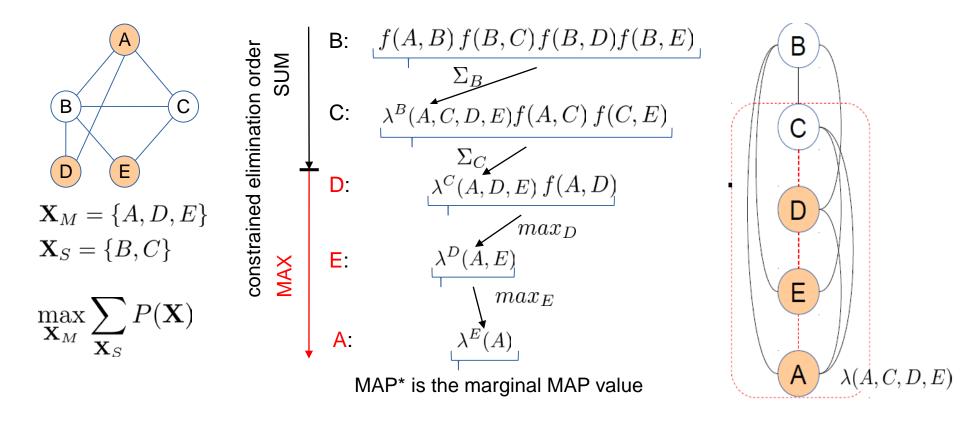


- Marginal MAP
 - Operations do not commute:
 - Sum must be done first!

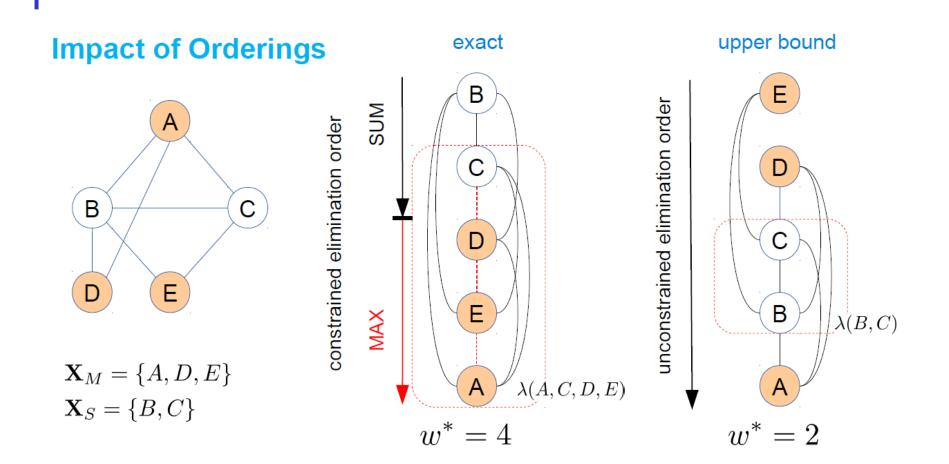


Bucket Elimination for MMAP

Bucket Elimination

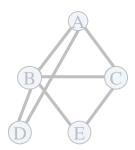


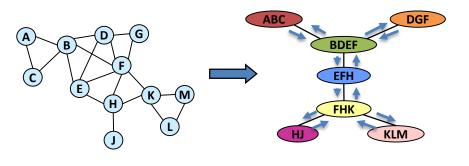
Bucket Elimination for MMAP



RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2

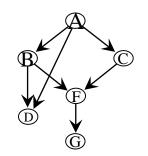


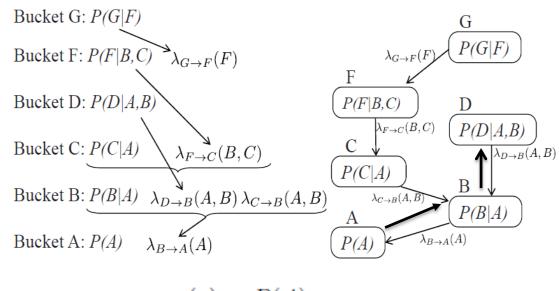


From BE to Bucket-Tree Elimination(BTE)

First, observe the BE operates on a tree.

Second, What if we want the marginal on D?



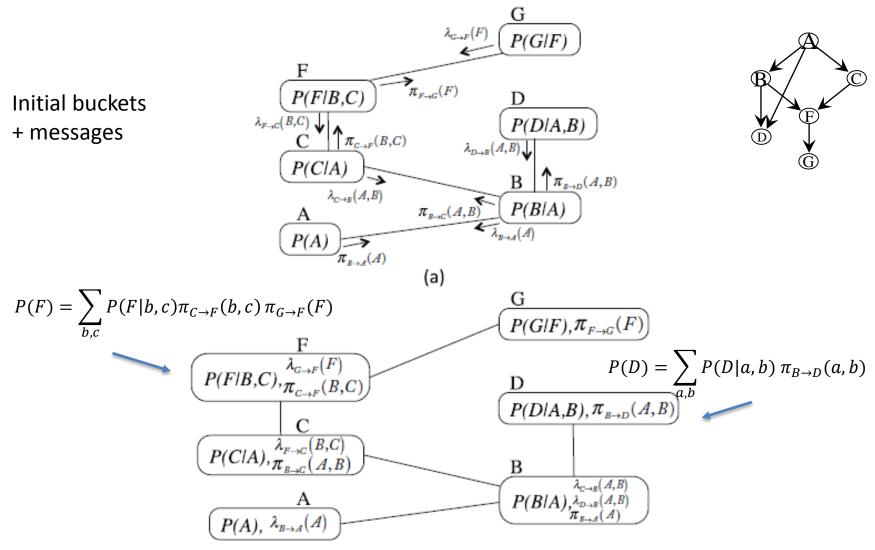


 $\pi_{A \to B}(a) = P(A),$ $\pi_{B \to D}(a, b) = p(b|a) \cdot \pi_{A \to B}(a) \cdot \lambda_{C \to B}(b)$

$$bel(d) = \alpha \sum_{a,b} P(d|a,b) \cdot \pi_{B \to D}(a,b).$$

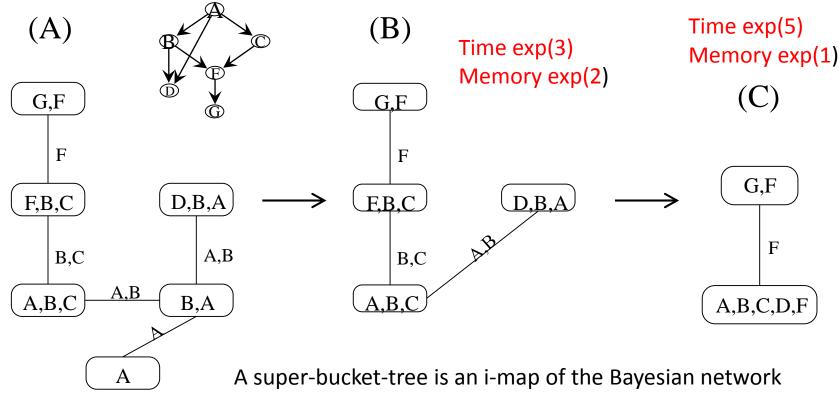
Dechter & Ihler

BTE: Allows Messages Both Ways



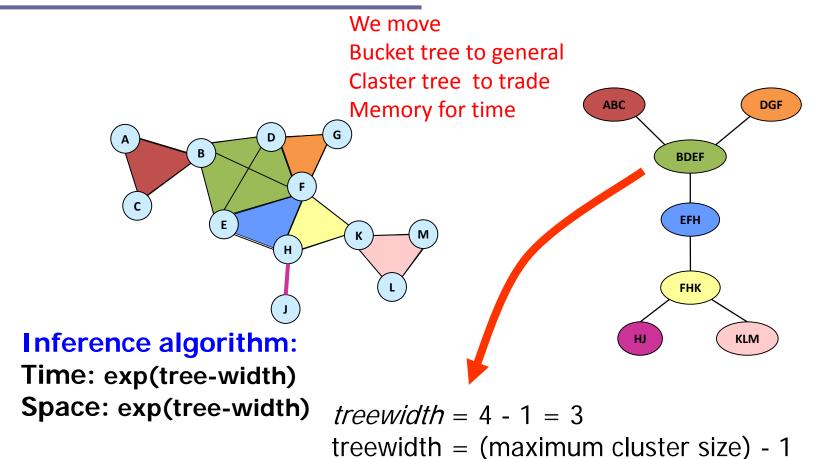
From Buckets to Clusters

- Merge non-maximal buckets into maximal clusters.
- Connect clusters into a tree: each cluster to one with which it shares a largest subset of variables.
- Separators are variable- intersection on adjacent clusters.

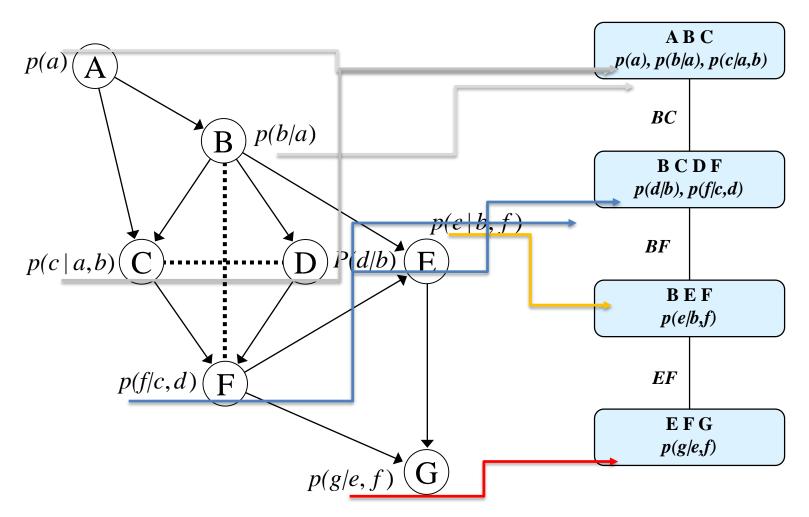


DeepLearn 2017

The General Tree-Decomposition



Example of a Tree Decomposition



Tree Decompositions

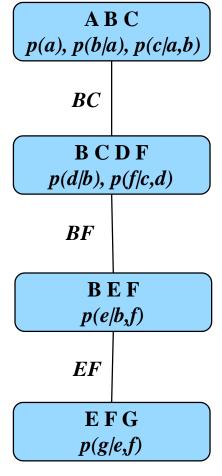
A *tree decomposition* for a graphical model $\langle X, D, P \rangle$ is a triple $\langle T, \chi, \psi \rangle$, where T = (V, E) is a tree and χ and ψ are labeling functions, associating with each vertex $v \in V$ two sets, $\chi(v) \subseteq X$ and $\psi(v) \subseteq P$ satisfying :

1. For each function $p_i \in P$ there is exactly one vertex such that

 $p_i \in \psi(v)$ and $scope(p_i) \subseteq \chi(v)$

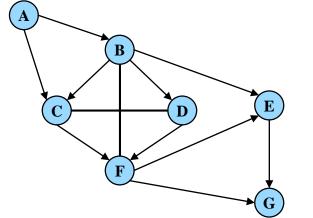
2. For each variable $X_i \in X$ the set $\{v \in V | X_i \in \chi(v)\}$ forms a

connected subtree (running intersection property)

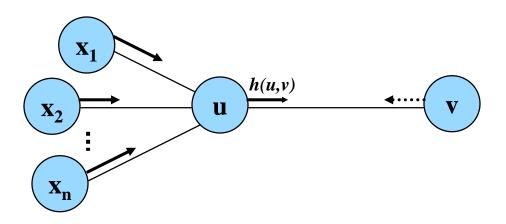


Tree decomposition

Connectedness, or Running intersection property



Message passing on a tree decomposition



cluster(*u*) = $\psi(u) \cup \{h(x_1, u), h(x_2, u), ..., h(x_n, u), h(v, u)\}$

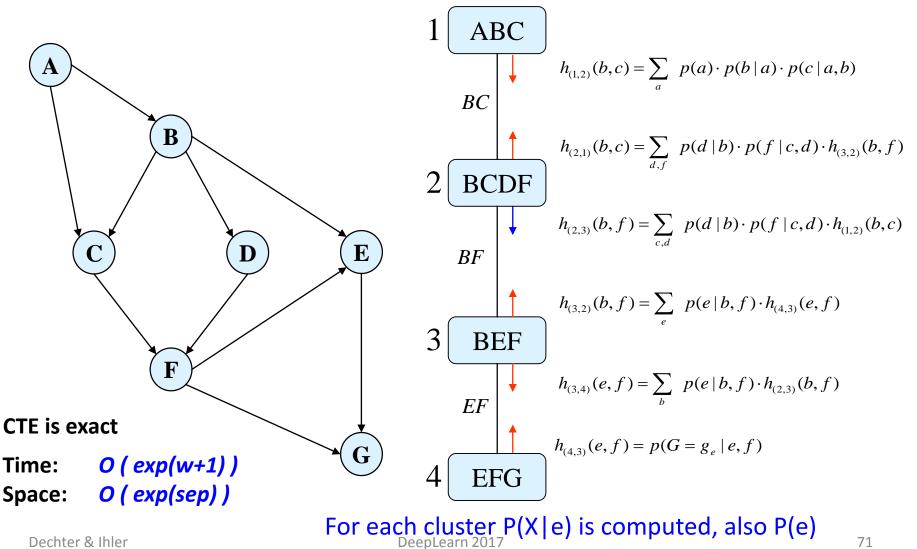
For max-product Just replace Σ With max.

Compute the message :

$$h(u, v) = \sum_{elim(u,v)} \prod_{f \in cluster(u) - \{h(v,u)\}} f$$

DeepLearn 2017

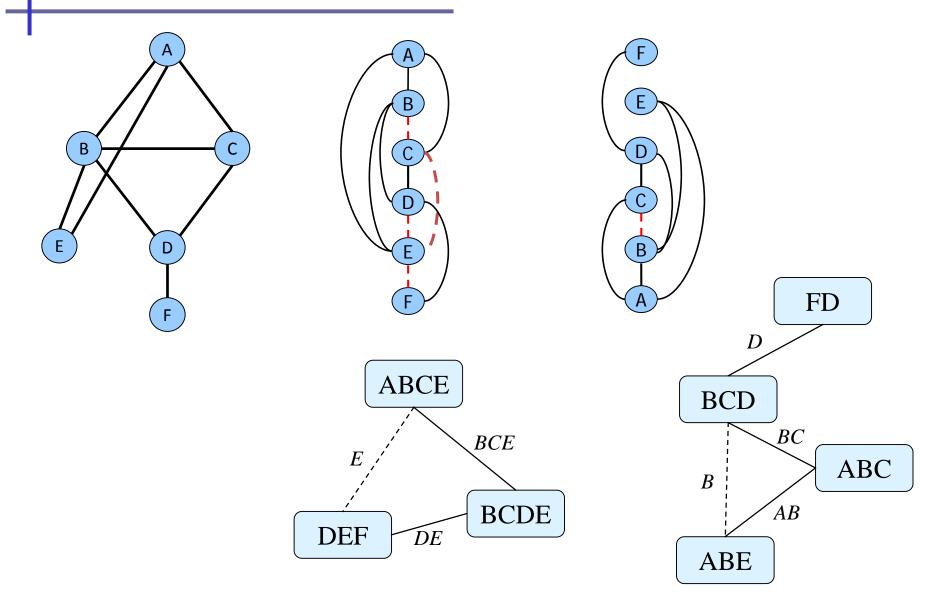
Cluster-Tree Elimination (CTE), or Join-Tree Message-passing



Dechter & Ihler

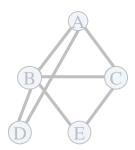
71

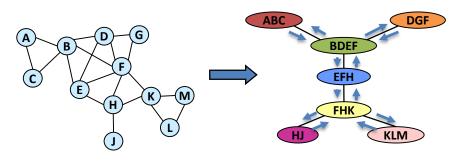
Examples of (Join)-Trees Construction



RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2





Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Greedy Orderings Heuristics

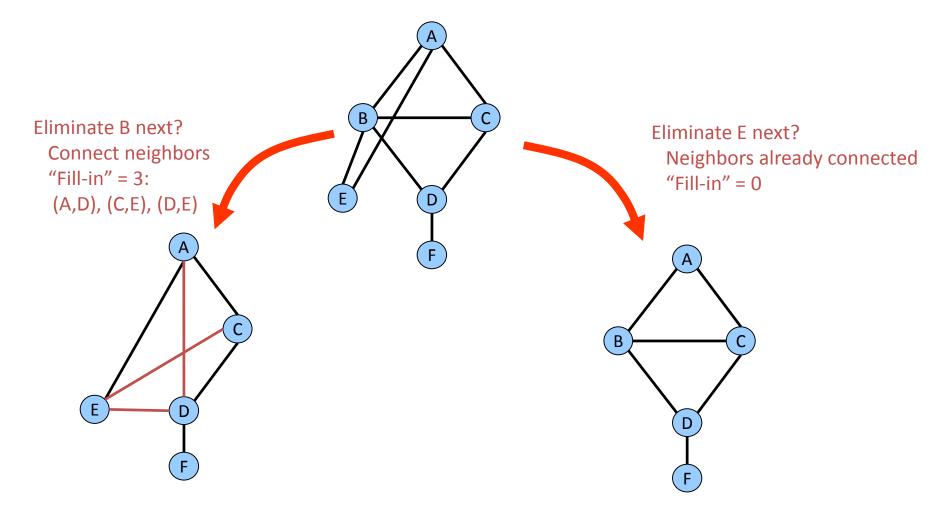
- Min-induced-width
 - From last to first, pick a node with smallest width
- Min-Fill

- From last to first, pick a node with smallest fill-edges

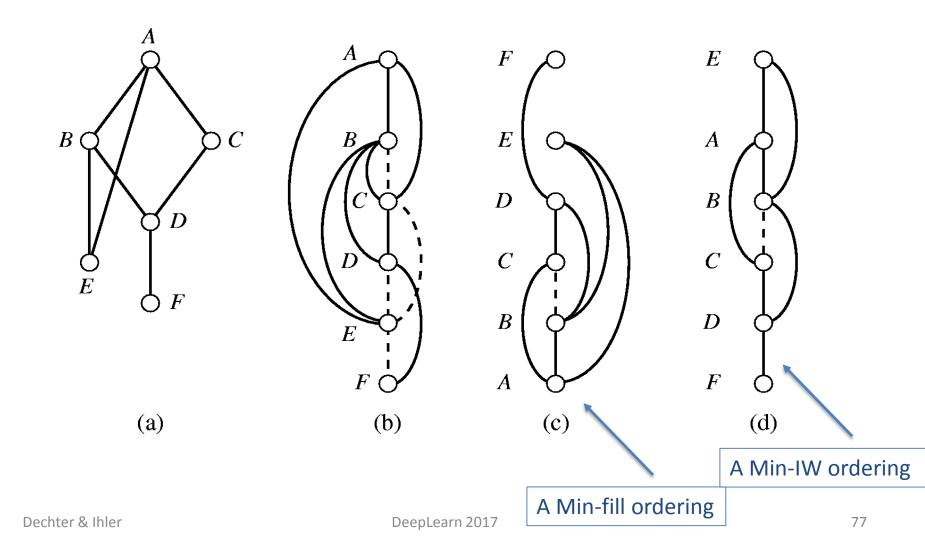
Complexity? $O(n^3)$

Min-Fill Heuristic

• Select the variable that creates the fewest "fill-in" edges

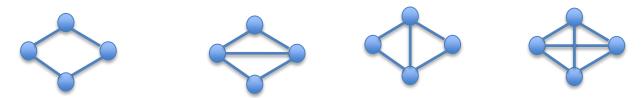


Different Induced Graphs



Chordal Graphs

• A graph is chordal if every cycle of length at least 4 has a chord



- Deciding chordality by max-cardinality ordering:
 - from 1 to n, always assigning a next node connected to a largest set of previously selected nodes.

- A graph along max-cardinality order has no fill-in edges iff it is chordal.
- The maximal cliques of chordal graphs form a tree

[Tarjan & Yanakakis 1980]

Greedy Orderings Heuristics

- Min-induced-width
 - From last to first, pick a node with smallest width
- Min-Fill
 - From last to first, pick a node with smallest fill-edges

Complexity? $O(n^3)$

- Max-cardinality search
 - From first to last, pick a node with largest neighbors already ordered.

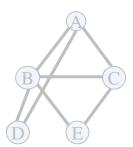
Complexity? O(n + m)

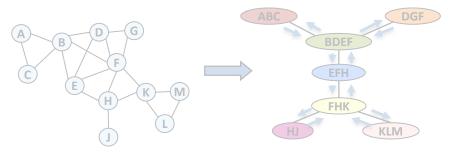
Summary Of Inference Scheme

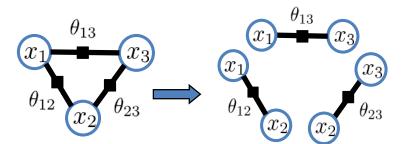
- Bucket elimination is time and memory exponential in the induced-width.
- Join-tree (junction tree) clustering is time O(exp(w*)) and memory O(exp(sep)).
- Bothe solve exactly all queries.
- Finding the w* is hard, but greedy schemes work quit well to approximate. Most popular is fill-edges
- W along d is induced-width. Best induced-width is treewidth.

RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2

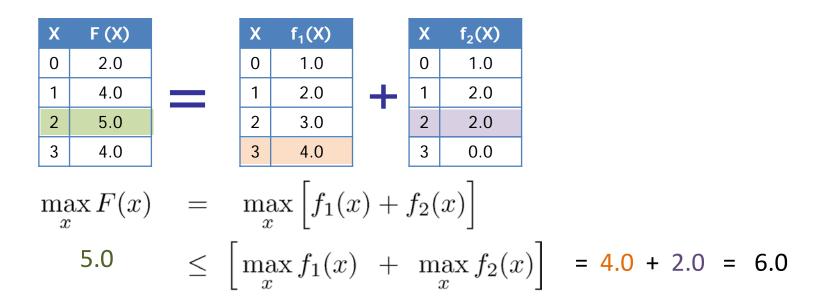






Decomposition bounds

- Upper & lower bounds via approximate problem decomposition
- Example: MAP inference $F(x) = f_1(x) + f_2(x)$



- Relaxation: two "copies" of x, no longer required to be equal
- Bound is tight (equality) if f_1 , f_2 agree on maximizing value x

Mini-Bucket Approximation

Split a bucket into mini-buckets —> bound complexity

bucket (X) =

$$\begin{cases} f_1, f_2, \dots f_r, f_{r+1}, \dots f_n \\ & \swarrow \\ & \swarrow \\ & \land \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ & : \\ &$$

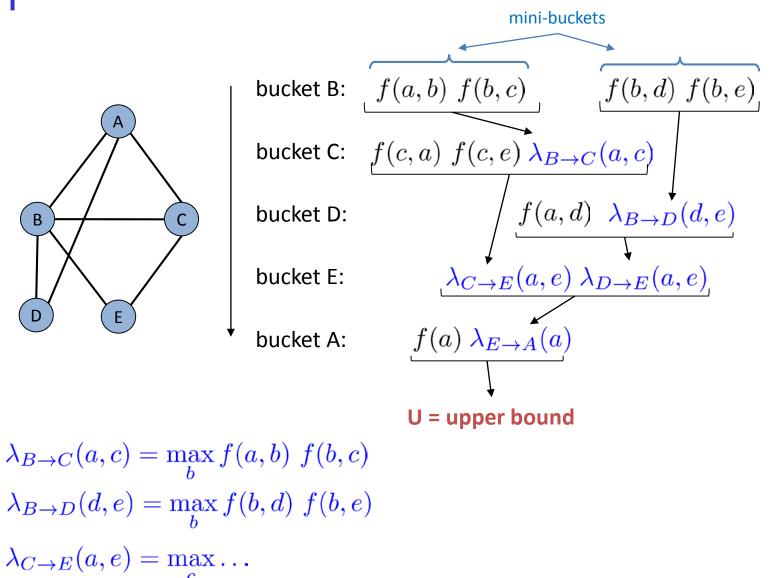
 $\lambda_X(\cdot) \leq \lambda_{X,1}(\cdot) \lambda_{X,2}(\cdot)$

Exponential complexity decrease: $O(e^n) \longrightarrow O(e^r) + O(e^{n-r})$

DeepLearn 2017

Mini-Bucket Elimination

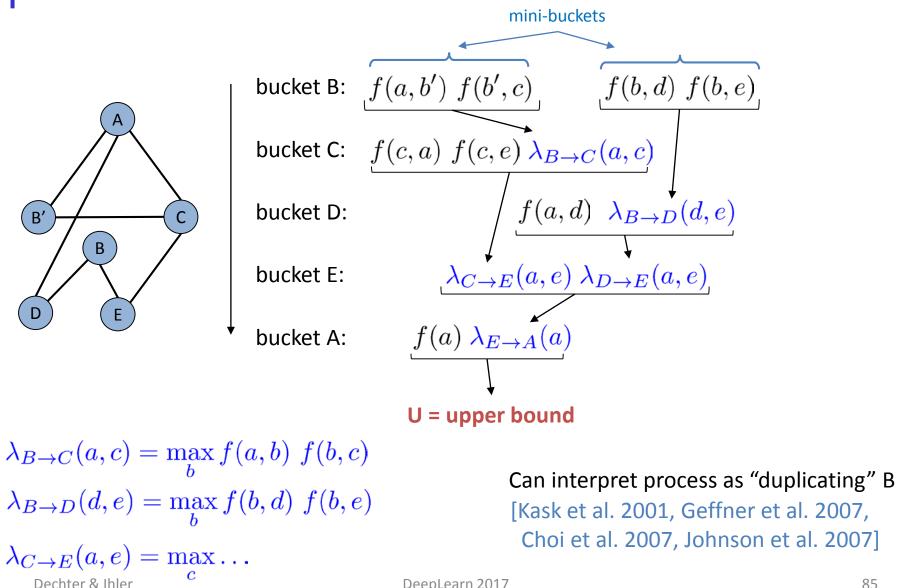
[Dechter & Rish 2003]



Dechter & Ihler

Mini-Bucket Elimination

[Dechter & Rish 2003]



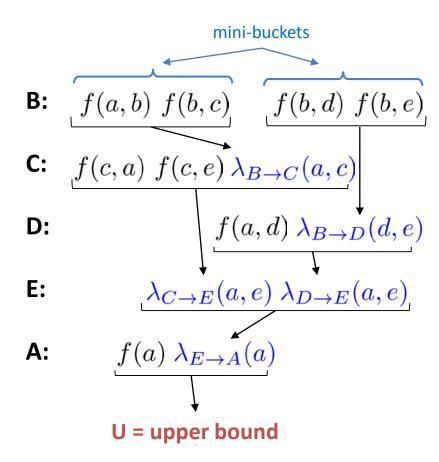
DeepLearn 2017

Mini-Bucket Decoding

• Assign values in reverse order using approximate messages

$$\mathbf{b}^* = \arg \max_{b} f(a^*, b) \cdot f(b, c^*)$$
$$\cdot f(b, d^*) \cdot f(b, e^*)$$
$$\mathbf{c}^* = \arg \max_{c} f(c, a^*) \cdot f(c, e^*) \cdot \lambda_{B \to C}(a^*, c)$$
$$\mathbf{d}^* = \arg \max_{d} f(a^*, d) \cdot \lambda_{B \to D}(d, e^*)$$
$$\mathbf{e}^* = \arg \max_{e} \lambda_{C \to E}(a^*, e) \cdot \lambda_{D \to E}(a^*, e)$$
$$\mathbf{a}^* = \arg \max_{a} f(a) \cdot \lambda_{E \to A}(a)$$

Greedy configuration = lower bound



Properties of MBE(i)

- **Complexity**: O(r exp(i)) time and O(exp(i)) space
- Yields a lower bound and an upper bound
- **Accuracy**: determined by upper/lower (U/L) bound
- Possible use of mini-bucket approximations
 - As anytime algorithms
 - As heuristics in search
- Other tasks (similar mini-bucket approximations)
 - Belief updating, Marginal MAP, MEU, WCSP, Max-CSP
 [Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]

Tightening the bound

- Reparameterization (or, "cost shifting")
 - Decrease bound without changing overall function

Α	В	f ₁ (A,B)
0	0	2.0
1	0	3.5
0	1	1.0
1	1	3.0

$$\max_{a,b} f_1(a,b) + \lambda_{B \to AB}(b) +$$

Α	В	f ₁ (A,B)	ु(B)	
0	0	2.0	0	
1	0	3.5	0	
0	1	1.0	. 1	
1	1	3.0	+1	

В	С	f ₂ (B,C)	
0	0	1.0	
0	1	0.0	
1	0	1.0	
1	1	3.0	

$$\max_{\substack{b,c\\ +\lambda_{B\to BC}(b)}} f_2(b,c)$$

В	С	f ₂ (B,C)	- ֻ(B)
0	0	1.0	0
0	1	0.0	0
1	0	1.0	1
1	1	3.0	-1

$$f_{AB}(a,b) + f_{BC}(b,c)$$

Α	В	С	F(A,B,C)	
0	0	0	3.0	
0	0	1	2.0	
0	1	0	2.0	
0	1	1	4.0	
1	0	0	4.5	
1	0	1	3.5	
1	1	0	4.0	
1	1	1	6.0	

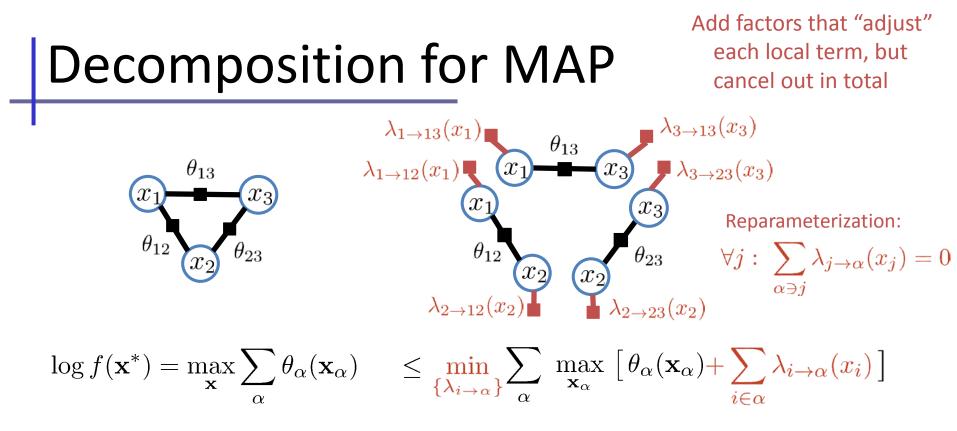
$$\lambda_{B \to AB}(b) + \lambda_{B \to BC}(b) = 0$$

(Adjusting functions cancel each other)

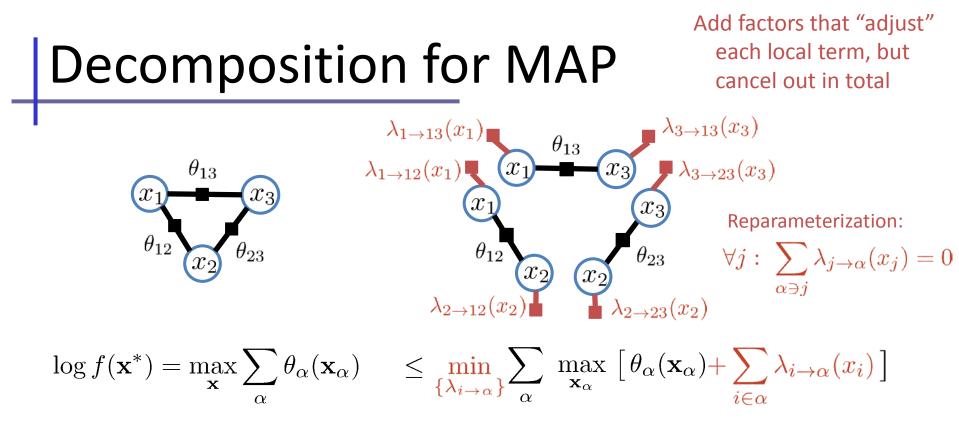
(Decomposition bound is exact)

Dechter & Ihler

DeepLearn 2017



- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by reparameterization
 - Enforces lost equality constraints using Lagrange multipliers

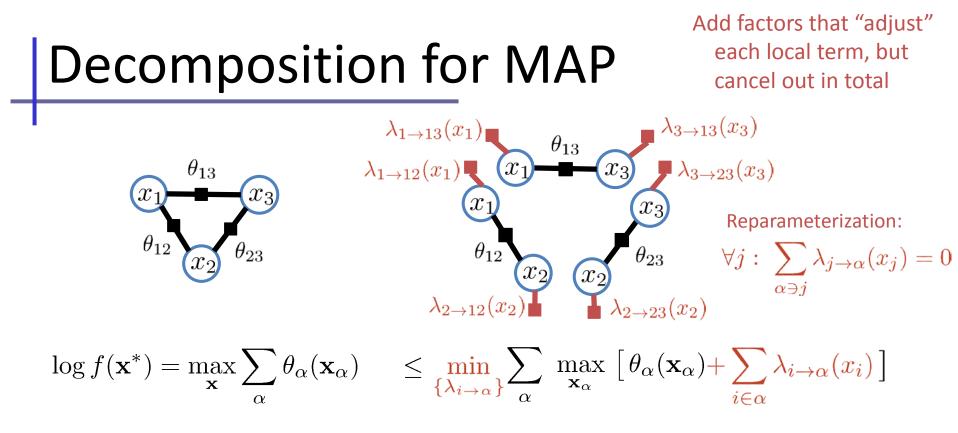


- Many names for the same class of bounds
 - Dual decomposition [Komodakis et al. 2007]
 - TRW, MPLP
 - Soft arc consistency
 - Max-sum diffusion

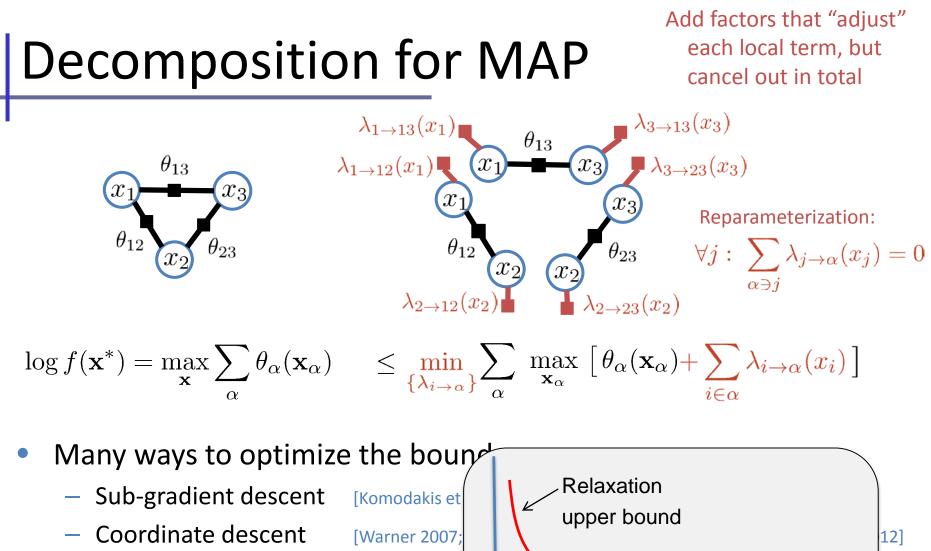
[Cooper & Schiex 2004]

[Warner 2007]

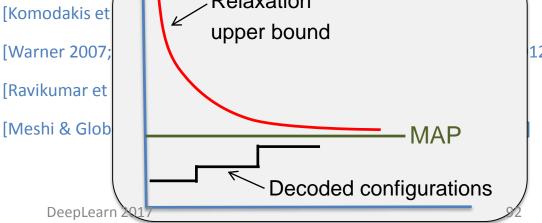
[Wainwright et al. 2005; Globerson & Jaakkola 2007]



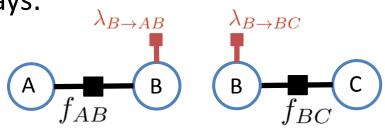
- Many ways to optimize the bound:
 - Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]
 - Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag 2009; Ihler et al 2012]
 - Proximal optimization [Ravikumar et al. 2010]
 - ADMM [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]



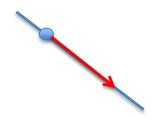
- Proximal optimization
- ADMM



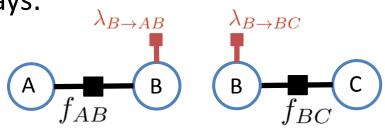
- Can optimize the bound in various ways:
 - (Sub-)gradient descent



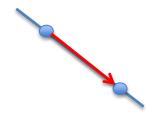
Α	В	f ₁ (A,B)	ु (B)		В	С	f ₂ (B,C)	-, (B)
0	0	1.0	0		0	0	5.0	0
 1	0	0.0	U	+	0	1	2.0	0
0	1	0.0	0	•	1	0	1.0	0
1	1	2.5	0		1	1	1.5	U
0	2	1.0	0		2	0	0.2	0
1	2	3.0	U		2	1	0.0	U
$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$						\max_x	$f_2(b, b)$ + $\lambda_{B \rightarrow}$	$c) \\ _{BC}(b)$



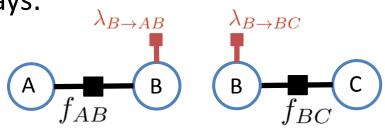
- Can optimize the bound in various ways:
 - (Sub-)gradient descent



Α	В	f ₁ (A,B)	, (В)		В	С	f ₂ (B,C)	-, (B)
0	0	1.0	+1		0	0	5.0	1
 1	0	0.0	+1	+	0	1	2.0	-1
0	1	0.0	0	•	1	0	1.0	0
1	1	2.5	0		1	1	1.5	0
0	2	1.0	-1		2	0	0.2	+1
1	2	3.0	-1		2	1	0.0	+1
$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$						\max_x	$f_2(b, b)$ + $\lambda_{B \rightarrow}$	$c) \\ _{BC}(b)$

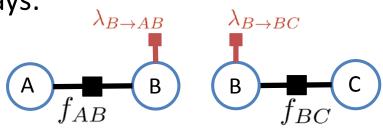


- Can optimize the bound in various ways:
 - (Sub-)gradient descent

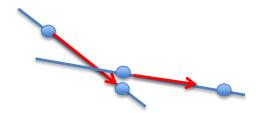


Α	В	f ₁ (A,B)	ु (B)		В	С	f ₂ (B,C)	-, (B)
0	0	1.0	+1		0	0	5.0	1
 1	0	0.0	+1	+	0	1	2.0	-1
0	1	0.0	0	•	1	0	1.0	0
1	1	2.5	0	1	1	1.5	0	
0	2	1.0	-1		2	0	0.2	+1
1	2	3.0	-1		2	1	0.0	+1
$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$						\max_x	$f_2(b, b)$ + $\lambda_{B \to 0}$	c) $_{BC}(b)$

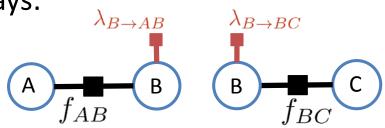
- Can optimize the bound in various ways:
 - (Sub-)gradient descent



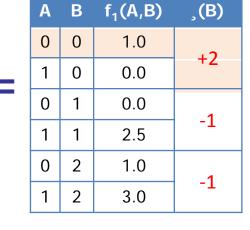
Α	В	f ₁ (A,B)	ु (B)		В	С	f ₂ (B,C)	-, (B)
0	0	1.0	+2		0	0	5.0	-2
 1	0	0.0	+2	+	0	1	2.0	-2
0	1	0.0	1	•	1	0	1.0	. 1
1	1	2.5	-1		1	1	1.5	+1
0	2	1.0	-1		2	0	0.2	+1
1	2	3.0	-1		2	1	0.0	+1
$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$						\max_x	$f_2(b, b)$ + $\lambda_{B \to 0}$	c) $_{BC}(b)$

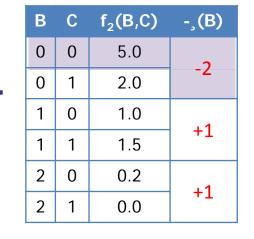


- Can optimize the bound in various ways:
 - (Sub-)gradient descent



Both parts agree on the optima value(s): zero subgradient

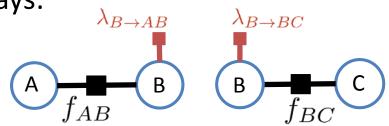




$$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$$

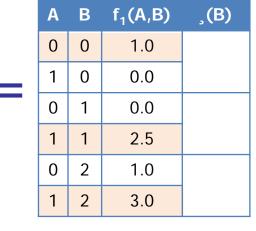
$$\max_{x} f_2(b,c) + \lambda_{B \to BC}(b)$$

- Can optimize the bound in various ways:
 - (Sub-)gradient descent
 - Coordinate descent

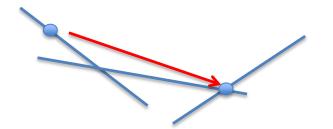


Easy to minimize over a single variable, e.g. B:

Find maxima for each B Match values between f's



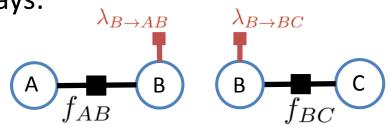
В	С	f ₂ (B,C)	-, (B)
0	0	5.0	
0	1	2.0	
1	0	1.0	
1	1	1.5	
2	0	0.2	
2	1	0.0	



$$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$$

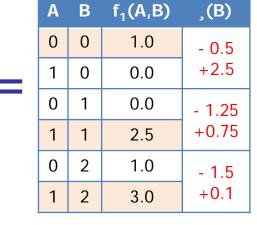
$$\max_{x} f_2(b,c) + \lambda_{B \to BC}(b)$$

- Can optimize the bound in various ways:
 - (Sub-)gradient descent
 - Coordinate descent



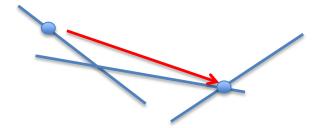
Easy to minimize over a single variable, e.g. B:

Find maxima for each B Match values between f's



D	C	I ₂ (D,C)	-,(D)
0	0	5.0	+0.5
0	1	2.0	- 2.5
1	0	1.0	+1.25
1	1	1.5	- 0.75
2	0	0.2	+1.5
2	1	0.0	- 0.1

F (D C)

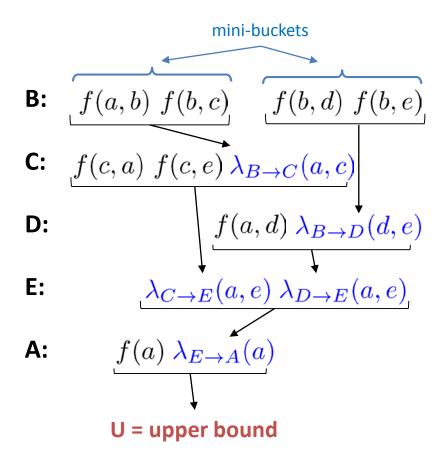


$$\max_{x} f_1(a,b) + \lambda_{B \to AB}(b)$$

$$\max_{x} f_2(b,c) + \lambda_{B \to BC}(b)$$

Mini-Bucket as Decomposition

$$\max_{a,c,b} \log \left[f(a,b) \cdot f(b,c) / \lambda_{B \to C}(a,c) \right] = 0$$
$$\max_{b,d,e} \log \left[f(b,d) \cdot f(b,e) / \lambda_{B \to D}(d,e) \right] = 0$$
$$\max_{a,e,c} \log \left[f(c,a) f(c,e) \lambda_{B \to C} / \lambda_{C \to E} \right] = 0$$
$$\max_{a,d,e} \log \left[f(a,d) \lambda_{B \to D} / \lambda_{D \to E} \right] = 0$$
$$\max_{a,d} \log \left[\lambda_{C \to E} \lambda_{D \to E} / \lambda_{E \to A} \right] = 0$$
$$\max_{a} \log \left[f(a) \lambda_{E \to A}(a) \right] = \log U$$

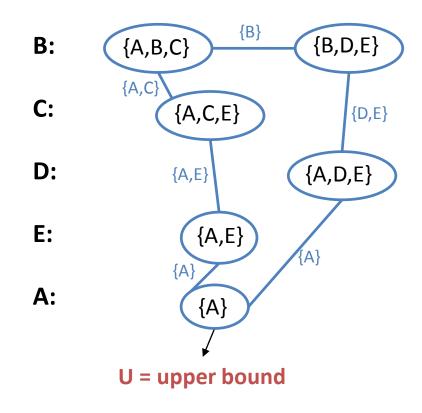


Mini-Bucket as Decomposition

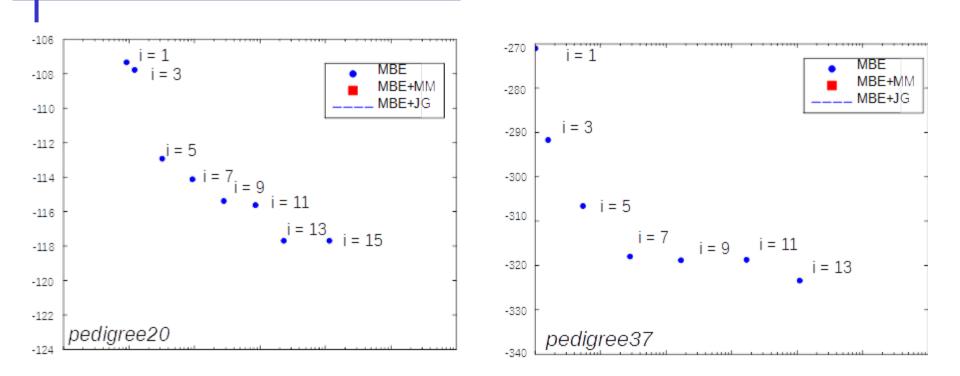
[Ihler et al. 2012]

- Downward pass as cost shifting
- Can also do cost shifting within mini-buckets: "Join graph" message passing
- "Moment-matching" version: One message exchange within each bucket, during downward sweep
- Optimal bound defined by cliques ("regions") and cost-shifting f'n scopes ("coordinates")

Join graph:

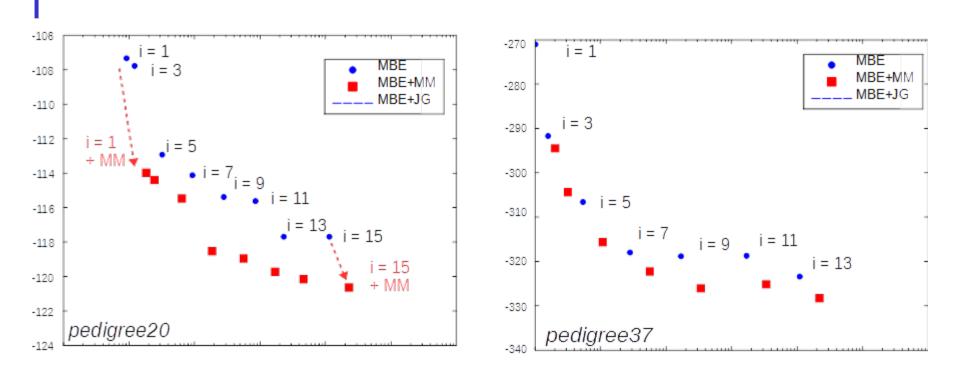


Anytime Approximation



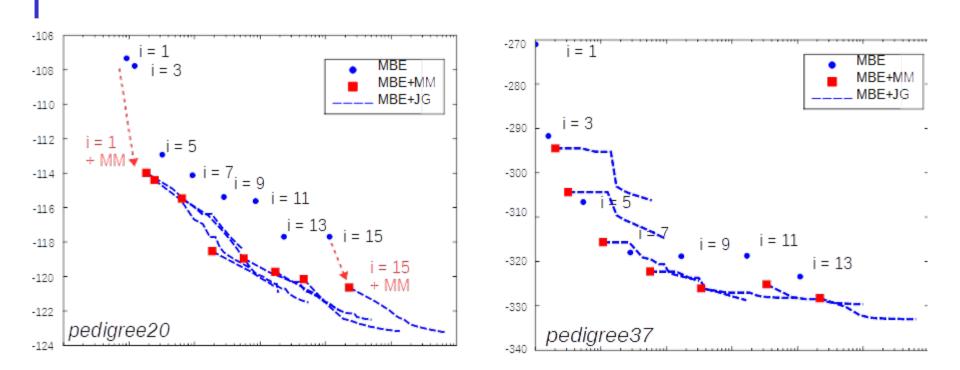
- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation



- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation



- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Decomposition for Sum

- $F(x) = f_1(x) \cdot f_2(x)$
- Generalize technique to sum via Holder's inequality:

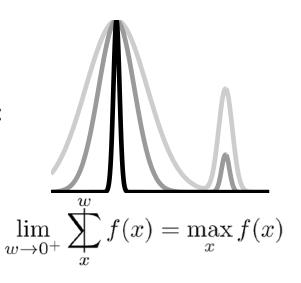
$$\sum_{x} f_1(x) \cdot f_2(x) \leq \left[\sum_{x} f_1(x)^{\frac{1}{w_1}}\right]^{w_1} \cdot \left[\sum_{x} f_2(x)^{\frac{1}{w_2}}\right]^{w_2} w_1 + w_2 = 1$$

• Define the weighted (or powered) sum:

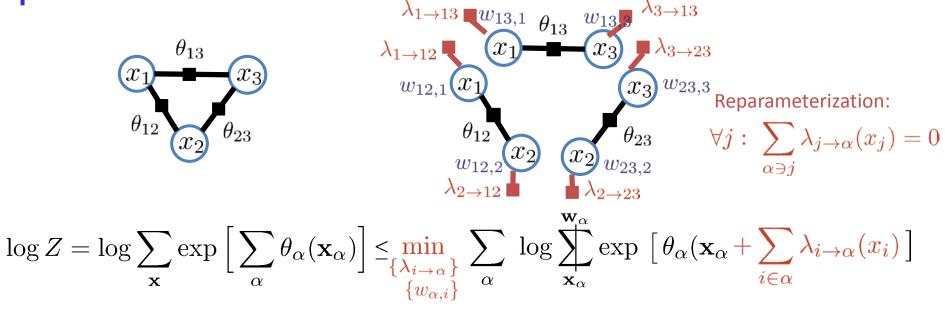
$$\sum_{x_1}^{w_1} f(x_1) = \left[\sum_{x_1} f(x_1)^{\frac{1}{w_1}}\right]^{w_1}$$

- "Temperature" interpolates between sum & max:
- Different weights do not commute:

$$\sum_{x_1}^{w_1} \sum_{x_2}^{w_2} f(x_1, x_2) \neq \sum_{x_2}^{w_2} \sum_{x_1}^{w_1} f(x_1, x_2)$$



Decomposition for Sum [Peng, Liu, Ihler 2015]



Weights:

$$orall j: \sum_{lpha
i j} \mathbf{w}_{lpha, j} = 0$$

Ex: $w_{12} = [0.5 \ 0.3 \ -]$ $w_{13} = [0.5 \ - \ 0.6]$ $w_{23} = [-0.7 \ 0.4]$

• Again, tighten bound by reparameterization

Assign weight per clique & variable

- Can also optimize over weights

Fixed elimination order

Weighted Mini-bucket

[Liu & Ihler 2011]

$$\lambda_{B \to C} = \sum_{b}^{w_{B1}} f(a, b) \cdot f(b, c)$$
$$\lambda_{B \to D} = \sum_{b}^{w_{B2}} f(b, d) \cdot f(b, e)$$

$$\lambda_{C \to E} = \sum_{c} f(c, a) \cdot f(c, e) \cdot \lambda_{B \to C}$$

$$w_{B1} + w_{B2} = 1$$

$$B: f(a, b) f(b, c) f(b, d) f(b, e)$$

$$C: f(c, a) f(c, e) \lambda_{B \to C}(a, c)$$

$$D: f(a, d) \lambda_{B \to D}(d, e)$$

$$E: \lambda_{C \to E}(a, e) \lambda_{E \to E}(a, e)$$

$$A: f(a) \lambda_{E \to A}(a)$$

$$U = upper bound$$

Compute downward messages using weighted sum

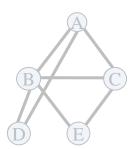
Upper bound if all weights positive (corresponding lower bound if only one positive, rest negative)

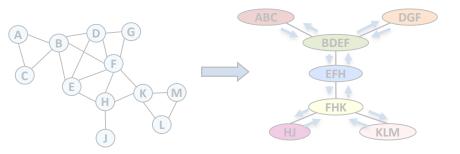
Dechter & Ihler

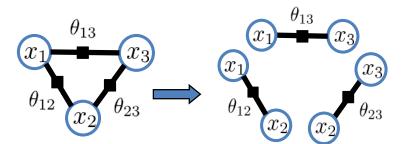
DeepLearn 2017

RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation
- Summary and Class 2



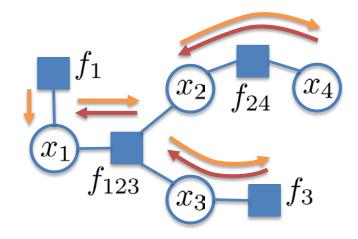




Variable elimination in trees

Computing all marginal probabilities:

- Two-pass algorithm
 - Pass messages upward to a root
 - Pass messages back downward
 - Messages summarize marginalization of sub-model rooted at that node



- Use messages to compute marginals
- Can also update all messages in parallel, until converged

Calculating messages:

$$m_{i \to \alpha}(x_i) \propto \prod_{\substack{\beta \neq \alpha}} m_{\beta \to i}(x_i)$$

 $m_{\alpha \to i}(x_i) \propto \sum_{\substack{x_\alpha \setminus x_i}} f_\alpha(x_\alpha) \prod_{\substack{j \neq i}} m_{j \to \alpha}(x_j)$
Dechter & Ihler DeepLearn 2017

Calculating marginals:

$$p(x_i) \propto \prod_{\alpha \ni i} m_{\alpha \to i}(x_i)$$

$$p(x_\alpha) \propto f_\alpha(x_\alpha) \prod_{i \in \alpha} m_{i \to \alpha}(x_i)$$

111

Dechter & Ihler

Loopy belief propagation

- Apply the same local updates in arbitrary structure
 - More precisely, often called the "sum-product" algorithm
- Resulting algorithm computes "beliefs" b
 - May not converge
 - Initialization & schedule can matter
 - Is approximate: $b(x_i) \approx p(x_i)$
 - But, is often pretty good in practice
 (quality depends on how "tree-like" the model is)

Calculating messages:

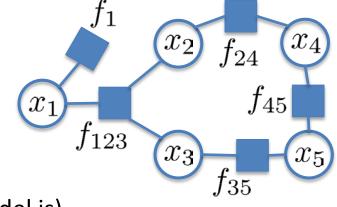
$$m_{i \to \alpha}(x_i) \propto \prod_{\substack{\beta \neq \alpha}} m_{\beta \to i}(x_i)$$

$$m_{\alpha \to i}(x_i) \propto \sum_{\substack{x_\alpha \setminus x_i}} f_\alpha(x_\alpha) \prod_{\substack{j \neq i}} m_{j \to \alpha}(x_j)$$
Dechter & lhler
DeepLearn 2017

Calculating marginals:

$$b(x_i) \propto \prod_{\alpha \ni i} m_{\alpha \to i}(x_i)$$

$$b(x_\alpha) \propto f_\alpha(x_\alpha) \prod_{i \in \alpha} m_{i \to \alpha}(x_i)$$



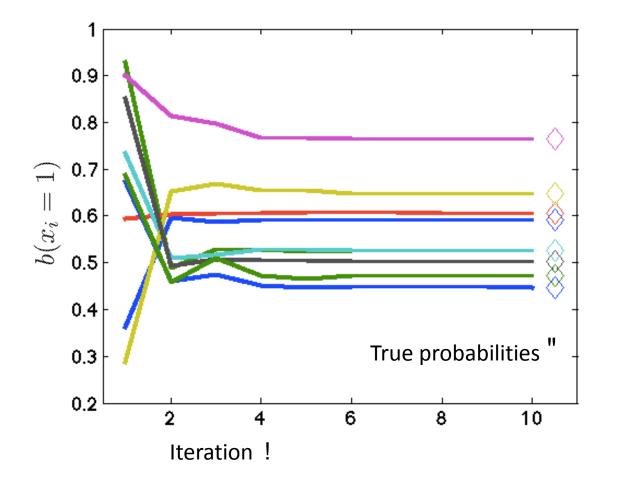
[Pearl 1986]

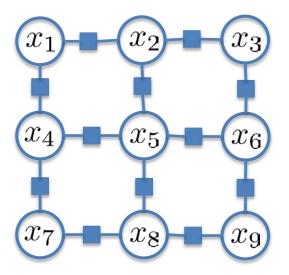
112

Example: Ising model

Log-factors

 $\theta_i, \theta_{ij} \sim U[-0.5, 0.5]$





We'll see these ideas again in Class 3...

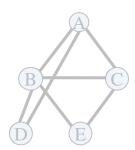
Dechter & Ihler

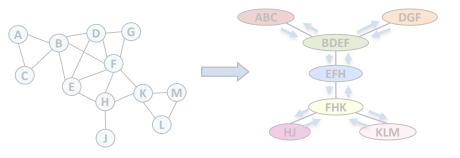
DeepLearn 2017

RoadMap: Introduction and Inference

- Basics of graphical models
 - Queries
 - Examples, applications, and tasks
 - Algorithms overview
- Inference algorithms, exact
 - Bucket elimination for trees
 - Bucket elimination
 - Jointree clustering
 - Elimination orders
- Approximate elimination
 - Decomposition bounds
 - Mini-bucket & weighted mini-bucket
 - Belief propagation

• Summary and Class 2



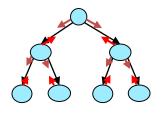


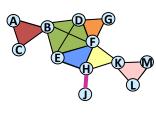
Dechter & Ihler

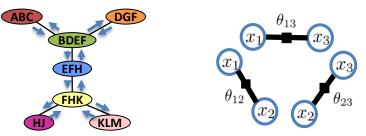
DeepLearn 2017

Preview of Class 2

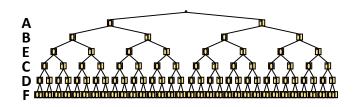
Class 1: Introduction and Inference

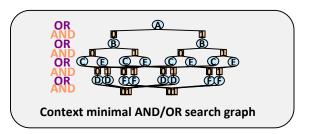




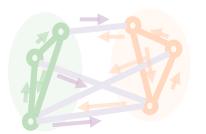


Class 2: Search





Class 3: Variational Methods and Monte-Carlo Sampling



Dechter & Ihler