Algorithms for Reasoning with Probabilistic Graphical Models

Class 3: Approximate Inference

International Summer School on Deep Learning July 2017

Prof. Rina Dechter Prof. Alexander Ihler

Approximate Inference

Two main schools of approximate inference

• **Variational methods**

- Frame "inference" as convex optimization & approximate (constraints, objectives)
- Reason about "beliefs"; pass messages
- Fast approximations & bounds
- Quality often limited by memory

• **Monte Carlo sampling**

- Approximate expectations with sample averages
- Estimates are asymptotically correct
- Can be hard to gauge finite sample quality

Graphical models

A *graphical model* consists of: $X = \{X_1, \ldots, X_n\}$ -- variables -- domains (we'll assume discrete) $F = \{f_{\alpha_1}, \ldots, f_{\alpha_m}\}$ -- functions or "factors"

Example: $A \in \{0, 1\}$ $B \in \{0, 1\}$ $C \in \{0, 1\}$ $f_{AB}(A, B), f_{BC}(B, C)$

and a *combination operator*

The *combination operator* defines an overall function from the individual factors, e.g., "+" : $F(A, B, C) = f_{AB}(A, B) + f_{BC}(B, C)$

Notation:

Discrete Xi) values called "states"

"Tuple" or "configuration": states taken by a set of variables "Scope" of f: set of variables that are arguments to a factor f

often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha}), \quad X_{\alpha} \subseteq X$

Graphical models

 $A \in \{0, 1\}$ A *graphical model* consists of: $B \in \{0, 1\}$ $X = \{X_1, \ldots, X_n\}$ -- variables -- domains (we'll assume discrete) $C \in \{0, 1\}$ $F = \{f_{\alpha_1}, \ldots, f_{\alpha_m}\}$ -- functions or "factors" $f_{AB}(A,B),\quad f_{BC}(B,C)$

and a *combination operator*

$$
F(A, B, C) = f_{AB}(A, B) + f_{BC}(B, C)
$$

Example:

For discrete variables, think of functions as "tables" (though we might represent them more efficiently)

+

= 0 + 6

 $F(A = 0, B = 1, C = 1)$ Dechter & Ihler 5

=

Canonical forms

A *graphical model* consists of: $X = \{X_1, \ldots, X_n\}$ -- variables $D = \{D_1, \ldots, D_n\}$ -- domains $F = \{f_{\alpha_1}, \ldots, f_{\alpha_m}\}$ -- functions or "factors"

and a *combination operator*

Typically either multiplication or summation; mostly equivalent:

$$
f_{\alpha}(X_{\alpha}) \ge 0
$$

$$
F(X) = \prod_{\alpha} f_{\alpha}(X_{\alpha})
$$

Product of nonnegative factors (probabilities, 0/1, etc.)

$$
\theta_{\alpha}(X_{\alpha}) = \log f_{\alpha}(X_{\alpha}) \in \mathbb{R}
$$

$$
\theta(X) = \log F(x) = \sum_{\alpha} \theta_{\alpha}(X_{\alpha})
$$

Sum of factors (costs, utilities, etc.)

log / exp

Ex: DBMs

• Example: Deep Boltzmann machines

- 784 pixels \Leftrightarrow 500 mid \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels
	- x h^1 h^2 h^3 y
- $-$ Induced width? \approx 2000!

Ex: DBMs

- Example: Deep Boltzmann machines
	- 784 pixels \Leftrightarrow 500 mid \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels
	- $-$ Induced width? \approx 2000!
	- Generative model: can simulate data, use partial observations, …

Types of queries

- **NP-hard**: exponentially many terms
- We will focus on **approximation** algorithms
	- **Anytime**: very fast & very approximate ! Slower & more accurate

Outline

Review: Graphical Models

• **Variational methods**

- Convexity & decomposition bounds
- Variational forms & the marginal polytope
- Message passing algorithms
- Convex duality relationships
- Monte Carlo sampling
	- Basics
	- Importance sampling
	- Markov chain Monte Carlo
	- Integrating inference and sampling

Outline

Review: Graphical Models

• **Variational methods**

- **Convexity & decomposition bounds**
- Variational forms & the marginal polytope
- Message passing algorithms
- Convex duality relationships
- Monte Carlo sampling
	- Basics
	- Importance sampling
	- Markov chain Monte Carlo
	- Integrating inference and sampling

Vector space representation

• Represent the (log) model and state in a vector space

Dechter & Ihler 13

Inference Tasks & Convexity

• Distribution is log-linear (exponential family):

$$
p(x) = \frac{1}{Z} f(x) \propto \exp\left[\vec{\theta} \cdot u(x)\right]
$$
\n
$$
\vec{\theta} \text{ "natural parameters"}
$$
\n
$$
u(x) = \vec{x} \text{ "features"}
$$

Tasks of interest are convex functions of the model:

Bounds via Convexity

- Convexity relates target to "nearby" models
	- Some of these models are easy to solve! (trees, etc.)
	- Inference at easy models + convexity tells us something about our model!
- Lower bounds:

Bounds via Convexity

- Convexity relates target to "nearby" models
	- Some of these models are easy to solve! (trees, etc.)
	- Inference at easy models + convexity tells us something about our model!
- Upper bounds:

Decomposition Bounds

TRW MAP is equivalent to MAP decomposition

$$
\max_{\vec{x}} \left[\vec{\theta} \cdot \vec{x} \right] \le \min_{\theta^{(1)}, \theta^{(2)}} \max_{\vec{x}} \left[w_1 \vec{\theta}^{(1)} \cdot \vec{x} \right] + \max_{\vec{x}} \left[w_2 \vec{\theta}^{(2)} \cdot \vec{x} \right] \qquad \vec{\theta} = w_1 \vec{\theta}^{(1)} + w_2 \vec{\theta}^{(2)}
$$
\n
$$
= \min_{\theta^{(A)}, \theta^{(B)}} \max_{\vec{x}} \left[\vec{\theta}^{(A)} \cdot \vec{x} \right] + \max_{\vec{x}} \left[\vec{\theta}^{(B)} \cdot \vec{x} \right] \qquad \vec{\theta} = \vec{\theta}^{(A)} + \vec{\theta}^{(B)}
$$
\n
$$
= \min_{\{\lambda_{i \to \alpha}\}} \sum_{\vec{\alpha}} \max_{\vec{x}_{\alpha}} \left[(\vec{\theta}_{\alpha} + \sum_{i} \vec{\lambda}_{i \to \alpha}) \cdot \vec{x}_{\alpha} \right] \qquad \vec{0} = \sum_{\alpha \ni i} \vec{\lambda}_{i \to \alpha}
$$

(on trees, decomposition bound = exact inference)

Faster optimization Reparameterization "messages"

Dechter & Ihler 19 (1992) 2008 19 DeepLearn 2017

Negative TRW

- $\Phi_1(\vec{\theta}) = \log \sum \exp \left[\vec{\theta} \cdot \vec{x}\right]$ $\vec{x} \in \mathcal{X}$
- We can also get a lower bound via decomposition:

$$
\vec{\theta} = \vec{\theta}^{(1)} + \alpha (\vec{\theta}^{(2)} - \vec{\theta}^{(1)})
$$

= $w_1 \vec{\theta}^{(1)} + w_2 \vec{\theta}^{(2)} = \vec{\theta}^{(A)} + \vec{\theta}^{(B)}$

Identical bound computation, but with all weights but one negative:

$$
\Phi_1(\vec{\theta}) \ge w_1 \Phi_1(\vec{\theta}^{(1)}) + w_2 \Phi_1(\vec{\theta}^{(2)})
$$

= $\log \sum_{\vec{x}}^{\text{w}_1} \exp \left[\vec{\theta}^{(A)} \vec{x}\right] + \log \sum_{\vec{x}}^{\text{w}_2} \exp \left[\vec{\theta}^{(B)} \vec{x}\right]$

Outline

Review: Graphical Models

• **Variational methods**

- Convexity & decomposition bounds
- **Variational forms & the marginal polytope**
- Message passing algorithms
- Convex duality relationships
- Monte Carlo sampling
	- Basics
	- Importance sampling
	- Markov chain Monte Carlo
	- Integrating inference and sampling

Variational forms

- Reframe inference task as an optimization over distributions $q(x)$
- **Ex:** MAP inference $\max_{x} \log f(x) = \log f(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)]$

Optimal q(x) puts all mass on optimal value(s) of x: $q^*(x) = \mathbb{1}[x = x^*]$ (mass on any other values of x reduces the average)

Sum inference: $\log Z = \log \sum f(x) = \max_{q \in \mathbb{P}} E_q[\log f(x)] + H(x; q)$ Proof: $\int \frac{a(x)}{x}$

$$
D(q||p) = \sum_{x} q(x) \log \left[\frac{q(x)}{\frac{1}{Z}f(x)} \right]
$$
\n
$$
= -H(x; q) - \mathbb{E}_{q}[\log f(x)] + \log Z
$$
\n
$$
\Rightarrow \log Z \ge \mathbb{E}_{q}[\log f(x)] + H(x; q)
$$
\nEqual iff

\n
$$
q(x) = p(x) = \frac{1}{Z}f(x)
$$

• How to optimize over distributions q?

The marginal polytope

Rewrite $\log f(x^*) = \max_{a \in \mathbb{P}} \mathbb{E}_q[\log f(x)] = \max_{a \in \mathbb{P}} \mathbb{E}_q[\vec{\theta} \cdot \vec{x}] = \max_{\vec{\mu} \in \mathcal{M}} \vec{\theta} \cdot \vec{\mu}$

and similarly,
$$
\log Z = \max_{\vec{\mu} \in \mathcal{M}} \vec{\theta} \cdot \vec{\mu} + H(\vec{\mu})
$$

(max entropy given 1)

Dechter & Ihler 23

 $X=(0,1)$: $[0,1,0,0]$

Variational perspectives

Replace $q 2 P$ and $H(q)$ with simpler approximations

$$
\log p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)]
$$

$$
\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)] + H(x; q)
$$

• Algorithms and their properties:

Variational perspectives

Replace $q 2 P$ and $H(q)$ with simpler approximations

$$
\log p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)]
$$

$$
\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)] + H(x; q)
$$

• Algorithms and their properties:

Mean Field

- We can design lower bounds by restricting $q(x)$
	- $-$ Naïve mean field: $q(x)$ is fully independent
	- $-$ Entropy H(q) is then easy:

$$
q(x) = \prod_{i} q_i(x_i)
$$

$$
H(q) = \sum_{i} H(q_i)
$$

 $q_{\neg i}(x) = \prod q_j(x_j)$

 $i\neq i$

• Optimizing the bound via coordinate ascent:

$$
\mathbb{E}_{q}[\theta(x)] + H(q) = \mathbb{E}_{q} \Big[\sum_{\alpha \ni i} \theta_{\alpha}(x_{\alpha}) \Big] + H(q_{i}) + \text{const}
$$
\n
$$
= \mathbb{E}_{q_{i}} \Big[\log g(x_{i}) \Big] + H(q_{i})
$$
\n
$$
= D(q_{i} \parallel g_{i}) \qquad \qquad \log g_{i}(x_{i}) = \mathbb{E}_{q_{\neg i}} \Big[\sum_{\alpha \ni i} \theta_{\alpha}(x_{\alpha}) \Big]
$$

Coordinate update:

$$
q_i(x_i) \propto \exp\left[\mathbb{E}_{q_{-i}}\left[\sum_{\alpha \ni i} \theta_\alpha(x_\alpha)\right]\right]
$$

Mean Field

- We can design lower bounds by restricting $q(x)$
	- $-$ Naïve mean field: $q(x)$ is fully independent
	- $-$ Entropy H(q) is then easy:

$$
q(x) = \prod_{i} q_i(x_i)
$$

$$
H(q) = \sum_{i} H(q_i)
$$

• Optimizing the bound via coordinate ascent:

 $q_i(x_i) \propto \exp\left[\mathbb{E}_{q_{-i}}\left[\sum \theta_\alpha(x_\alpha)\right]\right]$

"Message passing" interpretation: Updates depend only on Xi's Markov blanket

Naïve Mean Field 1: Initialize $\{q_i(X_i)\}\$ 2: while not converged do for $i = 1 \ldots n$ do $3:$ $m_{\alpha \to i}(x_i) = \exp \Big[\sum_{x_{\alpha \setminus i}} \theta_{\alpha}(x_{\alpha}) \prod_{j \in \alpha \setminus i} q_j(x_j) \Big]$ $4:$ $q_i(x_i) \propto \prod m_{\alpha \to i}(x_i)$ $5:$ $\alpha \ni i$

Naïve Mean Field

- Subset of M corresponding to independent distributions?
	- Includes all vertices (configurations of x), but not all distributions
	- Non-convex set; coordinate ascent has local optima

Variational perspectives

Replace $q 2 P$ and $H(q)$ with simpler approximations

$$
\log p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)]
$$

$$
\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)] + H(x; q)
$$

• Algorithms and their properties:

- Unfortunately, M has a large number of constraints
	- Enforce only a few, easy to check constraints?
	- Equivalent to a linear programming relaxation of original ILP

- Unfortunately, M has a large number of constraints
	- Enforce only a few, easy to check constraints?
	- Equivalent to a linear programming relaxation of original ILP

- Unfortunately, M has a large number of constraints
	- Enforce only a few, easy to check constraints?
	- Equivalent to a linear programming relaxation of original ILP

- Local polytope does not enforce all the constraints of M:
	- $-$ Ex: all pairwise probabilities locally consistent, but no joint $q(x)$ exists:

$$
\mu_1 = \mu_2 = \mu_3 \qquad \mu_{12} \qquad x_2 \qquad \mu_{13} \qquad x_3 \qquad \mu_{23} \qquad x_3
$$

$$
\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \qquad x_1 \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \qquad x_1 \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \qquad x_2 \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}
$$

$$
(x_1 = x_2) \qquad (x_1 = x_3) \qquad (x_2 \neq x_3)
$$

(also illustrates connection to arc consistency in CSPs, etc.)

- But, trees remain easy
	- $-$ If we only specify the marginals on a tree, we can construct $q(x)$

$$
\begin{array}{ll}\n\begin{array}{l}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{\n\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{}\n\begin{array}{c}\n\begin{array}{\n\begin{array}{c}\n\begin{array}{\n\n\begin{array}{c}\n\begin{array}{\n\n\begin{array}{\n\n\begin{array}{\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\
$$

Dechter & Ihler 34

 x_3

Duality relationship

• Local polytope LP & MAP decomposition are Lagrangian duals:

$$
\log f(x^*) \leq \max_{\mu} \left[\sum_{i,k} \theta_{i;k} \mu_{i;k} + \sum_{i,j,k,l} \theta_{ij;kl} \mu_{ij;kl} \right]
$$

subject to (a) normalization constraints (enforce explicitly)

(b) consistency: $\sum_{l} \mu_{ij;kl} = \mu_{i;k}$, $\sum_{k} \mu_{ij;kl} = \mu_{j;l}$ (use Lagrange)

$$
L = \max_{\mu} \min_{\lambda} \sum_{i,k} \theta_{i;k} \mu_{i;k} + \sum_{i,j,k,l} \theta_{ij;kl} \mu_{ij;kl} + \sum_{i,j,k} \lambda_{i \to ij;k} (\sum_{l} \mu_{ij;kl} - \mu_{i;k})
$$

\n
$$
\leq \min_{\lambda} \max_{\mu} \sum_{i,k} \theta_{i;k} \mu_{i;k} + \sum_{i,j,k,l} \theta_{ij;kl} \mu_{ij;kl} + \sum_{i,j,k} \lambda_{i \to ij;k} (\sum_{l} \mu_{ij;kl} - \mu_{i;k})
$$

\n
$$
= \min_{\lambda} \max_{\mu} \sum_{i,k} (\theta_{i;k} - \sum_{j} \lambda_{i \to ij;k}) \mu_{i;k} + \sum_{i,j,k,l} (\theta_{ij;kl} + \lambda_{i \to ij;k} + \lambda_{j \to ij;l}) \mu_{ij;kl}
$$

\n
$$
= \min_{\lambda} \sum_{i,k} \max_{k} (\theta_{i;k} - \sum_{j} \lambda_{i \to ij;k}) + \sum_{i,j,k,l} \max_{k,l} (\theta_{ij;kl} + \lambda_{i \to ij;k} + \lambda_{j \to ij;l})
$$

Dechter & Ihler 35

Duality: MAP

Primal

$$
\min_{\{\lambda_{i\to\alpha}\}} \sum_{\alpha} \max_{\mathbf{x}_{\alpha}} \left[\theta_{\alpha}(\mathbf{x}_{\alpha}) + \sum_{i \in \alpha} \lambda_{i\to\alpha}(x_i) \right]
$$

Regions

Generalize local consistency enforcement

Separators = coordinates of bound optimization (¸)

Beliefs: $\mu_{FGH}, \mu_{FGI}, \ldots$

Consistency:

$$
\sum_{a} \mu_{FGH}(f,g,h) = \mu_{FG}(f,g) = \sum_{i} \mu_{FGI}(f,g,i)
$$

Dechter & Ihler 37

Regions

- Generalize local consistency enforcement
- Larger regions: more consistent; more costly to represent

Beliefs: $\mu_{FGH}, \mu_{FGI}, \ldots$

Consistency:

$$
\sum_{a} \mu_{FGH}(f,g,h) = \mu_{FG}(f,g) = \sum_{i} \mu_{FGI}(f,g,i)
$$

Regions

- Generalize local consistency enforcement
- Larger regions: more consistent; more costly to represent

Beliefs:

Consistency:

 $\sum \mu_{FGHI}(f,g,h,i) = \mu_{GHI}(g,h,i) = \dots$
Regions

- Generalize local consistency enforcement
- Larger regions: more consistent; more costly to represent

Dechter & Ihler DeepLearn 2017 40

Regions

Mini-bucket Regions

• Mini-bucket elimination defines regions with bounded complexity

Variational perspectives

Replace $q 2 P$ and $H(q)$ with simpler approximations

$$
\log p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)]
$$

$$
\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log f(x)] + \boxed{H(x; q)}
$$

Approximate entropy in terms of local beliefs

Algorithms and their properties:

Bethe Approximation

- Need to approximate H in terms of only local beliefs
- In trees, H has a simple form:

$$
\begin{aligned}\n\mathbf{x}_1 &= \mathbf{F} \left[\log p(x_1) p(x_2 | x_1) p(x_3 | x_1) \right] \\
&= -\mathbb{E} \left[\log p(x_1) \frac{p(x_2, x_1)}{p(x_1)} \frac{p(x_3, x_1)}{p(x_1)} \right] \\
&= -\mathbb{E} \left[\log p(x_1) p(x_2) p(x_3) \frac{p(x_2, x_1)}{p(x_1) p(x_2)} \frac{p(x_3, x_1)}{p(x_1) p(x_3)} \right]\n\end{aligned}
$$

Then,
$$
H(p) = \sum_{i} H[p(x_i)] - \sum_{ij \in E} \mathbb{I}[p(x_i, x_j)]
$$

Depends only on pairwise marginals!

Called the "Bethe" approximation in statistical physics see [Yedidia et al. 2001]

Bethe Approximation

Suppose we want to optimize

$$
\max_{b \in \mathbb{L}} \sum_{\alpha} \mathbb{E}_{b_{\alpha}}[\theta_{\alpha}(x_{\alpha})] + \sum_{i} \mathbb{H}(b_{i}) - \sum_{ij} \mathbb{I}(b_{ij})
$$

$$
L_G = \{b_i, b_{ij} : \sum_{x_i} b_{ij}(x_i, x_j) = b_j(x_j), \sum_{x_j} b_j(x_j) = 1, b_{ij} \ge 0\}
$$

- Use the same Lagrange multiplier trick as LP/DD
	- Then, define $m_{i\rightarrow\alpha}(x_i) \propto \exp[\lambda_{i\rightarrow\alpha}(x_i)]$

Calculating messages:

\n
$$
m_{i \to \alpha}(x_i) \propto \prod_{\beta \neq \alpha} m_{\beta \to i}(x_i)
$$
\n
$$
m_{\alpha \to i}(x_i) \propto \sum_{x_\alpha \backslash x_i} f_\alpha(x_\alpha) \prod_{j \neq i} m_{j \to \alpha}(x_j)
$$
\n
$$
b(x_i) \propto \prod_{\alpha \ni i} m_{\alpha \to i}(x_i)
$$
\n
$$
b(x_\alpha) \propto f_\alpha(x_\alpha) \prod_{i \in \alpha} m_{\alpha \to i}(x_i)
$$

Fixed points satisfy LBP recursion!

$$
\begin{aligned}\n\text{Calculating marginals:} \\
b(x_i) \propto \prod_{\alpha \ni i} m_{\alpha \to i}(x_i) \\
b(x_\alpha) \propto f_\alpha(x_\alpha) \prod_{i \in \alpha} m_{i \to \alpha}(x_i)\n\end{aligned}
$$

Dechter & Ihler 45

Loopy BP and the partition function

- Use the Bethe approximation to estimate log Z:
	- Run loopy BP on the factor graph & calculate beliefs
	- $-$ Use the Bethe approximation to $H(b)$:

$$
\log Z \approx \sum_{\alpha} \mathbb{E}_{b_{\alpha}} [\log f_{\alpha}(x_{\alpha})] + \sum_{i} \mathbb{H}(b_{i}) - \sum_{\alpha} \mathbb{E}_{b_{\alpha}} \left[\log \frac{b_{\alpha}}{\prod_{i \in \alpha} b_{i}} \right]
$$

– Often written using counting numbers:

$$
\log Z \approx \sum_{\alpha} \mathbb{E}_{b_{\alpha}}[\log f_{\alpha}(x_{\alpha})] + \sum_{\alpha} c_{\alpha} H(b_{\alpha}) + \sum_{i} c_{i} H(b_{i})
$$

$$
c_{\alpha} = 1, \quad c_{i} = 1 - \deg(i)
$$

- As with LP / DD, regions are what matters!
- But now, regions define both **consistency** and **entropy**

x

Region graphs

Region: a collection of variables & their interactions

 x_4

 $\overline{x_5}$

 $\left(x_6\right)$

Join Graphs

• Join graphs give a simple set of regions

$$
\log Z = \max_{\vec{\mu} \in \mathcal{M}} \vec{\theta} \cdot \vec{\mu} + H(\vec{\mu})
$$

Join graph:

Entropy approximation:

Each variable's subgraph is a tree

Results in a simple variant of LBP message passing!

$$
m_{\alpha \to \beta}(x_{\beta \setminus \alpha}) \propto \sum_{x_{\alpha \setminus \beta}} f_{\alpha}(x_{\alpha}) \prod_{\gamma \neq \beta} m_{\gamma \to \alpha}(x_{\alpha})
$$

Dechter & Ihler DeepLearn 2017 48

Summation Bounds

• A local bound on the entropy will give a bound on Z:

$$
\log Z = \max_{\vec{\mu} \in \mathcal{M}} \vec{\theta} \cdot \vec{\mu} + H(\vec{\mu})
$$

Join graph:

Exact Entropy

Weighted Mini-bucket (primal) [Liu & Ihler 2011] Conditional Entropy Decomposition (dual) [Globerson & Jaakkola 2008]

Dechter & Ihler DeepLearn 2017 49

Primal vs. Dual Forms

Primal
$$
\Phi_{\tau}(\vec{\theta}) \le \min_{\{\lambda\}} \sum \Phi_{w_r}(\theta^{(r)} + \lambda^{(r)})
$$

Direct bound on objective

"Messages" reparameterize subproblems to be consistent

"Typically":

upper bound: prefer primal lower bound: either OK Bethe / BP: prefer dual

Dual
$$
\Phi_{\tau}(\vec{\theta}) \le \max_{\{\mu\}} \vec{\theta} \cdot \mu + \hat{H}(\mu)
$$

Reason about "beliefs" (marginals)

Messages update beliefs to be consistent

Message-passing form: $m_{ij}(x_j) \propto \left[\sum_{x_i} f_i(x_i) f_{ij}(x_i, x_j)^{1/\rho_{ij}} \frac{\prod_k m_{ki}(x_i)}{m_{ji}(x_i)^{1/\rho_{ij}}} \right]^{p_{ij}}$

Dechter & Ihler Subset of the DeepLearn 2017 Society and the United

Summary: Variational methods

- Build approximations via an optimization perspective
	- **Primal** form: decomposition into simpler problems
	- **Dual** form: optimization over local "beliefs"
- Deterministic bounds and approximations
	- Convex upper bounds
	- Non-convex lower bounds
	- Bethe approximation & belief propagation
- Scalable, "local approximation" viewpoint
	- Optimization as local message passing
- Can improve quality through increasing region size
	- But, requires exponentially increasing memory & time

Outline

- Review: Graphical Models
- Variational methods
	- Convexity & decomposition bounds
	- Variational forms & the marginal polytope
	- Message passing algorithms
	- Convex duality relationships

• **Monte Carlo sampling**

- **Basics**
- Importance sampling
- Markov chain Monte Carlo
- Integrating inference and sampling

Monte Carlo estimators

- Most basic form: empirical estimate of probability $\mathbb{E}[u(x)] = \int p(x)u(x) \approx U = \frac{1}{m} \sum_i u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x)$
- Relevant considerations
	- Able to sample from the target distribution $p(x)$?
	- $-$ Able to evaluate $p(x)$ explicitly, or only up to a constant?
- "Any-time" properties
	- Unbiased estimator, $\mathbb{E}[U] = \mathbb{E}[u(x)]$ or asymptotically unbiased, $\mathbb{E}[U] \to \mathbb{E}[u(x)]$ as $m \to \infty$
	- Variance of the estimator decreases with m

Monte Carlo estimators

Most basic form: empirical estimate of probability

$$
\mathbb{E}[u(x)] = \int p(x)u(x) \approx U = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)
$$

- Central limit theorem
	- $-$ p(U) is asymptotically Gaussian:

- Finite sample confidence intervals
	- $-$ If u(x) or its variance are bounded, e.g., $u(x^{(i)}) \in [0,1]$ probability concentrates rapidly around the expectation: $\Pr[|U - \mathbb{E}[U]| > \epsilon] \leq O(\exp(-m\epsilon^2))$

Sampling in Bayes nets

- No evidence: "causal" form makes sampling easy
	- Follow variable ordering defined by parents
	- Starting from root(s), sample downward
	- When sampling each variable, condition on values of parents

 $p(A, B, C, D) = p(A) p(B) p(C | A, B) p(D | B, C)$

Sample:

$$
a \sim p(A)
$$

\n
$$
b \sim p(B)
$$

\n
$$
c \sim p(C | A = a, B = b)
$$

\n
$$
d \sim p(D | C = c, B = b)
$$

Bayes nets with evidence

- Estimating the probability of evidence, P[E=e]: $P[E = e] = \mathbb{E}[\mathbb{1}[E = e]] \approx U = \frac{1}{m} \sum \mathbb{1}[\tilde{e}^{(i)} = e]$
	- Finite sample bounds: $u(x)$ 2 [0,1] [e.g., Hoeffding] $\Pr\left[|U - \mathbb{E}[U]| > \epsilon\right] \leq 2\exp(-2m\epsilon^2)$

What if the evidence is unlikely? $P[E=e]=1e-6$) could estimate $U=0!$

– Relative error bounds

[Dagum & Luby 1997]

$$
\Pr\Big[\frac{|U - \mathbb{E}[U]|}{\mathbb{E}[U]} > \epsilon\Big] \le \delta \quad \text{if} \quad m \ge \frac{4}{\mathbb{E}[U]\epsilon^2} \log \frac{2}{\delta}
$$

Bayes nets with evidence

- Estimating posterior probabilities, $P[A = a | E=e]$?
- Rejection sampling
	- $-$ Draw x \sim p(x), but discard if E != e
	- Resulting samples are from $p(x \mid E=e)$; use as before
	- Problem: keeps only P[E=e] fraction of the samples!
	- Performs poorly when evidence probability is small
- Estimate the ratio: $P[A=a,E=e] / P[E=e]$
	- Two estimates (numerator & denominator)
	- Good finite sample bounds require low *relative* error!
	- Again, performs poorly when evidence probability is small

Exact sampling via inference

- Draw samples from P[A|E=e] directly?
	- Model defines un-normalized p(A,…,E=e)
	- Build (oriented) tree decomposition & sample

$$
\tilde{\mathbf{b}} \sim f(\tilde{a}, b) \cdot f(b, \tilde{c}) \cdot f(b, \tilde{d}) \cdot f(b, \tilde{e}) / \lambda_{B \to C}
$$
\n
$$
\tilde{\mathbf{c}} \sim f(c, \tilde{a}) \cdot f(c, \tilde{e}) \cdot \lambda_{B \to C}(\tilde{a}, c, \tilde{d}, \tilde{e}) / \lambda_{C \to D}
$$
\n
$$
\tilde{\mathbf{d}} \sim f(\tilde{a}, d) \cdot \lambda_{B \to D}(d, \tilde{e}) / \lambda_{D \to E}(\tilde{a}, \tilde{e})
$$
\n
$$
\tilde{\mathbf{e}} \sim \lambda_{D \to E}(\tilde{a}, e) / \lambda_{E \to A}(\tilde{a})
$$
\n
$$
\tilde{\mathbf{a}} \sim p(A) = f(a) \cdot \lambda_{E \to A}(a) / Z
$$

Downward message normalizes bucket; ratio is a conditional distribution

Work: O(exp(w)) to build distribution Dechter & Ihler D DeepLearn 2017 $O(n d)$ to draw each sample D

Outline

- Review: Graphical Models
- Variational methods
	- Convexity & decomposition bounds
	- Variational forms & the marginal polytope
	- Message passing algorithms
	- Convex duality relationships

• **Monte Carlo sampling**

- Basics
- **Importance sampling**
- Markov chain Monte Carlo
- Integrating inference and sampling

Importance Sampling

- Basic empirical estimate of probability: $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_i u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x)$
- Importance sampling:

$$
\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m}\sum_{i}\frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim q(x)
$$

Importance Sampling

- Basic empirical estimate of probability: $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_i u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$
- Importance sampling:

$$
\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m}\sum_{i}\frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim q(x)
$$

IS for common queries

- Partition function
	- Ex: MRF, or BN with evidence

$$
Z = \sum_{x} f(x) = \sum_{x} q(x) \frac{f(x)}{q(x)} = \mathbb{E}_{q} \left[\frac{f(x)}{q(x)} \right] \approx \frac{1}{m} \sum_{x} w^{(i)}
$$

 $-$ Unbiased; only requires evaluating unnormalized function $f(x)$

\n- General expectations wrt
$$
p(x)
$$
 / $f(x)$?
\n- General expectations wrt $p(x)$ / $f(x)$?
\n

– E.g., marginal probabilities, etc.

$$
\mathbb{E}_p[u(x)] = \sum_x u(x) \frac{f(x)}{Z} = \frac{\mathbb{E}_q[u(x)f(x)/q(x)]}{\mathbb{E}_q[f(x)/q(x)]} \approx \frac{\sum u(\tilde{x}^{(i)})w^{(i)}}{\sum w^{(i)}}
$$

\nEstimate separately

Only asymptotically unbiased…

Importance Sampling

• Importance sampling:

$$
\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m}\sum_{i}\frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim q(x)
$$

- IS is unbiased and fast if $q(.)$ is easy to sample from
- IS can be lower variance if q(.) is chosen well
	- $-$ Ex: $q(x)$ puts more probability mass where $u(x)$ is large
	- $-$ Optimal: $q(x) / |u(x) p(x)|$
- IS can also give poor performance
	- $-$ If q(x) << u(x) p(x): rare but very high weights!
	- Then, empirical variance is also unreliable!
	- For guarantees, need to analytically bound weights / variance…

Choosing a proposal

[Liu, Fisher, Ihler 2015]

mini-buckets

 w_2

Can use WMB upper bound to define a proposal q(x):

$$
\tilde{\mathbf{b}} \sim w_1 q_1(b|\tilde{a}, \tilde{c}) + w_2 q_2(b|\tilde{d}, \tilde{e})
$$
\n**Weighted mixture:**\nuse minibacket 1 with probability w_1 \nor, minibacket 2 with probability $w_2 = 1 - w_1$ \nwhere\n
$$
q_1(b|a, c) = \left[\frac{f(a, b) \cdot f(b, c)}{\lambda_{B \to C}(a, c)} \right]^{\frac{1}{w_1}}
$$
\n
$$
\tilde{\mathbf{a}} \sim q(A) = f(a) \cdot \lambda_{E \to A}(a) / U
$$

Key insight: provides bounded importance weights!

$$
0 \le \frac{F(x)}{q(x)} \le U \qquad \forall x
$$

$$
f(a, b) f(b, c) \qquad f(b, d) f(b, e)
$$

$$
f(c, a) f(c, e) \lambda_{B \to C}(a, c)
$$

$$
f(a, d) \lambda_{B \to D}(d, e)
$$

$$
\lambda_{C \to E}(a, e) \lambda_{E \to E}(a, e)
$$

$$
f(a) \lambda_{E \to A}(a)
$$

$$
U = upper bound
$$

E:

A:

C:

B:

 w_1

D:

• Compare to forward sampling

Finite sample bounds on the average

WMB-IS Bounds

 $\Pr\left[|\hat{Z}-Z|>\epsilon\right]\leq 1-\delta$

- Works well if evidence "not too unlikely") not too much less likely than U
-
- -

 ϵ

$$
= \sqrt{\frac{2\hat{V}\log(4/\delta)}{m}} + \frac{7\,U\,\log(4/\delta)}{3(m-1)}
$$

"Empirical Bernstein" bounds

Other choices of proposals

- Belief propagation
	- BP-based proposal [Changhe & Druzdzel 2003]
	- Join-graph BP proposal [Gogate & Dechter 2005]
	- Mean field proposal [Wexler & Geiger 2007]

Join graph:

Other choices of proposals

- Belief propagation
	- BP-based proposal [Changhe & Druzdzel 2003]
	- Join-graph BP proposal [Gogate & Dechter 2005]
	- Mean field proposal [Wexler & Geiger 2007]
- Adaptive importance sampling
	- $-$ Use already-drawn samples to update $q(x)$
	- Rates v_t and ζ_t adapt estimates, proposal
	- $-$ Fx:

…

[Cheng & Druzdzel 2000] [Lapeyre & Boyd 2010]

– Lose "iid"-ness of samples

Adaptive IS 1: Initialize $q_0(x)$ 2: for $t = 0 \dots T$ do Draw $\tilde{X}_t = {\tilde{x}^{(i)}} \sim q_t(x)$ $3:$ 4: $U_t = \frac{1}{m_t} \sum \hat{f}(\tilde{x}^{(i)}) / q_t(\tilde{x}^{(i)})$ $(1 - \lambda)\hat{T}$ + λI \hat{r}

5:
$$
U = (1 - v_t)U + v_t U_t
$$

\n6: $q_{t+1} = (1 - \eta_t)q_t + \eta_t q^*(X_t)$

Outline

- Review: Graphical Models
- Variational methods
	- Convexity & decomposition bounds
	- Variational forms & the marginal polytope
	- Message passing algorithms
	- Convex duality relationships

• **Monte Carlo sampling**

- Basics
- Importance sampling
- **Markov chain Monte Carlo**
- Integrating inference and sampling

Markov Chains

- Temporal model
	- State at each time t
	- "Markov property": state at time t depends only on state at t-1
	- "Homogeneous" (in time): $p(X_t | X_{t-1}) = T(X_t | X_{t-1})$ does not depend on t

 $x_0 \longrightarrow (x_1 \longrightarrow (x_2 \longrightarrow (x_3 \longrightarrow (x_4$

- Example: random walk
	- Time 0: $x_0 = 0$
	- Time t: $x_t = x_{t-1} \S 1$

Markov Chains

- Temporal model
	- State at each time t
	- "Markov property": state at time t depends only on state at t-1
	- $-$ "Homogeneous" (in time): $p(X_t | X_{t-1}) = T(X_t | X_{t-1})$ does not depend on t

 $x_0 \longrightarrow (x_1 \longrightarrow (x_2 \longrightarrow (x_3 \longrightarrow (x_4$

Stationary distributions

- Stationary distribution $s(x)$: $s(x_{t+1}) = \sum p(x_{t+1} | x_t) s(x_t)$ x_{t}
- $p(x_t)$ becomes independent of $p(x_0)$?
- Sufficient conditions for s(x) to exist and be unique:
	- (a) p(. | .) is acyclic: $\gcd\{t : \Pr[x_t = s_i \,|\, x_0 = s_i] > 0\} = 1$ (b) p(. | .) is irreducible: $\forall i, j \exists t : Pr[x_t = s_i | x_0 = s_j] > 0$

Without both (a) & (b), long-term probabilities may depend on the initial distribution

Markov Chain Monte Carlo

- Method for generating samples from an intractable $p(x)$
	- Create a Markov chain whose stationary distribution equals $p(x)$

- Sample $x^{(1)}...x^{(m)}$; $x^{(m)} \sim p(x)$ if m sufficiently large
- Two common methods:
- Metropolis sampling
	- Propose a new point x' using $q(x' | x)$; depends on current point x
	- $-$ Accept with carefully chosen probability, $a(x',x)$
- Gibbs sampling
	- Sample each variable in turn, given values of all the others

Metropolis-Hastings

- At each step, propose a new value $x' \sim q(x' | x)$
- Decide whether we should move there
	- $-$ If $p(x') > p(x)$, it's a higher probability region (good)
	- If $q(x|x') < q(x'|x)$, it will be hard to move back (bad)
	- Accept move with a carefully chosen probability:

$$
a(x',x) = \min\left[1\ ,\ \frac{p(x')q(x|x')}{p(x)q(x'|x)}\right]
$$
Ratio p(

Probability of "accepting" the move from x to x'; otherwise, stay at state x.

 (x') / $p(x)$ means that we can substitute an unnormalized distribution f(x) if needed

– The resulting transition probability $T(x'|x) = q(x'|x) a(x',x)$ has *detailed balance* with p(x), a sufficient condition for stationarity

Dechter & Ihler 80

Gibbs sampling

 $x'_0 \sim p(X_0|x_1, x_2, x_3)$

 $x'_1 \sim p(X_1|x'_0, x_2, x_3)$

 $x'_2 \sim p(X_2|x'_0, x'_1, x_3)$

D

• Proceed in rounds

– Sample each variable in turn given all the others' most recent values:

- $\propto f(a, C) f(b, C, e)$ – Conditional distributions depend only on the Markov blanket
- Easy to see that $p(x)$ is a stationary distribution:

 $\sum p(x'_1|x_2...x_n)p(x_1,...x_n)=p(x'_1|x_2...x_n)p(x_2,...x_n)=p(x'_1,x_2...x_n)$ x_1

Advantages:

No rejections No free parameters (q)

Disadvantages:

"Local" moves May mix slowly if vars strongly correlated (can fail with determinism)

 $c \sim p(C \mid \ldots)$

A

 $\begin{array}{ccc} B & C \end{array}$

E

Ex: DBMs

- Very popular for restricted / deep Boltzmann machines
	- Each layer is independent given surrounding layers
- Used in both
	- model training (estimate gradient of LL)
		- Contrastive divergence; persistent CD; ...
	- model validation (estimate log-likelihood of data)
		- Annealed & reverse annealed importance sampling; discriminance sampling

MCMC and Common Queries

- MCMC generates samples (asymptotically) from $p(x)$
- Estimating expectations is straightforward $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \{x^{(i)}\} \sim p(x)$
- Estimating the partition function

$$
\frac{1}{Z} = \int_{x} p_0(x) \frac{1}{Z} = \int_{x} p_0(x) \frac{p(x)}{f(x)}
$$

MCMC and Common Queries

- MCMC generates samples (asymptotically) from $p(x)$
- Estimating expectations is straightforward $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \{x^{(i)}\} \sim p(x)$
- Estimating the partition function

$$
\frac{1}{Z} = \int_x p_0(x) \frac{1}{Z} = \int_x p_0(x) \frac{p(x)}{f(x)} \approx \frac{1}{n} \sum_i \frac{p_0(x)}{f(x)}
$$

"Reverse" importance sampling $\hat{Z}_{ris} = \left[\frac{1}{n}\sum \frac{p_0(x^{(i)})}{f(x^{(i)})}\right]^{-1}$

Ex: Harmonic Mean Estimator [Newton & Raftery 1994; Gelfand & Dey, 1994] $f(x) = p(D|\theta)p(\theta)$ $p_0(x) = p(\theta)$

Dechter & Ihler 84 and the DeepLearn 2017

MCMC

- Samples from $p(x)$ asymptotically (in time)
	- Samples are not independent
- Rate of convergence ("mixing") depends on
	- Proposal distribution for MH
	- Variable dependence for Gibbs
- Good choices are critical to getting decent performance
- Difficult to measure mixing rate; lots of work on this
- Usually discard initial samples ("burn in")
	- Not necessary in theory, but helps in practice
- Average over rest; asymptotically unbiased estimator $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum u(\tilde{x}^{(i)}) \quad \tilde{x}^{(i)} \sim p(x)$

Monte Carlo

Importance sampling

- i.i.d. samples
- Unbiased estimator
- Bounded weights provide finite-sample guarantees
- Samples from Q
- Good proposal: close to p but easy to sample from
- Reject samples with zeroweight

MCMC sampling

- Dependent samples
- Asymptotically unbiased
- Difficult to provide finitesample guarantees
- Samples from $\frac{1}{4} P(X|e)$
- Good proposal: move quickly among high-probability x
- May not converge with deterministic constraints

Outline

- Review: Graphical Models
- Variational methods
	- Convexity & decomposition bounds
	- Variational forms & the marginal polytope
	- Message passing algorithms
	- Convex duality relationships

• **Monte Carlo sampling**

- Basics
- Importance sampling
- Markov chain Monte Carlo
- **Integrating inference and sampling**

Estimating with samples

- Suppose we want to estimate $p(X_i | E)$
- Method 1: histogram (count samples where $X_i = x_i$)

$$
P(X_i = x_i | E) \approx \frac{1}{m} \sum_t \mathbb{1}[\tilde{x}_i^{(t)} = x_i] \qquad \tilde{x}^{(t)} \sim p(X|E)
$$

Method 2: average probabilities

$$
P(X_i = x_i | E) \approx \frac{1}{m} \sum_t p(x_i | \tilde{x}_{\neg i}^{(t)}) \qquad \tilde{x}^{(t)} \sim p(X | E)
$$

Converges faster! (uses all samples)

[e.g., Liu et al. 1995]

Rao-Blackwell Theorem:

Let X = (X_S, X_T), with joint distribution p(X_S, X_T), to estimate $\mathbb{E}[u(X_S)]$ Then, $\text{Var}\Big[\mathbb{E}[u(X_S)|X_T]\Big] \leq \text{Var}\Big[u(X_S)\Big]$

Weak statement, but powerful in practice! Improvement depends on X_{s} , X_{T}

Cutsets

- Exact inference:
	- Computation is exponential in the graph's induced width
- "w-cutset": set C, such that $p(X_{C} | X_{C})$ has induced width w
	- $-$ "cycle cutset": resulting graph is a tree; w=1

Cutset Importance Sampling

[Gogate & Dechter 2005, Bidyuk & Dechter 2006]

- Use cutsets to improve estimator variance
	- Draw a sample for a w-cutset X_c
	- Given X_c , inference is $O(exp(w))$

(Use weighted sample average for X_c ; weighted average of probabilities for X_c)

Using Inference in Gibbs sampling

- "Blocked" Gibbs sampler
	- Sample several variables together

- Cost of sampling is exponential in the block's induced width
- Can significantly improve convergence (mixing rate)
- Sample strongly correlated variables together

Using Inference in Gibbs sampling

- "Collapsed" Gibbs sampler
	- Analytically marginalize some variables before / during sampling

– Ex: LDA "topic model" for text

Dechter & Ihler 93

Using Inference in Gibbs Sampling

Faster **Convergence**

- Standard Gibbs: $p(A | b, c) \rightarrow P(B | a, c) \rightarrow P(C | a, b)$ (1)
- Blocking: $p(A | b, c) \rightarrow P(B, C | a)$ (2)
- Collapsed:
 $p(A | b) \rightarrow P(B | a)$ (3)

Summary: Monte Carlo methods

- Stochastic estimates based on sampling
	- Asymptotically exact, but few guarantees in the short term
- Importance sampling
	- Fast, potentially unbiased
	- Performance depends on a good choice of proposal q
	- Bounded weights can give finite sample, probabilistic bounds
- MCMC
	- Only asymptotically unbiased
	- Performance depends on a good choice of transition distribution
- Incorporating inference
	- Use exact inference within sampling
	- Reduces the variance of the estimates

Course Summary

• Class 1: Introduction and Inference

C

^B ^A

• Class 3: Variational Methods and Monte Carlo Sampling

E K F

G

H

D

J

L

M

ABC

BDEF

EFH

FHK HJ KLM

DGF

 θ_{13}