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Approximate Inference
• Two main schools of approximate inference

• Variational methods
– Frame “inference” as convex optimization

& approximate (constraints, objectives)
– Reason about “beliefs”; pass messages
– Fast approximations & bounds
– Quality often limited by memory

• Monte Carlo sampling
– Approximate expectations with sample averages
– Estimates are asymptotically correct
– Can be hard to gauge finite sample quality
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Graphical models
A graphical model consists of:

-- variables
-- domains
-- functions or “factors”

and a combination operator 

Example:

The combination operator defines an overall function from the individual factors,
e.g.,  “+”  : 

(we’ll assume discrete)

Notation:
Discrete  Xi ) values called “states”
“Tuple” or “configuration”: states taken by a set of variables
“Scope” of f: set of variables that are arguments to a factor f

often index factors by their scope, e.g., 
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Graphical models

+ = 0 + 6

A B f(A,B)

0 0 6

0 1 0

1 0 0

1 1 6

B C f(B,C)

0 0 6

0 1 0

1 0 0

1 1 6

A B C f(A,B,C)

0 0 0 12

0 0 1 6

0 1 0 0

0 1 1 6

1 0 0 6

1 0 1 0

1 1 0 6

1 1 1 12

=

For discrete variables, think of functions  as “tables” 
(though we might represent them more efficiently)

A graphical model consists of:
-- variables
-- domains
-- functions or “factors”

and a combination operator 

Example:

(we’ll assume discrete)
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Canonical forms

Typically either multiplication or summation; mostly equivalent:

Product of nonnegative factors
(probabilities, 0/1, etc.)

Sum of factors
(costs, utilities, etc.)

log / exp

A graphical model consists of:
-- variables
-- domains
-- functions or “factors”

and a combination operator 
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Ex: DBMs
• Example: Deep Boltzmann machines

– 784 pixels  500 mid  500 high  2000 top  10 labels 

– Induced width?  ~2000!

h1

h2

h3

y

x

h1 h2 h3 yx

[Hinton et al. 2007]

…

(¼ 1.5m parameters)
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Ex: DBMs
• Example: Deep Boltzmann machines

– 784 pixels  500 mid  500 high  2000 top  10 labels 

– Induced width?  ~2000!
– Generative model: can simulate data, use partial observations, …

[Hinton et al. 2007]

Fix output,
simulate inputs

…

(¼ 1.5m parameters)
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 Sum-Inference

 Max-Inference

 Mixed-Inference

Types of queries

• NP-hard: exponentially many terms
• We will focus on approximation algorithms

– Anytime: very fast & very approximate  ! Slower & more accurate

Harder
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Outline
• Review: Graphical Models

• Variational methods
– Convexity & decomposition bounds
– Variational forms & the marginal polytope
– Message passing algorithms
– Convex duality relationships

• Monte Carlo sampling
– Basics
– Importance sampling
– Markov chain Monte Carlo
– Integrating inference and sampling
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Vector space representation
• Represent the (log) model and state in a vector space

X1 X2

0 0 -1.0

0 1 2.0

1 0 0.0

1 1 1.0

X1

0 0.5

1 0.75

0.5

0.75

.

.

…

-1.0

2.0

0.0

1.0

…

0

1

1

0

…

0

0

1

0

….

…

…
Evaluating the function is a dot product in the vector space:
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Inference Tasks & Convexity
• Distribution is log-linear (exponential family):

• Tasks of interest are convex functions of the model:

“natural parameters”

“features”
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Bounds via Convexity
• Convexity relates target to “nearby” models

– Some of these models are easy to solve!  (trees, etc.)
– Inference at easy models + convexity tells us something about our model!

• Lower bounds:

“easier” model:
efficient to do inference

target model:
inference is hard!

Mean field
Negative TRW
…
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Bounds via Convexity
• Convexity relates target to “nearby” models

– Some of these models are easy to solve!  (trees, etc.)
– Inference at easy models + convexity tells us something about our model!

• Upper bounds:

“easier” models:
efficient to do inference

target model:
inference is hard!

TRW
Decomposition
…
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Tree-reweighted MAP
• Let T1, T2 be two (or more) tree-structured models, with

• Each Ti is easy to solve:

• And by convexity,

• Minimize bound?
– Convex objective, linear constraints

T1
T2

0.25

0.5

.

.

…

0.0

0.0

0.0

0.0
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Decomposition Bounds
• TRW MAP is equivalent to MAP decomposition

· =

(on trees, decomposition bound = exact inference)

More compact
Faster optimization
Reparameterization “messages”
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Tree-reweighted Sum
• Let T1, T2 be two (or more) tree-structured models, with

• Again, we have
T1

T2

w1 w2

·
w2

w1

0

0

1

1

=

(if T1, T2 share an elimination order)
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Negative TRW
• We can also get a lower bound via decomposition:

• Identical bound computation,
but with all weights but one negative:

T1
T2
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Outline
• Review: Graphical Models

• Variational methods
– Convexity & decomposition bounds
– Variational forms & the marginal polytope
– Message passing algorithms
– Convex duality relationships

• Monte Carlo sampling
– Basics
– Importance sampling
– Markov chain Monte Carlo
– Integrating inference and sampling
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Variational forms
• Reframe inference task as an optimization over distributions q(x)
• Ex: MAP inference

• Sum inference:

• How to optimize over distributions q?

Optimal q(x) puts all mass on optimal value(s) of x:
(mass on any other values of x reduces the average)

(Kullback–Leibler divergence)

Equal iff

Proof:
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The marginal polytope
• Rewrite 

(the marginal probabilities of q)

0

1

1

0

0

0

1

0

q(X1=0)

q(X1=1)

q(X2=0)
.

q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)

.

(set of all valid marginal probabilities of q)

X = (0,0):
[1,0,0,0]

X=(0,1):
[0,1,0,0]

X=(1,0):
[0,0,1,0]

X=(1,1):
[0,0,0,1]

“marginal polytope”

and similarly, 
(max entropy given ¹)
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming n/a

Mean field exact

Belief propagation

Tree-reweighted

Method distributions entropy value               

Max:

Sum:
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Mean Field
• We can design lower bounds by restricting q(x)

– Naïve mean field: q(x) is fully independent
– Entropy H(q) is then easy:

• Optimizing the bound via coordinate ascent:

)

)
Coordinate update:
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Mean Field
• We can design lower bounds by restricting q(x)

– Naïve mean field: q(x) is fully independent
– Entropy H(q) is then easy:

• Optimizing the bound via coordinate ascent:

)

A

B C

E

D
“Message passing” interpretation:

Updates depend only on Xi’s Markov blanket
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Naïve Mean Field
• Subset of M corresponding to independent distributions?

– Includes all vertices (configurations of x), but not all distributions
– Non-convex set; coordinate ascent has local optima

(set of marginal probabilities of independent q)

X = (0,0):
[1,0,0,0]

X=(0,1):
[0,1,0,0]

X=(1,0):
[0,0,1,0]

X=(1,1):
[0,0,0,1]

Non-convex (quadratic) manifold!

1-q1

q1

1-q2

q2

(1-q1) x (1-q2)

(1-q1) x q2

q1 x (1-q2)

.

q(X1=0)

q(X1=1)

q(X2=0)

q(X2=1)

q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)

.
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming n/a

Mean field exact

Belief propagation

Tree-reweighted

Method distributions entropy value               

Max:

Sum:
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The local polytope
• Unfortunately, M has a large number of constraints 

– Enforce only a few, easy to check constraints? 
– Equivalent to a linear programming relaxation of original ILP

q(X1=0)

q(X1=1)

q(X2=0)
q(X2=1)

…
q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)

q(X1=1,X2=0)

…

All probabilities 
are within [0,1]

“local consistency” polytope
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q(X1=0)

q(X1=1)

q(X2=0)
q(X2=1)

…
q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)
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…

All probabilities 
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Each marginal probability
is normalized to sum to one
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The local polytope
• Unfortunately, M has a large number of constraints 

– Enforce only a few, easy to check constraints? 
– Equivalent to a linear programming relaxation of original ILP

All probabilities 
are within [0,1]

Each marginal probability
is normalized to sum to one

Marginal of (xi, xj)
is consistent with marginal of xi

(& similarly, consistent with xj )

q(X1=0)

q(X1=1)

q(X2=0)
q(X2=1)

…
q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)

q(X1=1,X2=0)

…

“local consistency” polytope
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The local polytope
• Local polytope does not enforce all the constraints of M:

– Ex: all pairwise probabilities locally consistent, but no joint q(x) exists:

• But, trees remain easy
– If we only specify the marginals on a tree, we can construct q(x)

0.5          0 
0          0.5 

0.5          0 
0          0.5 

0         0.5 
0.5         0

0.5
0.5

(also illustrates connection to arc consistency in CSPs, etc.)

on tree-structured distributions
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Duality relationship
• Local polytope LP & MAP decomposition are Lagrangian duals:

subject to (a) normalization constraints  (enforce explicitly) 
(b) consistency:                                         ,                                          (use Lagrange)
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Duality: MAP
Primal

Dual

Reason about subproblems

“Messages” adjust overlapping 
subproblems

Reparameterize subproblems to 
decrease upper bound

Reason about “beliefs” (marginals)

Constraints enforce overlapping 
beliefs are consistent

Optimum over beliefs gives upper 
bound

=
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Regions
• Generalize local consistency enforcement

G

A

B

C

D

F

E

JI

H

Factor graph

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F FG GH H

GI

Dual graph

Consistency:

Beliefs:

Separators = coordinates
of bound optimization (¸)
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Regions
• Generalize local consistency enforcement
• Larger regions: more consistent; more costly to represent

G

A

B

C

D

F

E

JI

H

Factor graph Dual graph

Consistency:

Beliefs:

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F FG GH H

GI
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Regions
• Generalize local consistency enforcement
• Larger regions: more consistent; more costly to represent

G

A

B

C

D

F

E

JI

H

Factor graph Dual graph

Consistency:

Beliefs:

A

ABDE

FGHI

ABC

BCE

GHIJ

CDEF

CA C

A AB BC

BE

C

C
DE CE

F

GHI
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Regions
• Generalize local consistency enforcement
• Larger regions: more consistent; more costly to represent

G

A

B

C

D

F

E

JI

H

Factor graph Dual graph

Consistency:

Beliefs:

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

Junction tree:
Approximation is exact!
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Regions

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

AB BC

BE

DE CE

F

F FG GH

GI

ABDE

FGHI

ABC

BCE

GHIJ

CDEF

AB BC

BE

DE CE

F

GHI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity
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Mini-bucket Regions
• Mini-bucket elimination defines regions with bounded complexity

E:

C:

D:

B:

A:

mini-buckets

U = upper bound U = upper bound

Join graph:

{A,B,C} {B,D,E}

{A,C,E}

{A,D,E}

{A,E}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming n/a

Mean field exact

Belief propagation

Tree-reweighted

Method distributions entropy value               

Max:

Sum:

Approximate entropy in 
terms of local beliefs
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Bethe Approximation
• Need to approximate H in terms of only local beliefs

• In trees, H has a simple form:

Then,

Depends only on pairwise marginals!  

Called the “Bethe” approximation in statistical physics
see [Yedidia et al. 2001]
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Bethe Approximation
• Suppose we want to optimize

• Use the same Lagrange multiplier trick as LP/DD
– Then, define 

Calculating messages: Calculating marginals:

Fixed points satisfy LBP recursion!
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Loopy BP and the partition function
• Use the Bethe approximation to estimate log Z:

– Run loopy BP on the factor graph & calculate beliefs
– Use the Bethe approximation to H(b):

– Often written using counting numbers:

– As with LP / DD, regions are what matters!
– But now, regions define both consistency and entropy
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Region graphs

… …

… …

Counting numbers:

c=1 c=1 c=1 c=1

c=-1 c=-1 c=-1 c=-1

c=0 c=0 c=0 c=1 c=0 c=0 c=0

(inclusion/exclusion)

Region: a collection of variables & their interactions
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Join Graphs
• Join graphs give a simple set of regions

Join graph:

{A,B,C} {B,D,E}

{A,C,E}

{A,D,E}

{A,E}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}

E:

C:

D:

B:

A:

Counting numbers
cliques: +1
separators: -1

Entropy approximation:

+H(A,B,C) +H(B,D,E)

+H(A,C,E)

+H(A,D,E)

+H(A,E)

+H(A)

-H(B)

-H(D,E)

-H(A)
-H(A)

-H(A,E)

-H(A,C)

Results in a simple variant of LBP message passing!
Each variable’s subgraph is a tree
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Summation Bounds
• A local bound on the entropy will give a bound on Z:

Join graph:

{A,B,C} {B,D,E}

{A,C,E}

{A,D,E}

{A,E}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}

Exact Entropy

H(B|A,C,D,E)
+

H(C|A,D,E)
+

H(D|A,E)
+

H(E|A)
+

H(A)

E:

C:

D:

B:

A:

w1 H(B|A,C) + w2 H(B|D,E)
+

H(C|A,E)
+

H(D|A,E)
+

H(E|A)
+

H(A)

·

·

=

=

=

Weighted Mini-bucket (primal) [Liu & Ihler 2011]
Conditional Entropy Decomposition (dual)  [Globerson & Jaakkola 2008]
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Primal vs. Dual Forms
Primal

Dual

Direct bound on objective

“Messages” reparameterize
subproblems to be consistent

Reason about “beliefs” (marginals)

Messages update beliefs to be consistent

or
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T2

Message-passing form:

“Typically”:
upper bound: prefer primal
lower bound: either OK
Bethe / BP: prefer dual



Summary: Variational methods
• Build approximations via an optimization perspective

– Primal form: decomposition into simpler problems
– Dual form: optimization over local “beliefs”

• Deterministic bounds and approximations
– Convex upper bounds
– Non-convex lower bounds
– Bethe approximation & belief propagation

• Scalable, “local approximation” viewpoint
– Optimization as local message passing

• Can improve quality through increasing region size
– But, requires exponentially increasing memory & time
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Outline
• Review: Graphical Models

• Variational methods
– Convexity & decomposition bounds
– Variational forms & the marginal polytope
– Message passing algorithms
– Convex duality relationships

• Monte Carlo sampling
– Basics
– Importance sampling
– Markov chain Monte Carlo
– Integrating inference and sampling
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Monte Carlo estimators
• Most basic form: empirical estimate of probability

• Relevant considerations
– Able to sample from the target distribution p(x)?
– Able to evaluate p(x) explicitly, or only up to a constant?

• “Any-time” properties
– Unbiased estimator, 

or asymptotically unbiased, 

– Variance of the estimator decreases with m
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Monte Carlo estimators
• Most basic form: empirical estimate of probability

• Central limit theorem
– p(U) is asymptotically Gaussian:

• Finite sample confidence intervals
– If u(x) or its variance are bounded, e.g.,

probability concentrates rapidly around the expectation:

m=1: m=5: m=15:
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Sampling in Bayes nets
• No evidence: “causal” form makes sampling easy

– Follow variable ordering defined by parents
– Starting from root(s), sample downward
– When sampling each variable, condition on values of parents

A B

C

D Sample:

[e.g., Henrion 1988]
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Bayes nets with evidence
• Estimating the probability of evidence, P[E=e]:

– Finite sample bounds:  u(x) 2 [0,1]

– Relative error bounds [Dagum & Luby 1997]

[e.g., Hoeffding]

What if the evidence is unlikely?  P[E=e]=1e-6 ) could estimate U = 0!

Dechter & Ihler DeepLearn 2017 57



Bayes nets with evidence
• Estimating posterior probabilities, P[A = a | E=e]?

• Rejection sampling
– Draw x ~ p(x), but discard if E != e
– Resulting samples are from p(x | E=e); use as before
– Problem: keeps only  P[E=e] fraction of the samples!
– Performs poorly when evidence probability is small  

• Estimate the ratio:  P[A=a,E=e]  /  P[E=e]
– Two estimates (numerator & denominator)
– Good finite sample bounds require low relative error!
– Again, performs poorly when evidence probability is small
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Downward message normalizes bucket;
ratio  is a conditional distribution

E:

C:

D:

B:

A:

Exact sampling via inference
• Draw samples from P[A|E=e] directly?

– Model defines un-normalized p(A,…,E=e)
– Build (oriented) tree decomposition & sample

Z

Work:  O(exp(w)) to build distribution
O(n d) to draw each sampleDechter & Ihler DeepLearn 2017 59



Outline
• Review: Graphical Models

• Variational methods
– Convexity & decomposition bounds
– Variational forms & the marginal polytope
– Message passing algorithms
– Convex duality relationships

• Monte Carlo sampling
– Basics
– Importance sampling
– Markov chain Monte Carlo
– Integrating inference and sampling
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Importance Sampling
• Basic empirical estimate of probability:

• Importance sampling:
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Importance Sampling
• Basic empirical estimate of probability:

• Importance sampling:

“importance weights”
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IS for common queries
• Partition function

– Ex: MRF, or BN with evidence

– Unbiased; only requires evaluating unnormalized function f(x)

• General expectations wrt p(x) / f(x)?
– E.g., marginal probabilities, etc.

Only asymptotically unbiased…

Estimate separately
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Importance Sampling
• Importance sampling:

• IS is unbiased and fast if q(.) is easy to sample from

• IS can be lower variance if q(.) is chosen well
– Ex: q(x) puts more probability mass where u(x) is large
– Optimal:  q(x) / |u(x) p(x)|

• IS can also give poor performance
– If q(x) << u(x) p(x):  rare but very high weights!
– Then, empirical variance is also unreliable!
– For guarantees, need to analytically bound weights / variance…
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Choosing a proposal
• Can use WMB upper bound to define a proposal q(x):

E:

C:

D:

B:

A:

mini-buckets

U = upper bound

…

Weighted mixture:
use minibucket 1 with probability w1
or, minibucket 2 with probability w2 = 1 - w1

where

Key insight: provides bounded importance weights!

[Liu, Fisher, Ihler 2015]
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WMB-IS Bounds
• Finite sample bounds on the average

• Compare to forward sampling
– Works well if evidence “not too unlikely” ) not too much less likely than U

101 102 103 104 105

Sample Size (m)
101 102 103 104 105 106              

Sample Size (m)

BN_6 BN_11

-58.4

-53

-63

-39.4

-34

-44

“Empirical Bernstein” bounds

[Liu, Fisher, Ihler 2015]
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Other choices of proposals
• Belief propagation

– BP-based proposal [Changhe & Druzdzel 2003]
– Join-graph BP proposal [Gogate & Dechter 2005]
– Mean field proposal [Wexler & Geiger 2007]

E:

C:

D:

B:

A:

Join graph:

{B|A,C} {B|D,E}

{C|A,E}

{D|A,E}

{E|A}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}
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Other choices of proposals
• Belief propagation

– BP-based proposal [Changhe & Druzdzel 2003]
– Join-graph BP proposal [Gogate & Dechter 2005]
– Mean field proposal [Wexler & Geiger 2007]

• Adaptive importance sampling
– Use already-drawn samples to update q(x)
– Rates vt and ´t adapt estimates, proposal
– Ex:

[Cheng & Druzdzel 2000]
[Lapeyre & Boyd 2010]
…

– Lose “iid”-ness of samples
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Outline
• Review: Graphical Models

• Variational methods
– Convexity & decomposition bounds
– Variational forms & the marginal polytope
– Message passing algorithms
– Convex duality relationships

• Monte Carlo sampling
– Basics
– Importance sampling
– Markov chain Monte Carlo
– Integrating inference and sampling
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Markov Chains
• Temporal model

– State at each time t
– “Markov property”: state at time t depends only on state at t-1
– “Homogeneous” (in time):  p(Xt | Xt-1) = T(Xt |Xt-1) does not depend on t

• Example: random walk
– Time 0:  x0 = 0
– Time t:   xt = xt-1 § 1

x0 x1 x2 x3 x4

…
O

O O

O

O
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Markov Chains
• Temporal model

– State at each time t
– “Markov property”: state at time t depends only on state at t-1
– “Homogeneous” (in time): p(Xt | Xt-1) = T(Xt |Xt-1) does not depend on t

• Example: finite state machine
– Time 0:  x0 = S3
– Ex:  S3 ! S1 ! S3 ! S2 ! …
– What is  p(xt)?  Does it depend on x0?

x0 x1 x2 x3 x4

S1 S2

S3

2/3
1/3

1/2

1
1/2

S1:
S2:
S3:

P(x0) P(x1) P(x2) P(x3)

…
P(x100)
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Stationary distributions
• Stationary distribution

• p(xt) becomes independent of p(x0)?
• Sufficient conditions for s(x) to exist and be unique:

(a) p( . | . ) is acyclic:
(b) p( . | . ) is irreducible:

Ex: not (a)

s(x) may not exist

Ex: not (b)

multiple s(x) exist

Without both (a) & (b), 
long-term probabilities 
may depend on the initial 
distribution
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Markov Chain Monte Carlo
• Method for generating samples from an intractable p(x)

– Create a Markov chain whose stationary distribution equals p(x)

– Sample x(1)…x(m);   x(m) ~ p(x) if m sufficiently large
– Two common methods:

• Metropolis sampling
– Propose a new point x’ using  q(x’ | x) ; depends on current point x
– Accept with carefully chosen probability, a(x’,x)  

• Gibbs sampling
– Sample each variable in turn, given values of all the others

A B

C

A1

B1

C1

A2

B2

C2

A3

B3

C3

State “x”:
Complete config. 
of target model
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Metropolis-Hastings
• At each step, propose a new value x’ ~ q(x’|x)
• Decide whether we should move there

– If  p(x’) > p(x), it’s a higher probability region  (good)
– If q(x|x’) < q(x’|x),   it will be hard to move back (bad)

– Accept move with a carefully chosen probability:

– The resulting transition probability
has detailed balance with p(x), a sufficient condition for stationarity

Probability of “accepting” the move from 
x to x’; otherwise, stay at state x.

Ratio p(x’) / p(x) means that we can substitute 
an unnormalized distribution f(x) if needed
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MCMC Example

Early samples depend
on initialization

“Burn in”; may discard
these samples

Metropolis-Hastings (symmetric proposal)

f = @(X) … % define f(x) / p(x), target
X = [0,0]; % set or sample initial state
for t=2:T, % simulate Markov chain:
X(t,:) = X(t-1,:) + .5*randn(1,2);    % propose move
r = min( 1, f(X(t,:)) / f(X(t-1,:)) );    % compute acceptance
if (rand > r) X(t,:)=X(t-1,:); end;     % sample acceptance

end;
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MCMC Example
Metropolis-Hastings (symmetric proposal)

f = @(X) … % define f(x) / p(x), target
X = [0,0]; % set or sample initial state
for t=2:T, % simulate Markov chain:
X(t,:) = X(t-1,:) + .5*randn(1,2);    % propose move
r = min( 1, f(X(t,:)) / f(X(t-1,:)) );    % compute acceptance
if (rand > r) X(t,:)=X(t-1,:); end;     % sample acceptance

end;
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MCMC Example

Samples correlated
in time 
(not independent)

Metropolis-Hastings (symmetric proposal)

f = @(X) … % define f(x) / p(x), target
X = [0,0]; % set or sample initial state
for t=2:T, % simulate Markov chain:
X(t,:) = X(t-1,:) + .5*randn(1,2);    % propose move
r = min( 1, f(X(t,:)) / f(X(t-1,:)) );    % compute acceptance
if (rand > r) X(t,:)=X(t-1,:); end;     % sample acceptance

end;

Dechter & Ihler DeepLearn 2017 78



MCMC Example
Metropolis-Hastings (symmetric proposal)

f = @(X) … % define f(x) / p(x), target
X = [0,0]; % set or sample initial state
for t=2:T, % simulate Markov chain:
X(t,:) = X(t-1,:) + .5*randn(1,2);    % propose move
r = min( 1, f(X(t,:)) / f(X(t-1,:)) );    % compute acceptance
if (rand > r) X(t,:)=X(t-1,:); end;     % sample acceptance

end;

Dechter & Ihler DeepLearn 2017 79



MCMC Example

Asymptotically,
samples will 
represent p(x)

Metropolis-Hastings (symmetric proposal)

f = @(X) … % define f(x) / p(x), target
X = [0,0]; % set or sample initial state
for t=2:T, % simulate Markov chain:
X(t,:) = X(t-1,:) + .5*randn(1,2);    % propose move
r = min( 1, f(X(t,:)) / f(X(t-1,:)) );    % compute acceptance
if (rand > r) X(t,:)=X(t-1,:); end;     % sample acceptance

end;
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Gibbs sampling
• Proceed in rounds

– Sample each variable in turn given all the others’ most recent values:

– Conditional distributions depend only on the Markov blanket

– Easy to see that p(x) is a stationary distribution:

[Geman & Geman 1984]

A

B C

E

D

Advantages:
No rejections
No free parameters (q)

Disadvantages:
“Local” moves
May mix slowly if vars strongly correlated
(can fail with determinism)
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Ex: DBMs
• Very popular for restricted / deep Boltzmann machines

– Each layer is independent given surrounding layers

• Used in both
– model training (estimate gradient of LL)

• Contrastive divergence; persistent CD; …
– model validation (estimate log-likelihood of data)

• Annealed & reverse annealed importance sampling; discriminance sampling
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MCMC and Common Queries
• MCMC generates samples (asymptotically) from p(x)

• Estimating expectations is straightforward

• Estimating the partition function
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MCMC and Common Queries
• MCMC generates samples (asymptotically) from p(x)

• Estimating expectations is straightforward

• Estimating the partition function

Ex:  Harmonic Mean Estimator 
[Newton & Raftery 1994; Gelfand & Dey, 1994]

“Reverse” importance sampling

Dechter & Ihler DeepLearn 2017 84



MCMC
• Samples from p(x) asymptotically (in time)

– Samples are not independent

• Rate of convergence (“mixing”) depends on
– Proposal distribution for MH
– Variable dependence for Gibbs

• Good choices are critical to getting decent performance
• Difficult to measure mixing rate; lots of work on this

• Usually discard initial samples (“burn in”)
– Not necessary in theory, but helps in practice

• Average over rest; asymptotically unbiased estimator
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Monte Carlo
Importance sampling

• i.i.d. samples
• Unbiased estimator
• Bounded weights provide 

finite-sample guarantees

• Samples from Q
• Good proposal: close to p but 

easy to sample from

• Reject samples with zero-
weight

MCMC sampling

• Dependent samples
• Asymptotically unbiased
• Difficult to provide finite-

sample guarantees

• Samples from ¼ P(X|e)
• Good proposal: move quickly 

among high-probability x

• May not converge with 
deterministic constraints
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Outline
• Review: Graphical Models

• Variational methods
– Convexity & decomposition bounds
– Variational forms & the marginal polytope
– Message passing algorithms
– Convex duality relationships

• Monte Carlo sampling
– Basics
– Importance sampling
– Markov chain Monte Carlo
– Integrating inference and sampling
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Estimating with samples
• Suppose we want to estimate p(Xi | E)

• Method 1: histogram (count samples where Xi=xi)

• Method 2: average probabilities

Converges faster!  (uses all samples)

Rao-Blackwell Theorem:

Let X = (XS,XT), with joint distribution p(XS,XT), to estimate 

Then,

[e.g., Liu et al. 1995]

Weak statement, but powerful in practice!  Improvement depends on XS,XT
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Cutsets
• Exact inference:

– Computation is exponential in the graph’s induced width

• “w-cutset”: set C, such that p(X:C |XC) has induced width w
– “cycle cutset”: resulting graph is a tree; w=1

A

B

P

J

L

E

DF M
O

H

K

G N

C

Cycle cutset = {A,B,C}

C P

J

L

B

E

DF M
O

H

K

G N

C P

J

L

E

DF M
O

H

K

G N

C P

J A

L

B

E

DF M
O

H

K

G N
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Cutset Importance Sampling
• Use cutsets to improve estimator variance

– Draw a sample for a w-cutset XC

– Given XC, inference is O(exp(w))

X1

X4

X7

X2

X5

X8

X3

X6

X9

O(n d2) work
X1

X4

X7

X2

X5

X8

X3

X6

X9

X1

X4

X7 X8

X3

X6

X9

[Gogate & Dechter 2005,
Bidyuk & Dechter 2006]

(Use weighted sample average for XC; weighted average of probabilities for X:C)
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Using Inference in Gibbs sampling
• “Blocked” Gibbs sampler

– Sample several variables together

– Cost of sampling is exponential in the block’s induced width

– Can significantly improve convergence (mixing rate)
– Sample strongly correlated variables together

…
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Using Inference in Gibbs sampling
• “Collapsed” Gibbs sampler

– Analytically marginalize some variables before / during sampling

– Ex: LDA “topic model” for text

A B

C
A B

…

Dechter & Ihler DeepLearn 2017 93



Using Inference in Gibbs Sampling

• Standard Gibbs:
(1)

• Blocking:
(2)

• Collapsed:
(3)

Faster
Convergence

A B

C
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Summary: Monte Carlo methods
• Stochastic estimates based on sampling

– Asymptotically exact, but few guarantees in the short term

• Importance sampling
– Fast, potentially unbiased
– Performance depends on a good choice of proposal q
– Bounded weights can give finite sample, probabilistic bounds

• MCMC
– Only asymptotically unbiased
– Performance depends on a good choice of transition distribution

• Incorporating inference
– Use exact inference within sampling
– Reduces the variance of the estimates
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Course Summary
• Class 1: Introduction and Inference

• Class 2: Search

• Class 3: Variational Methods and Monte Carlo Sampling
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