

Modern Exact and Approximate MAP algorithms for Graphical Models

In the pursuit of universal solver

Rina Dechter

Donald Bren school of ICS, University of California, Irvine

TTI, May/2014

Sample Applications for Graphical Models

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.

(mark & S

ITA, 2/14/2013

Sample Applications for Graphical Models

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.

How to design a good MAP solver

Heuristic Search

The core of a good search algorithm

- □A compact search space
- □A good heuristic evaluation function
- □A good traversal strategy
- Anytime search yields a good approximation.

Outline

- Graphical models, Queries
- Inference Algorithms
- AND/OR search
- Optimistic bounding schemes (mini-bucket, reparameterization\cost-shifting, soft AC)
- BRAOBB: anytime DFS for AND/OR
- Experiments/competitions (putting it all together)
- Recent work: Parallelism, m-best, weighted best-first, marginal map, tree-SLS
- Conclusion

UNIVERSITY of CALIFORNIA O IRVINE

Graphical Models, Queries, Algorithms

Graphical Models

Queries:

Belief updating:
$$\Sigma_{X-y} \prod_{j} P_{i}$$

 $\square MPE: \max_{x} \prod_{j} P_{j}$ $CSR: \prod_{x} \times_{j} C_{j}$ $Max-CSP: \min_{x} \Sigma_{j} F_{j}$

When combine and marginalize obey Some properties they can be solved By the same algorithms

(Bistareli, Rossi and Montanari, 1995, Shenoy, Shafer, 1990, Kask et. al., 2005.)

Monitoring Intensive-Care Patients

The "alarm" network - 37 variables, 509 parameters (instead of 2³⁷)

 $P(x_1...x_n) = \prod_i p(x_i \mid parent(x_i))$ $P(e) = \sum_{X \sim E} \prod_i p(x_i \mid parents(x_i))$ $MAP = \max_x \prod_i p(x_i \mid parents(x_i))$

UNIVERSITY of CALIFORNIA O IRVINE

Queries

- **Optimization Queries: MAP/MPE queries:** $x_{AB}^* = \arg \min_{x_A, x_B} \sum_{x_\alpha} \varphi_\alpha$ $x_{AB}^* = \arg \max_{x_A, x_B} \prod_{x_\alpha} \varphi_\alpha$
- Likelihood queries: (counting, partition function, marginal, probability of evidence)

$$Z = \sum_{x_A, x_B} \prod_{x_\alpha} \varphi_\alpha$$

Marginal MAP:

• Marginalize (sum) away variables A, then find optimal configuration of variables B

$$oldsymbol{x}_B^* = rg\max_{oldsymbol{x}_B} \sum_{oldsymbol{x}_A} \prod_lpha \psi(oldsymbol{x}_lpha)$$

Also satisfiability and expected utility

Tree-solving is easy

MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory

UNIVERSITY of CALIFORNIA () IRVINE

Inference vs conditioning-search

Search+inference: Space: exp(w) Time: exp(w+c(w))

w: user controlled

UNIVERSITY of CALIFORNIA () IRVINE

Inference vs conditioning-search

UNIVERSITY of CALIFORNIA O IRVINE

- Solving MAP by Inference:
- Non-serial Dynamic programming
- The induced-width/treewidth

ITA, 2/14/2013

Generating the MPE-tuple

- 5. b' = arg max P(b | a') × × P(d'|b,a') × P(e'|b,c')
- 4. c' = arg max P(c | a') × × h^B (a', d', c, e')
- 3. d' = arg max h^c (a', d, e')
- 2. e' = 0
- 1. $a' = arg max P(a) \cdot h^{E}(a)$

- B: P(b|a) P(d|b,a) P(e|b,c)
- C: P(c|a) $h^{B}(a, d, c, e)$
- h^c (a, d, e) **D:**
- h^D (a,e) *E: e*=0
- h^E (a) A: P(a)

Return (a',b',c',d',e')

Generating the MPE-tuple

Return (a',b',c',d',e')

The Induced-width/treewidth

$w^*(d)$ – the induced width of graph along ordering d

"Moral" graph

Ordering: (A, B, C, D, E, F, G)

UNIVERSITY of CALIFORNIA O IRVINE

Search:

The AND/OR Search graph

Classic OR Search Space

Ordering: A B E C D F

AND/OR Search Space

Primal graph

DFS tree

UNIVERSITY of C. ALEORNIA

B

IRVINE

A

R

E

 (\mathbf{F})

С

AND/OR vs. OR

DFS algorithm (#CSP example) Value of node = number of solutions below it

OR node: Marginalization operator (summation) AND node: Combination operator (product)

AND/OR Tree Search for COP

From Search Trees to Search Graphs

Any two nodes that root identical sub-trees or sub-graphs can be merged

From Search Trees to Search Graphs

Any two nodes that root identical sub-trees or sub-graphs can be merged

How Big Is The Context?

Theorem: The maximum context size for a pseudo tree is equal to the treewidth of the graph along the pseudo tree.

UNIVERSITY of CALIFORNIA O IRVINE

B

A

Ε

F

(**c**)

(D

All Four Search Spaces

	AND/OR graph	OR graph
Space	O(n k ^{w*})	O(n k ^{pw*})
Time	O(n k ^{w*})	O(n k ^{pw*})
AND OR	<u> Computes any query:</u>	OR AND OR
AND OR	Constraint satisfaction	AND OR AND Q
OR AND	 Optimization Weighted counting 	OR AND
		Contex
and the second	Los Alar	nos Any query Over the c-

UNIVERSITY of CALIFORNIA () IRVINE

The impact of the pseudo-tree

UNIVERSITY of CALIFORNIA () IRVINE

The Effect of Constraint Propagation

CONSTRAINTS ONLY

FORWARD CHECKING

MAINTAINING ARC CONSISTENCY

Basic Heuristic Search Schemes

Heuristic function f(x^p) computes a lower bound on the best extension of x^p and can be used to guide a heuristic search algorithm. We focus on:

1. Branch-and-Bound

Use heuristic function *f(x^p)* to prune the depth-first search tree

2. Best-First Search

Always expand the node with the highest heuristic value f(x^p) needs lots of memory

Bounding approximations:

- The mini-bucket scheme
- The cost-shifting or re-parameterization scheme
- Combining the two

Two Bounding Schemes

- Goal: bound $min \downarrow x \sum i \uparrow f \downarrow i$ (x) or $max \downarrow x$ $\prod i \uparrow f \downarrow i$ (x)
- Mini-bucket; Node duplication control:
 - Mini-bucket scheme: (Dechter and Rish 1997,2003, Kask and Dechter, 1999, Rollon and Dechter 2010)

Reparameterization schemes:

- Soft arc-consistency (Bistareli, 2000, Sciex 2000)
- Linear relaxation/ Dual-decomposition: (Globerson and Jaakkola 2007, Sontag, Globerson and Jaakkola, 2010, Kovalevsky et al. 1975)

Belief Propagation can be viewed as re-parameterization

Mini-bucket Approximation (Dechter and Rish, 1997, 2003)

Split a bucket into mini-buckets =>bound complexity

Exponential complexity decrease : $O(e^n) \rightarrow O(e^r) + O(e^{n-r})$

ITA, 2/14/2013

С

B

Mini-Bucket Elimination

Properties of Mini-Bucket Eliminaton

- **Complexity:** *O*(*r exp*(*i*)) time and *O*(*exp*(*i*)) *space*.
- Accuracy: determined by upper/lower (U/L) bound.
- As *i* increases, both accuracy and complexity increase.
- Possible use of mini-bucket approximations:
 - □ As anytime algorithms
 - □ As heuristics in search

Outline

- Graphical models and the MAP task
- Bounding approximations
 - The mini-bucket scheme
 - □ The cost-shifting or re-parameterization scheme
 - □ Combining the two
- New Algorithms combinations
- Experiments

Tightening bounds via cost-shifting

Original

 $\max_{\underline{\mathbf{X}}} \sum_{ij} E_{ij}(x_i, x_j)$

Tightening bounds via cost-shifting

Original

Decomposition

$$\max_{\underline{\mathbf{X}}} \sum_{ij} E_{ij}(x_i, x_j) \leq \sum_{ij} \max_{\underline{\mathbf{X}}} E_{ij}(x_i, x_j) \cdot$$

- Decompose graph into smaller subproblems
- Solve each independently; optimistic bound
- Exact if all copies agree

Decomposition view

Original

Decomposition

 $\max_{\underline{\mathbf{X}}} \sum_{ij} E_{ij}(x_i, x_j) \le \min_{\lambda} \sum_{ij} \max_{\underline{\mathbf{X}}} E_{ij}(x_i, x_j) + \lambda_{ij}(x_i) + \lambda_{ji}(x_j)$

- Decompose graph into smaller subproblems
- Solve each independently; optimistic bound
- Exact if all copies agree

Enforce lost equality constraints via Lagrange multipliers

Decomposition view

Original

Decomposition

 $\forall i \sum_{j} \lambda_{ij}(x_i) = 0$

 $\max_{\underline{\mathbf{X}}} \sum_{ij} E_{ij}(x_i, x_j) \le \min_{\lambda} \sum_{ij} \max_{\underline{\mathbf{X}}} E_{ij}(x_i, x_j) + \lambda_{ij}(x_i) + \lambda_{ji}(x_j)$

Same bound by different names

- Dual decomposition (Komodakis et al. 2007)
- TRW, MPLP (Wainwright et al. 2005; Globerson & Jaakkola 2007)
- Soft arc consistency (Cooper & Schiex 2004)

Various Update Schemes

- Can use any decomposition updates
 - □ (message passing, subgradient, augmented, etc.)
- **FGLP**: Update the original factors

 $q^i \colon F_i$

 q^j :

- JGLP: Update clique function of the join graph
- MBE-MM Update within each bucket only

Factor graph Linear Programming

- Update the original factors (FGLP)
 - \Box Tighten all factors over over x_i simultaneously
 - $\Box \text{ Compute max-marginals} \quad \forall \alpha, \ \gamma_{\alpha}(x_i) = \max_{x_{\alpha} \setminus x_i} f_{\alpha}$
 - □ & update:

Mini-bucket + fixed-point updates

- **JGLP**: Update clique function of the join graph
 - □ Use MBE to generate the join graph
 - \Box Define function F_i for each clique (mini-bucket) q^i
 - □ Update each edge over separator set

$$F_i \leftarrow F_i + \frac{1}{2} (\gamma_j(x_s) - \gamma_i(x_s))$$

- **MBE-MM:** Mini-bucket with moment matching
 - □ Apply cost-shifting within each bucket only

Join Graph Linear Programming (JGLP(i))

UNIVERSITY of CALIFORNIA () IRVINE

Iterative tightening as bounding schemes pedigree9, n=1119, k=5, w=25, h=123, z=10 pedigree41, n=885, k=5, w=33, h=100, z=10

Anytime AND/OR Branch and Bound (BRAOBB) + MBE/JGLP(i)

Basic Heuristic Search Schemes

Heuristic function f(x^p) computes a lower bound on the best extension of x^p and can be used to guide a heuristic search algorithm. We focus on:

1. Branch-and-Bound

Use heuristic function *f(x^p)* to prune the depth-first search tree

55

2. Best-First Search

Always expand the node with the highest heuristic value f(x^p) needs lots of memory

UNIVERSITY of CALIFORNIA () IRVINE

Mini-bucket Heuristics for BB search

(Kask and dechterAIJ, 2001, Kask, Dechter and Marinescu 2004, 2005, 2009, Otten 2012)

 $f(a,e,D) = P(a) \cdot h^{\scriptscriptstyle B}(D,a) \cdot h^{\scriptscriptstyle C}(e,a)$

UNIVERSITY of CALIFORNIA () IRVINE

Β

AND/OR Branch-and-Bound

•Problem decomposition and caching. Mini-bucket heuristic for pruning.

UNIVERSITY of CALIFORNIA () IRVINE

Anytime Performance

- OR Branch-and-Bound is anytime.
- But AND/OR breaks anytime behavior of depth-first scheme:
 - First anytime solution delayed until last subproblem starts processing.
 - Very bad anytime behavior for unbalanced subproblem spaces.

• One complex subproblem early on delays everything. [Otten & Dechter, AlCom '12]

Anytime Performance

Breadth-Rotating AOBB:

- Take turns processing subproblems, rotate on:
 - Child subproblem branching.
 - Subproblem solved.
 - Node expansion limit reached.
- Process each subproblem depth-first.
 - Maintain favorable complexity bounds: linear number of nodes on stack(s).

[Otten & Dechter, AlCom '12]

Stochastic Variable Orderings

- AOBB complexity: O(nk^w)
 - High variance in width of orderings.
- Our implementation:
 - Minfill heuristic.
 - Random tie-breaking.
 - Allow deviation from heuristic optimum.

- Highly optimized data structures, early termination.
 - Can do many thousands of iterations.

[Kask, Gelfand, Otten, Dechter, AAAI '11]

UNIVERSITY of CALIFORNIA O IRVINE

Empirical Evaluation: Pascal 2011 Competition Comparing with Gurobi

ITA, 2/14/2013

Iterative tightening as heuristic generators

4 schemes used:

- □ **AOBB-MBE**: AOBB guided by pure MBE heuristics
- □ **AOBB-MBE+MM**: AOBB guided by MBE and max- marginal matching
- □ **AOBB-FGLP+MBE**: AOBB with heuristics from FGLP followed by MBE
- AOBB-JGLP: AOBB guided by JGLP-produced heuristics

FGLP, JGLP ran for 30 seconds

- Total search time bound 24 h
- Memory limit 3 Gb
- Mini-bucket z-bounds={10,15,20}

Empirical Evaluation: Haplotype problems

Empirical Evaluation: Haplotype problems

PASCAL 2011 Inference Challenge

DAOOPT: Improving AND/OR Branchand-Bound for Graphical Models

Lars Otten, Alexander Ihler, Kalev Kask, Rina Dechter

Dept. of Computer Science University of California, Irvine

ITA, 2/14/2013

Putting It All Together

- Three time limits: 20 sec, 20 min, 1h.
 - 4 GB memory limit in each case.
- Chose different parameter sets through experimentation.

	20 seconds	20 minutes	1 hour		
1. MPLP in input graph	2 sec	30 sec / 500 iter	60 sec / 2000 iter		
2. Stochastic Local Search	2x 2 sec	10x 6 sec	20x 10 sec		
3. Iterative Variable Ordering	3 sec / 500 iter	60 sec / 10K iter	180 sec / 30K iter		
4. MPLP on join graph (JGLP)	2 sec	30 sec / 250 iter	60 sec / 1K iter		
5. Mini-buckets + MM	i=15, max.125MB	i=25, max.4GB	i=35, max.4GB		
6. Full BRAOBB	To completion or until timeout				

Competing Solvers

- INRA Toulouse, variants of *Toulbar2*:
 - All methods employ soft local arc consistency.
 - dfbbvemcs:
 - Variable elimination preprocessing, depth-first BaB.
 - ficolofo & vns/lds+cp:
 - Initial greedy search or limited discrepancy search, resp.
 - Interleave variable neighborhood search and exact depth-first BaB, limited to varying subspaces.

Not as competitive, details/authors unknown:
Vanilla-MPLP, nutcracker

Competition Results

- 20 sec, 20 min, 1 hour categories
 - Score computed relative to a baseline/BP solution.
 - $E(x) = -\sum \int i \log f \downarrow i(x) Score(x \uparrow s) = E(x \uparrow s) \min\{E(x \uparrow bp), E(x \uparrow df)\}$
 - 1st place in all three categories!

		20 sec			20 min			1 hour	
Category	daoopt	ficolofo	dfbbvemcs	daoopt	dfbbvecms	ficolofo	daoopt	ficolofo	vns/lds+cp
CSP	-0.9123	-0.8669	-0.8669	-0.8739	-0.7862	-0.7862	-0.8442	-0.6958	-0.6975
Deep belief nets	-	-	_	-1.6286	-1.6342	-1.6342	-5.0470	-5.1707	-5.1709
Grids	-0.3403	-0.3210	-0.3174	-0.2437	-0.2241	-0.2241	-0.1721	-0.1590	-0.1589
Image alignment	0.0000	0.0000	0.0000	-0.0006	0.0000	-0.0006	-0.0006	-0.0006	-0.0006
Medical diagnosis	-0.0028	-0.0046	-0.0460	-0.0037	-0.0043	-0.0043	-0.0041	-0.0043	-0.0043
Object detection	-4.8201	-4.8287	-4.8023	-4.8237	-4.8743	-4.8743	-1.9368	-1.9628	-1.9572
Protein folding	-0.0308	-0.0308	-0.0308	-0.1135	-0.1187	-0.1187	-0.1146	-0.1183	-0.1183
Prot/prot inter.	-	-	_	-0.1341	-0.1317	-0.1317	-0.1681	-0.1744	-0.1735
Relational	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Segmentation	-0.0300	-0.0300	-0.0298	-0.0300	-0.0300	-0.0300	-0.0338	-0.0338	-0.0338
Overall	-6.3164	-6.0819	-6.0518	-7.8519	-7.8041	-7.8000	-8.3214	-8.3196	-8.3150

Competition: Gurobi vs AOBB on Pascal2 instances (Junkyu and Lam, ongoing)

UNIVERSITY of CALIFORNIA O IRVINE

Problem	PEDIGREE WCSP		Protein Folding
Total #.	22	61	10
Instances	From UAI'08 Competition	From PASCAL2Competition	From PASCAL2Competition
Compared	22	15	7
Instances		Exclude 46 Indeterminate Cases*	Exclude 3 Indeterminate Cases*
BRAOBB	51.07 sec	15.96 sec	1004.25 sec
(G.M of Time)	G.M of 20 instances terminated for both	G. M of 13 instances terminated for both	G. M of 7 instances, terminated for AOBB
GUROBI	7.15 sec	72.65 sec	NA
(G.M of Time)	G.M of 20 instances terminated for both	G. M of 13 instances terminated for both	9/10 Memory Out
BRAOBB VS .GUROBI	0 VS. 22	12 VS. 3	6 Vs. 1 AOBB won by memory out of Gurobi

Indeterminate Cases : G.M= geometric mean

73

✓ Both Time out, or BRAOBB Time out and Gurobi Memory out (4GB),

 \checkmark One of the solver time out earlier than the other's running time

✓ MPE to 0/1 ILP Conversion was not available for experiments

Link to more results

	name (n,f,k,s,i,w,h)	Gurobi Time	Tg/Ta	AOBB Time	name (n,f,k,s,i,w,h)		Gurobi Time	Tg/Ta	AOBB Time
1	SPOT5 1502 209,412,4,3,6,6,15	1.72	24.57%	7	9 driverlog01ac 71,619,4,2,9,9,30		7.74	96.75%	8
2	SPOT5 29 82,463,4,2,14,14,24	25.31	76.70%	33	10	GEOM30a_3 30,82,3,2,6,6,15	42.42	707.00%	6
3	SPOT5 404 100,711,4,3,19,19,45	310.58	2218.43%	14	11	GEOM30a_4 30,82,4,2,6,6,15	6.76	112.67%	6
4	SPOT5 503 143,636,4,3,9,9,44	622.49	8892.71%	7	12	GEOM30a_5 30,82,5,2,6,6,15	6.69	111.50%	6
5	SPOT5 54 67,272,4,3,11,11,19	28.15	402.14%	7	13	myciel5g_3 47,237,3,2,14,21,24	1012.8	1875.56%	54
6	SPOT5 42 190,1395,4,3,13,26,87	3600 (TO)	NA	289	14	queen5_5_3 25,161,3,2,15,18,20	2744.57	8072.26%	34
7	bwt3ac 45,686,11,2,12,16,27	164.4	342.50%	48	15	queen5_5_4 25,161,4,2,12,18,20	977.24	534.01%	183
8	bwt4ac 179,7110,18,2,7,42,90	(MO)	NA	697					

BRAOBB : Tout 60 min (MBE-MM, MPLP 2ec, JGLP 2 sec, SLS 2x2 sec, Ordering from Kalev's Code 3sec) GUROBI : Tout 60 min(Default, Single Processor, Dual Simplex at the Root) Memory Limit : Both 4 GB

Indeterminate Cases Total 46 (Not presented Above) ✓ Both Time Out : 5/46 ✓ AOBB Time Out, Gurobi Memory out 15/46 ✓ H.P.Conversion NA : 26/46

name

(n,f,k,s,i,w,h)

1

2

3

4

5

pdb1b25

1972,8817,81,2,3,51,178

pdb1d2e

1328,5220,81,2,3,22,136

pdb1fmj

614,2760,81,2,3,35,118

pdb1i24

337,1360,81,2,3,33,58 pdb1iqc

1040,4042,81,2,3,26,107

Gurobi

Time

(MO)

(MO)

(MO)

78.54

(MO)

Tg/Ta

NA

NA

NA

21.76%

NA

AOBB Time		name (n,f,k,s,i,w,h)	Gurobi Time	Tg/Ta	AOBB Time
21600 (TO)	6	pdb1jmx 739,2943,81,2,3,37,80	(MO)	NA	21600 (TO)
557	7	pdb1kgn 1060,4715,81,2,3,38,164	(MO)	NA	536
21600 (TO)	8	pdb1kwh 424,1881,81,2,3,27,93	(MO)	NA	16638
361	9	pdb1m3y 1364,5037,81,2,3,29,93	(MO)	NA	647
1801	10	pdb1qks 926,3712,81,2,3,36,124	(MO)	NA	493

UNIVERSITY of CALIFORNIA () IRVINE

BRAOBB : Tout 6Hr (MBE-MM, MPLP 60 sec, JGLP 60 sec, SLS 20x10 sec, Ordering from Kalev's Code 3min) GUROBI : Tout 6Hr (Default, Single Processor, Dual Simplex at the Root) Memory Limit : Both 4 GB

Indeterminate Cases Total 3 ✓ AOBB Time Out, Gurobi Memory Out 3

UNIVERSITY of CALIFORNIA O IRVINE

	name (n,f,k,s,i,w,h)	Gurobi Time	Tg/Ta	AOBB Time
1	Pedigree1 (298,335,4,5,15,15,60)	0.7	10.00%	7
2	Pedigree13 (888,1078,3,4,20,32,163)	15.8	2.33%	679
3	Pedigree18 (931,1185,5,5,19,19,98)	6.45	53.75%	12
4	Pedigree19 (693,794,5,5,14,24,99)	173.66	NA	1800 (TO)
5	Pedigree20 (387,438,5,4,19,22,73)	11.81	18.75%	63
6	Pedigree23 (309,403,5,4,18,25,60)	2.72	4.77%	57
7	Pedigree25 (993,1290,5,5,20,24,70)	3.1	16.32%	19
8	Pedigree30 (1015,1290,5,5,20,20,121)	7.25	55.77%	13
9	Pedigree31 (1006,1184,5,5,18,30,116)	20.32	18.81%	108
10	Pedigree33 (581,799,4,5,20,27,139)	4.12	9.36%	44
11	Pedigree34 (922,1161,5,4,17,30,130)	40.06	41.30%	97

	name (n,f,k,s,i,w,h)	Gurobi Time	Tg/Ta	AOBB Time
12	Pedigree37 (726,1033,5,4,13,21,59)	3.09	11.44%	27
13	Pedigree38 (581,725,5,4,12,16,62)	5.99	13.31%	45
14	Pedigree39 (953,1273,5,4,20,20,78)	6.01	30.05%	20
15	Pedigree40 (842,1031,7,5,14,28,160)	221.15	NA	1800 (TO)
16	Pedigree41 (885,1063,5,5,18,32,113)	24.5	8.75%	280
17	Pedigree42 (390,449,5,4,15,23,60)	2.36	3.58%	66
18	Pedigree44 (644,812,4,5,20,26,72)	9.83	18.90%	52
19	Pedigree50 (478,515,6,4,10,17,53)	12.05	48.20%	25
20	Pedigree51 (871,1153,5,4,19,38,114)	14.64	3.30%	443
21	Pedigree7 (867,1069,4,4,19,31,119)	8.01	10.27%	78
22	Pedigree9 (935,1119,7,4,20,26,132)	7.85	25.32%	31

BRAOBB : Tout 30min (MBE-MM, MPLP 2ec, JGLP 2 sec, SLS 2x2 sec, Ordering from Kalev's Code 3sec) GUROBI : Tout 30min (Default, Single Processor, Dual Simplex at the Root) Memory Limit : Both 4 GB

UNIVERSITY of CALIFORNIA O IRVINE

Recent work:

- Parallelism AOBB,
- Using External memory
- M-best search
- Weighted Best-first
- Marginal MAP
- STLS- Tree-based SLS

ITA, 2/14/2013

A New Algorithm for Marginal MAP

 $\psi(oldsymbol{x}_{lpha})$

- (Submitted to UAI-2014) Improving Marginal Map for Graphical Models"
- Radu Marinescu, Rina Dechter, Alex Ihler.
- Problem:

 $oldsymbol{x}_B^* = rg\max_{oldsymbol{x}_B} \sum_{oldsymbol{x}_A} \prod_lpha$

Marginalize away variables A, then and Find optimal configuration of variables B

Figure 2: AND/OR search spaces for marginal MAI

Improving Marginal Map for Graphical Heuristics generated by weighted minibucket and moment-matching heuristics.

• Branch and Bound Search of AND/OR search

Figure 5: Number of instances solved (top) and number of wins (bottom) by benchmark.

UNIVERSITY of CALIFORNIA O IRVINE

Recent work:

- Parallelism AOBB,
- Using External memory
- M-best search
- Weighted Best-first
- Marginal MAP
- STLS- Tree-based SLS

ITA, 2/14/2013

UNIVERSITY of CALIFORNIA () IRVINE

Weighted AND/OR Search

Paper submitted : "EvaluatingWeighted DFS Branch and Bound over Graphical Models" Natalia Flerova, Radu Marinescu, Rina Dechter

•Empirically evaluation proposed algorithms wAOBB and wBRAOBB against Weighted Best-First search (wAOBB) and Breadth-First AND/OR Branch and Bound (BRAOBB)

50-16-5 (256,2,21,79) ΠÌ E 1.3 1.3 n U eε ÷, H E I -1.68 5 sec 10 sec 60 sec 600 sec

BRAOBB

WAOBB

WBRAOBB

WAOBF

Conclusion

- Search+bounded-Inference lead to effective anytime schemes and effective approximations, with bounding guarantees.
- Heuristic evaluation function can be improved
- Static/dynamic heuristic, during search with dynamic variable-ordering (tradeoff of time overhead against pruning).
- Portfolio approach

UCI Library: Summary

- Exact/anytime:
 - □ **Likelihood:** *BE*, *BEEM*, *VEC*(*w*), *AOlibPE*(*c*-*bound*)
 - MAP: VE, BEEM (external memory/multi-core), AOBB(i), BRAOBB(i), DAOOPT(Distributed AOBB).
 - Marginal Map (currently developed)
- Approximation/anytime, for all queries:
 - □ BP, IJGP(i-bound)
 - IJGP-Importance Sampling(i-bound)
 - IJGP-SampleSearch(i-bound)
 - □ MBE (mini-bucket), Weighted-mini-bucket, reparameterized MB
 - □ STLS (currently developed, for MAP)
 - Supporting schemes: Variable-ordering (IGVO)

For publication see:

http://www.ics.uci.edu/~dechter/publications.html

Kalev Kask Irina Rish Bozhena Bidyuk Robert Mateescu Radu Marinescu Vibhav Gogate Emma Rollon Lars Otten Natalia Flerova Andrew Gelfand William Lam Junkyu Lee