
Problem Solving with Graphical Models

Rina Dechter
Donald Bren School of Computer Science

University of California, Irvine, USA

Dagshtul, 2011



Radcliffe2

What is Artificial Intelligence
(John McCarthy , Basic Questions)

 What is artificial intelligence? 
 It is the science and engineering of making intelligent machines, 

especially intelligent computer programs. It is related to the similar task 
of using computers to understand human intelligence, but AI does not 
have to confine itself to methods that are biologically observable.

 Yes, but what is intelligence?
 Intelligence is the computational part of the ability to achieve goals in 

the world. Varying kinds and degrees of intelligence occur in people, 
many animals and some machines. 

 Isn't there a solid definition of intelligence that doesn't depend 
on relating it to human intelligence? 

 Not yet. The problem is that we cannot yet characterize in general what 
kinds of computational procedures we want to call intelligent. We 
understand some of the mechanisms of intelligence and not others. 

 More in: http://www-formal.stanford.edu/jmc/whatisai/node1.html
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Mechanical Heuristic generation

Observation: People generate heuristics by consulting simplified/relaxed 
models.
Context: Heuristic search (A*) of state-space graph (Nillson, 1980)
Context: Weak methods vs. strong methods
Domain knowledge: Heuristic function

h(n):Heuristic underestimate
the best cost from
n to the solution
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The Simplified models Paradigm

Pearl 1983 (On the discovery and generation of certain Heuristics, 1983, AI 
Magazine, 22-23) :  “knowledge about easy problems could serve as a heuristic in 
the solution of difficult problems, i.e., that it should be possible to manipulate the 
representation of a difficult problem until it is approximated by an easy one, solve 
the easy problem, and then use the solution to guide the search process in the 
original problem.”

The implementation of this scheme requires three major steps:
a)  simplification, 
b) solution, and
c) advice generation.

Simplified = relaxed is appealing because:
1. implies admissibility, monotonicity,
2. explains many human-generated heuristics (15-puzzle, traveling salesperson)

“We must have a simple a-priori criterion for deciding when a problem lends itself 
to easy solution.”
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Systematic relaxation of STRIPS

STRIPS (Stanford Research Institute 
Problem Solver, Nillson and Fikes 1971)  
action representation:

Move(x,c1,c2)
Precond list:  on(x1,c1), clear(c2), adj(c1,c2)

Add-list:         on(x1,c2), clear(c1)
Delete-list:     on(x1,c1), clear(c2)

Relaxation (Sacerdoti, 1974): Remove literals from the precondition-list: 
1. clear(c2), adj(c2,c3)  #misplaced tiles
2. Remove clear(c2)  manhatten distance
3. Remove adj(c2,c3)  h3, a new procedure that transfer to the empty 
location a tile appearing there in the goal

But the main question remained:
“Can a program tell an easy problem from a hard one without 
actually solving?” (Pearl 1984, Heuristics)
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Easy = Greedily solved?

Pearl, 84:  Most easy problems we encounter  are solved by 
“greedy” hill-climbing methods without backtracking” and 
that the features that make them amenable to such methods is 
their “decomposability”

The question now:
Can we recognize  a greedily solved STRIPS problem?”
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Whow! Backtrack-free is greedy!
I read Montanari (1974),I read mackworth, (1977)
Got  absorbed…

Freuder, JACM 1982 : “A sufficient 
condition for backtrack-free search”

Sufficient condition (Freuder 82):
1. Trees (width-1) and  arc-consistency implies backtrack-free
2. Width=i and (i+1)-consistency implies backtrack-free search

Arc-consistent
No dead-ends

This moved me to constraint network and ultimately to graphical models.
But: Is it indeed the case that heuristics are generated by simplified
Models?

If 3-consistent 
no deadends

W=1
W=2



Outline of the talk

 Introduction to graphical models
 Inference: Exact and approximate
 Conditioning Search: exact and approximate
 Hybrids of search and inference (exact)
 Compilation, (e.g.,  AND/OR Decision Diagrams)
 Questions:

 Representation issues: directed vs undirected
 The role of hidden variables
 Finding good structure
 How can we predict problem instance hardness?



Outline

 What are graphical models
 Overview of Inference Search and their hybrids

 Inference: Exact and approximate
 Conditioning Search: exact and approximate
 Hybrids of search and inference (exact)
 Compilation, (e.g.,  AND/OR Decision Diagrams)
 Questions:

 Representation issues: directed vs undirected
 The role of hidden variables
 Finding good structure
 Representation guided by human representation
 Computation: inspired by human thinking



What are Graphical Models

 A way to represent global knowledge, mostly 
declaratively, using small local pieces of 
functions/relations. Combined, they give a 
global view of a world about which we want  
to reason, namely to answer queries.

 Different types of graphs can capture  
variable interaction through the local 
functions.

 Because representation is modular, reasoning 
can be modular too.
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A B
red green
red yellow
green red
green yellow
yellow green
yellow  red

Map coloring

Variables: countries (A B C etc.)

Values: colors (red green blue)

Constraints:  ... , ED  D,  AB,A 

C

A

B

D
E

F

G

Constraint Networks 

Constraint graph

A

B
D

C
G

F

E

Global view: all solutions.
Tasks: Is there a solution?, find one, fine all, count all



Three dimensional interpretation of 2 dimentional drawing



Huffman-Clowes junction labelings 
(1975)



Sudoku –Constraint Satisfaction

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints

2 3
4 62 

•Variables: empty slots

•Domains = 
{1,2,3,4,5,6,7,8,9}

•Constraints: 
•27 all-different

•Constraint 
•Propagation

•Inference



Bayesian Networks
(Pearl, 1988)

Gloabl view:     P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

Θ) (G,BN 

CPD:
C  B   P(D|C,B)
0  0    0.1  0.9
0  1    0.7  0.3
1  0    0.8  0.2
1  1    0.9  0.1

Belief Updating, Most probable tuple (MPE)

= find argmax P(S)· P(C|S)· P(B|S)· P(X|C,S)· P(D|C,B) =?



The “alarm” network - 37 variables, 509 parameters (instead of  237)

PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

Monitoring Intensive-Care Patients



Mixed Probabilistic and Deterministic networks

P(C|W)P(B|W)

P(W)

P(A|W)

W

B A C

Query:
Is it likely that Chris goes to the 
party if Becky does not but the 
weather is bad?

PN CN

Semantics?

Algorithms?

),,|,( ACBAbadwBCP 

A→B C→A
B A CP(C|W)P(B|W)

P(W)

P(A|W)

W

B A C

A→B C→A
B A C

Alex is-likely-to-go in bad weather
Chris rarely-goes in bad weather
Becky is indifferent but unpredictable

If Alex goes, then Becky goes:
If Chris goes, then Alex goes:

W A P(A|W)

good 0 .01

good 1 .99

bad 0 .1

bad 1 .9



Applications

Markov
networks



 A graphical model  (X,D,F):
 X = {X1,…Xn} variables
 D = {D1, … Dn} domains
 F = {f1,…,fm} functions

 Operators:
 combination 
 elimination (projection)

Graphical Models

)(   :   CAFfi 

A

D

B
C

E

F

A C F P(F|A,C)
0 0 0 0.14
0 0 1 0.96
0 1 0 0.40
0 1 1 0.60
1 0 0 0.35
1 0 1 0.65
1 1 0 0.72
1 1 1 0.68

Primal graph
(interaction graph)

A C F
red green blue
blue red red
blue blue green

green red blue

Relation

A

D

B
C

E

F



Complexity of Reasoning Tasks
 Constraint satisfaction
 Counting solutions
 Combinatorial optimization
 Belief updating
 Most probable explanation 
 Decision-theoretic planning

Reasoning is
computationally hard

Linear / Polynomial / Exponential

0

200
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800

1000

1200

1 2 3 4 5 6 7 8 9 10

n

f(n)
Linear
Polynomial
Exponential

Complexity is
Time and space(memory) exponential

A

D

B
C

E

F



Tree-solving is easy

Belief updating 
(sum-prod)

MPE (max-prod)

CSP – consistency 
(projection-join)

#CSP (sum-prod)

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR

Trees are processed in linear time and memory



Counting

1 2 3 4

4 3 2 1
55

5 5 5

How many people?

SUM operator
CHAIN structure



Maximization

What is the maximum?

15

23

10 32

10

100

65

47

50

77

100

15

23

77

100
47

100

77

100

100

100

100
23

77

10

100

100

32

MAX operator
TREE structure



12” 14” 15”

S

I II III

P
60G 80G

H

6C 9C

B

Min-Cost Assignment

What is minimum cost configuration?

6C 9C

I 30 50

II 40 55

III ∞ 60

I II III

12” 45 ∞ ∞

14” 50 60 70

15” ∞ 65 80
60G 80G

12” 30 50

14” 40 45

15” 50 ∞

I II III

12” 75 ∞ ∞

14” 80 100 130

15” ∞ 105 140

12” 14” 15”

105 120 155

40

II

30

I

60

III
+

MIN-SUM operators
CHAIN structure
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40

14”

30

12”

50

15”
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Belief Updating

Buzz
sound

Mechanical 
problem

High
temperature

Faulty
head

Read
delays

H P(H)
0 .9
1 .1

F P(F)
0 .99
1 .01

H F M P(M|H,F)
0 0 0 .9
0 0 1 .1
0 1 0 .1
0 1 1 .9
1 0 0 .8
1 0 1 .2
1 1 0 .01
1 1 1 .99

F R P(R|F)
0 0 .8
0 1 .2
1 0 .3
0 1 .7

P(F | B=1) = ?

M h1(M)
0 .05
1 .8

H F M Bel(M,H,F)
0 0 0 .0405
0 0 1 .072
0 1 0 .0045
0 1 1 .648
1 0 0 .004
1 0 1 .008
1 1 0 .00005
1 1 1 .0792

H h2(H)
0 .9
1 .1

F h3(F)
0 .1245
1 .73175

F h4(F)
0 1
1 1

H F M P(M|H,F)
0 0 0 .9
0 0 1 .1
0 1 0 .1
0 1 1 .9
1 0 0 .8
1 0 1 .2
1 1 0 .01
1 1 1 .99

* * =

M B P(B|M)
0 0 .95
0 1 .05
1 0 .2
1 1 .8

* * =
F P(F,B=1)
0 .123255
1 .073175

P(B=1) = .19643

Probability of evidence

P(F=1|B=1) = .3725 

Updated belief

SUM-PROD operators
POLY-TREE structure

P(h,f,r,m,b) = P(h) P(f) P(m|h,f) P(r|f) P(b|m)



Belief Propagation

 Instances of tree message passing algorithm

 Exact for trees

 Linear in the input size

 Importance:
 One of the first algorithms for inference in Bayesian networks
 Gives a cognitive dimension to its computations 
 Basis for conditioning algorithms for arbitrary Bayesian network
 Basis for Loopy Belief Propagation (approximate algorithms)

(Pearl, 1988)



Transforming into a Tree

 By Inference (thinking)
 Transform into a single, equivalent tree of sub-

problems

 By Conditioning (guessing)
 Transform into many tree-like sub-problems.



Inference and Treewidth

E
K

F

L

H

C

B
A

M

G

J

D

ABC

BDEF

DGF

EFH

FHK

HJ KLM

treewidth = 4 - 1 = 3
treewidth = (maximum cluster size) - 1

Inference algorithm:
Time: exp(tree-width)
Space: exp(tree-width)

Key parameter: w*



Conditioning and Cycle cutset
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Search over the Cutset

A=yellow A=green

• Inference may require too much memory

• Condition (guessing) on some of the variables

C

B K
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H

M

J

E

Graph
Coloring
problem



Search over the Cutset (cont)

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow
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• Inference may require too much memory

• Condition on some of the variables
A

C

B K

G

L
D

F
H

M

J

E

Graph
Coloring
problem

Key parameters:
the cycle-cutset, w-cutset
Complexity: exp(cutset-size)



Inference vs Conditioning-Search 

Inference

exp(treewidth) time/space

A

D

B C

E

F
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0101010101 0101010101010101010101 0101010101010101010101 0101 010101

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

E

C

F

D

B

A 0 1

Search
exp(n) time
Or exp(pseudo-tree 
O(n) space

E K

F

L

H

C

B
A
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BDEF

DGF

EFH
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HJ KLM

A=yellow A=green

B=blue B=red B=blueB=green
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G
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E
Search+inference:
Space: exp(w of sub problem)
Time: exp(w+cutset(w))



Approximation Algorithms
 Since inference, search and hybrids are  too 

expensive when graph is dense; (high treewidth) 
then:

 Bounding inference: Bounding the clusters by i-bound
 mini-bucket(i) and bounded-i-consistency
 Belief propagation and constraint propagation

 Bounding search:
 Sampling
 Stochastic local search

 Hybrid of sampling and bounded inference

 Goal: an anytime scheme



Search vs. Inference

A

G

B

C

E

D

F

Search (conditioning) Inference (elimination)

A=1 A=k…

G
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F
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G
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E
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E
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k “sparser” problems  1 “denser” problem



Outline

 What are graphical models
 Inference: Exact and approximate
 Conditioning Search: exact and approximate
 Hybrids of search and inference (exact)
 Compilation, (e.g.,  AND/OR Decision Diagrams)
 Questions:

 Representation issues: directed vs undirected
 The role of hidden variables
 Finding good structure
 Representation guided by human representation
 Computation: inspired by human thinking

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency

Tree Clustering

Variable Elimination

Resolution

Local Consistency

Unit Resolution

Mini‐bucket(i)

Stochastic Local SearchDFS search

Branch‐and‐Bound

A*
Hybrids



Bucket E:    E D,  E  C
Bucket D:    D A
Bucket C:    C B
Bucket B:    B A
Bucket A:

A C

contradiction

=

D = C

B = A

Bucket Elimination, Variable elimination

=





free)-(backtrack problem solved greedily a getwe 
 d ordering along  widthinduced  -(d)    
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Bucket Elimination
Adaptive Consistency (Dechter & Pearl, 1987)



Directional Resolution  Bucket-elimination

))exp(( :space and  timeDR
))(exp(||

*

*

wnO
wObucketi 

(Original Davis-Putnam algorithm 1960)



Belief Updating/Probability of evidence
Partition function

“Moral” graph

A

D E

CB

P(a|e=0)  P(a,e=0)=


 bcde ,,,0

P(a)P(b|a)P(c|a)P(d|b,a)P(e|b,c)=


0e

P(a) 
d

),,,( ecdahB


b
P(b|a)P(d|b,a)P(e|b,c)

B C

ED

Variable Elimination

P(c|a)
c



Bucket Elimination 
Algorithm elim-bel (Dechter 1996)


b

Elimination operator

P(a|e=0)

W*=4
Exp(w*)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC



Finding

b
max Elimination operator

MPE

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)c,d,(a,h B

e)d,(a,hC

)xP(maxMPE
x
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Generating the MPE-tuple

C: 

E: 

P(b|a)   P(d|b,a)   P(e|b,c)B: 

D:

A: P(a)

P(c|a)

e=0 e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

(a)hP(a)max arga'  1. E

a


0e'  2. 

)e'd,,(a'hmax argd'   3. C
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B
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Time: O ( exp(w+1 ))
Space: O ( exp(sep))

Cluster Tree Propagation
Join-tree clustering (Spigelhalter et. Al. 1988, Dechter, Pearl 1987)

For each cluster P(X|e) is computed

A B C
p(a), p(b|a), p(c|a,b)

B C D F
p(d|b), p(f|c,d)

B E F
p(e|b,f)

E F G
p(g|e,f)

EF

BF

BC



Complexity of Elimination

))((exp ( * dwnO
ddw  ordering along graph moral of  widthinduced the)(* 

The effect of the ordering:

4)( 1
* dw 2)( 2
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Spigelhalter et. Al. 1983, Junction tree algorithm  (join-tree algorithm)



Outline

 What are graphical models
 Inference: Exact and approximate
 Conditioning Search: exact and approximate
 Hybrids of search and inference (exact)
 Compilation, (e.g.,  AND/OR Decision Diagrams)
 Questions:

 Representation issues: directed vs undirected
 The role of hidden variables
 Finding good structure
 Representation guided by human representation
 Computation: inspired by human thinking



Approximate Inference

 Mini-buckets, mini-clusters, i-consistency
 Belief propagation, constraint propagation, 

Generalized belief propagation

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency

Tree Clustering

Variable Elimination

Resolution

Local Consistency

Unit Resolution

Mini‐bucket(i)

Stochastic Local SearchDFS search

Branch‐and‐Bound

A*
Hybrids



From Global to Local Consistency

Leads to one pass directional bounded inference, or Iterative propagation algorithms 



Mini-Bucket Elimination 

A

B C

D

E

P(A)

P(B|A) P(C|A)

P(E|B,C)

P(D|A,B)

Bucket B

Bucket C

Bucket D

Bucket E

Bucket A

P(B|A) P(D|A,B)P(E|B,C)

P(C|A)

E = 0

P(A)

maxB∏

hB (A,D)

MPE* is an upper bound on MPE --U
Generating a solution yields a lower bound--L

maxB∏

hD (A)

hC (A,E)

hB (C,E)

hE (A)



MBE(i) (Dechter and Rish 1997)

 Input: i – max number of variables allowed in a mini-bucket
 Output: [lower bound (P of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

2* w 4* w



Properties of MBE(i)/mc(I)

 Complexity:  O(r exp(i)) time  and O(exp(i)) space.
 Yields an upper-bound and a lower-bound.

 Accuracy: determined by upper/lower (U/L) bound.

 As i increases, both accuracy and complexity increase.

 Possible use of mini-bucket approximations:
 As anytime algorithms
 As heuristics in search

 Other tasks: similar mini-bucket approximations for: belief 
updating, MAP and MEU (Dechter and Rish, 1997)



Approximate Inference

 Mini-buckets, mini-clusters
 Belief propagation, constraint propagation, 

Generalized belief propagation

Complete

Incomplete
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Tree Clustering
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Stochastic Local SearchDFS search

Branch‐and‐Bound

A*
Hybrids
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Iterative (Loopy) Belief Proapagation

 Belief propagation is exact for poly-trees
 IBP - applying BP iteratively to cyclic networks

 No guarantees for convergence
 Works well for many coding networks
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Join-Graphs

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity



Outline

 What are graphical models
 Inference: Exact and approximate
 Conditioning Search: exact and approximate
 Hybrids of search and inference (exact)
 Compilation, (e.g.,  AND/OR Decision Diagrams)
 Questions:

 Representation issues: directed vs undirected
 The role of hidden variables
 Finding good structure
 Representation guided by human representation
 Computation: inspired by human thinking



Backtracking Search for a Solution



Belief Updating: 
Searching the  Probability Tree
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Brute-force Complexity:  O(exp(n)),  linear space
Same as counting solutions



OR search space
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AND/OR Search Space
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AND/OR vs. OR
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Pseudo-Trees
(Freuder 85, Bayardo 95, Bodlaender and Gilbert, 91)

(a) Graph
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(b) DFS tree
depth=3

(c) pseudo- tree
depth=2

(d) Chain
depth=6
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Complexity of AND/OR Tree Search

AND/OR tree OR tree

Space O(n) O(n)

Time

O(n dh)
O(n dw* log n)

(Freuder & Quinn85), (Collin, Dechter & Katz91), 
(Bayardo & Miranker95), (Darwiche01)

O(dn)

d = domain size
h = depth of pseudo-tree
n = number of variables
w*= treewidth



From AND/OR Tree
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An AND/OR Graph
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Complexity of AND/OR Graph Search

AND/OR graph OR graph

Space O(n dw*) O(n dpw*)

Time O(n dw*) O(n dpw*)

d = domain size
n = number of variables
w*= treewidth
pw*= pathwidth

w* ≤ pw* ≤ w* log n



All Four Search Spaces

Full OR search tree 

126 nodes

Full AND/OR search tree

54 AND nodes

Context minimal OR search graph
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Context minimal AND/OR search graph
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How Big Is The Context?

Theorem: The maximum context size for a 
pseudo tree is equal to the treewidth of the 
graph along the pseudo tree.
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AND/OR Context Minimal Graph 
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The impact of the pseudo-tree 
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Outline

 What are graphical models
 Inference: Exact and approximate
 Conditioning Search: exact and approximate
 Hybrids of search and inference (exact)
 Compilation, (e.g.,  AND/OR Decision Diagrams)
 Questions:

 Representation issues: directed vs undirected
 The role of hidden variables
 Finding good structure
 Representation guided by human representation
 Computation: inspired by human thinking



AOBDD vs. OBDD  (Mateescu and Dechter 2006)
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 Is it consistent?

 Find solution
 NP-complete

 Count solutions
 #P-complete

 unminimal const

 Always consistent

 Find t s.t P(t)>0
 Easy: backtrack-free

 Find P(X|e)?
 #P-complete

 Explicit minimal tables

 Solved by search

 Hard to sample  

 Solved  by variable elimination

 Easy to sample

Constraint Network vs
Bayesian Network

Constraint networks Probability networks
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The End

Thank You


