Problem Solving with Graphical Models

Rina Dechter

Donald Bren School of Computer Science
University of California, Irvine, USA

Dagshtul, 2011

What is Artificial Intelligence
(John McCarthy , Basic Questions)

4% /
= What is artificial intelligence?

= [t is the science and engineering of making intelligent machines,
especially intelligent computer programs. It is related to the similar task
of using computers to understand human intelligence, but AI does not
have to confine itself to methods that are biologically observable.

= Yes, but what is intelligence?

= Intelligence is the computational part of the ability to achieve goals in
the world. Varying kinds and degrees of intelligence occur in people,
many animals and some machines.

m Isn't there a solid definition of intelligence that doesn't depend
on relating it to human intelligence?

= Not yet. The problem is that we cannot yet characterize in general what
kinds of computational procedures we want to call intelligent. We
understand some of the mechanisms of intelligence and not others.

= Morein: http://www—formal.s,tanford.edu/jmc/whatisai/nc;del.ﬁgmhcre

Mechanical Heuristic generation

Observation: People generate heuristics by consulting simplified/relaxed
models.

Context: Heuristic search (A*) of state-space graph (Nillson, 1980)
Context: Weak methods vs. strong methods

Domain knowledge: Heuristic function

218]3

1{6]4

0+4 07113
h(n):Heuristic underestimate TT ALK IEIE
the best cost from L+ 5 LIS 1+370<75
n to the solution — e -
7+ 3 B 2+ 3 [Tels 2 + 4 [Tl513
813 21813 213 213
21114 71114 1[8]4 11814
3+ 3 [7l6l5 3+ 4 [els 3 + 2 [7l6l5 3+ 4 [7lel5

Y

11213

814

4 + 1 [716]3

Goal Y

11213 11213

8] |4 7814

5+ 0716l 5+ 2 [le6ls

iThe Simplified models Paradigm

Pearl 1983 (On the discovery and generation of certain Heuristics, 1983, Al
Magazine, 22-23) : “knowledge about easy problems could serve as a heuristic in
the solution of difficult problems, i.e., that it should be possible to manipulate the
representation of a difficult problem until it is approximated by an easy one, solve
the easy problem, and then use the solution to guide the search process in the
original problem.”

The implementation of this scheme requires three major steps:
a) simplification,

b) solution, and

C) advice generation.

Simplified = relaxed is appealing because:
1. implies admissibility, monotonicity,
2. explains many human-generated heuristics (15-puzzle, traveling salesperson)

“We must have a simple a-priori criterion for deciding when a problem lends itself
to easy solution.” 4

ystematic relaxation of STRIPS

7 2 4 1
STRIPS (Stanford Research Institute 5 6 3 || 4
Problem Solver, Nillson and Fikes 1971)
action representation: 8 i 3 |ff ? 6 Il 7

Start State Goal State

Move(x,cl,c2)

Precond list: on(x1,c1), clear(c2), adj(cl1,c2)
Add-list: on(x1,c2), clear(cl)
Delete-list: on(x1,cl), clear(c2)

Relaxation (Sacerdoti, 1974): Remove literals from the precondition-list:
1. clear(c2), adj(c2,c3) = #misplaced tiles

2. Remove clear(c2) - manhatten distance

3. Remove adj(c2,c3) > h3, a new procedure that transfer to the empty
location a tile appearing there in the goal

But the main question remained:
“Can a program tell an easy problem from a hard one without
actually solving?” (Pearl 1984, Heuristics)

Easy = Greedily solved?

Pearl, 84: Most easy problems we encounter are solved by
“greedy” hill-climbing methods without backtracking” and
that the features that make them amenable to such methods is

their “*decomposability”

The question now:
Can we recognize a greedily solved STRIPS problem?”

Freuder, JACM 1982 : “A sufficient
condition for backtrack-free search”

Whow! Backtrack-free is greedy!
I read Montanari (1974),1 read mackworth, (1977)
Got absorbed...

Sufficient condition (Freuder 82):
1. Trees (width-1) and arc-consistency implies backtrack-free
2. Width=i and (i+1)-consistency implies backtrack-free search

Arc-consistent

If 3-consistent wW=2 No dead-end
0 dead-ends

no deadends

Figure 4.10: A tree network

This moved me to constraint network and ultimately to graphical models.
But: Is it indeed the case that heuristics are generated by simplified
Models?

Outline of the talk

= Introduction to graphical models

= Inference: Exact and approximate

= Conditioning Search: exact and approximate

= Hybrids of search and inference (exact)

= Compilation, (e.g., AND/OR Decision Diagrams)

= Questions:
= Representation issues: directed vs undirected
= The role of hidden variables
= Finding good structure
= How can we predict problem instance hardness?

i Outline

= What are graphical models
= Overview of Inference Search and their hybrids

i What are Graphical Models

= A way to represent global knowledge, mostly
declaratively, using small local pieces of
functions/relations. Combined, they give a
global view of a world about which we want
to reason, namely to answer queries.

= Different types of graphs can capture
variable interaction through the local
functions.

= Because representation is modular, reasoning
can be modular too.

Constraint Networks

Map coloring

Variables: countries (A B C etc.)
Values: colors (red green blue)
Constraints: @ A=D, D=E,..

A B

red green
red yellow

green red)
green yellow | i
yellow green (0

yellow red

Global view: all solutions:

Tasks: Is there a solution?, find one, fine all, count all 11

Three dimensional interpretation of 2 dimentional drawing

(a) (b)

(c)

(d)

Huffman-Clowes junction labelings
(1975)

+

Fork: ~X ¥ ~ > =~ _((\}7
+ —_— —_—

eConstraint
ePropagation

eI Nnference

Sudoku —Constraint Satisfaction

eVariables: empty slots

eDOmMains =
{1,2,3,4,5,6,7,8,9}

eConstraints:
27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints

Bayesian Networks
(Pearl, 1988)

P(S)

BN = (G, O)

P(CIS) P(BIS)

CPD:

P(D|C,B)
0.1 0.9

0.7 0.3
0.8 0.2
0.9 0.1

@]
o

P(X]C,S)

= - O O
= O = O

P(D|]C,B)

Gloabl view: P¢s, ¢, B, x,) =P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)
Belief Updating, Most probable tuple (MPE)

= find argmax P(S)* P(C|S)- P(B|S)* P(X|C,S): P(D|C,B) =?

i Monitoring Intensive-Care Patients

The “alarm” network - 37 variables, 509 parameters (instead of 237)

T3

| 3
?

A

<

— >

Mixed Probabilistic and Deterministic networks

If Alex goes, then Becky goes:

Alex is-likely-to-go in bad weather If Chris goes, then Alex goes:

Chris rarely-goes in bad weather
Becky is indifferent but unpredictable

PN CN
P(W)
&k —C©
A—B C—A
w [a] palw Query:

good | 0O o1 Is It likely that Chris goes to the
good | 1 99 party if Becky does not but the
bad | O weather is bad?
bad 1 .9

Semantics? P(C,—|B|W=bad,A—) B,C—)A)

Algorithms?

Applications

Computer Vision

Markov
networks

™~

Genetic Linkage

Sensor Networks

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
comrespondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (¢) Understanding patterns of behavior in sensor measurements using spatio-temporal models.

Graphical Models

= A graphical model (X,D,F): Relation _

= X ={X,..X.} variables R RIS Ied__een__ Bl

« D={D;,..D,} domains O BCE T

« F=A{f,...f} functions i :3 2 §2§ (= (F=A+C)
= Operators: (n)

= combination “///////0

= elimination (projection) e

Primal graph
(interaction graph)

Complexity of Reasoning Tasks

= Constraint satisfaction

= Counting solutions

= Combinatorial optimization
= Belief updating

= Most probable explanation
= Decision-theoretic planning

Reasoning Is
computationally hard

Complexity is
Time and space(memory) exponential

1200 +

1000 +

800 ~

f(n) 600 4

400

200

0

Linear / Polynomial / Exponential

-~ & ¢ ¢ ¢
’ T ¢ 1 T T T v 1

1 2 3 4 5 6 7 8 9 10

Tree-solving Is easy

CSP — consistency

Belief updating (projection-join)

(sum-prod)

MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory

Counting

SUM operator
CHAIN structure

2 -
i i

How many people?

Maximization

77

100

MAX operator
23 TREE structure

B \
\)
10

15

100«

47

77

©

15 100

100

What is the maximum?

Min-Cost Assignment

12”7 14” 157 12”7 14”7 15”7 12”7\ 14”7 15~
75 80 105 + 30 |40 50 = \ 105 j 120 | 155
¥ s
C1n o] 4] 15
12” 0o 00
147 6D | 73D (60G) 80G
B

12~ 50

P 14" 45
e s T [L] 15" e
30 |40 | 60
L
| - B MIN-SUM operators
= CHAIN structure
I

What is minimum cost configuration?

SUM-PROD operators
POLY-TREE structure

Belief Updating

H P(H) F PP F_ hy(F) F_hy(F) F_P(F,B=1)
0] .9 0/ .99 | 0] 1245 | 10} 1 0| .123255
1] 1 1] .01 1[.73175 1] 1 = [1].073175

H igh

temperature

H F M P(M|H,F) HEM + \
0/0]0 .9 0/0]0 : 1 F R P(R|F)
0(0]1 1 0j0]|1 . -))
M h,(M H h,(H
8 1 (1) é 0 ?C()S) 0 ?_(9) 0(110 0045 Mechanical 01 .2
: * 1 8 | ¥[1 i = |0]1]1] 649 problem 110 -3
1/10/0 .8 1/0(0]| .008 0l1 =
1(0]1 2 1/0/1] .002
1(1]0 .01 1(1|/0] .000D5
1(1]1 .99 1(1]1] .02
Ej’)),, M B P(EBIM)
@ 0[1] .05
. T m—
P(h,f,rm,b) = P(h) P(f) P(m|h,f) P(r|f) P(b]|m) = i[1] s

P(F|B=1)="7? P(B=1) = .19643 P(F=1|B=1) = .3725
Probability of evidence Updated belief

Belief Propagation (Pearl, 1988)

= Instances of tree message passing algorithm

= Exact for trees
= Linear in the input size

= Importance:

= One of the first algorithms for inference in Bayesian networks

= Gives a cognitive dimension to its computations

« Basis for conditioning algorithms for arbitrary Bayesian network
= Basis for Loopy Belief Propagation (approximate algorithms)

i Transforming into a Tree

s By Inference (thinking)

= Transform into a single, equivalent tree of sub-
problems

= By Conditioning (guessing)
= Transform into many tree-like sub-problems.

Inference and Treewidth

FHK

Inference algorithm:
Time: exp(tree-width)

Space: exp(tree-width) Heewidth =4 - 1 = 3
/ treewidth = (maximum cluster size) - 1

Key parameter: w*

i Conditioning and Cycle cutset

a @9 Pe @ a @90 G
e SN CI! T\ ©
eaﬁ@":‘e — ee‘o!oc

Cycle cutset = {A,B,C} ‘B

<

i Search over the Cutset

Graph
Coloring
problem

e Inference may require too much memory

e Condition (guessing) on some of the variables

A=y

‘L Search over the Cutset (cont)

Key parameters:
the cycle-cutset, w-cutset
Complexity: exp(cutset-size)

Graph » Inference may require too much memory

Coloring

oroblem e Condition on some of the variables

i Inference vs Conditioning-Search

Inference

exp(treewidth) time/space

Search
exp(n) time

Or exp(pseudo-tree
O(n) space

I AhAAARARANLLLRSY

Search+inference:
Space: exp(w of sub problem)
Time: exp(w+cutset(w))

i Approximation Algorithms

Since inference, search and hybrids are too
elzfpensive when graph is dense; (high treewidth)
then:

Bounding inference: Bounding the clusters by i-bound
= mini-bucket(i) and bounded-i-consistency
= Belief propagation and constraint propagation

Bounding search:

= Sampling
= Stochastic local search

Hybrid of sampling and bounded inference

Goal: an anytime scheme

k “sparser” problems
P P

. Inference

1 “denser” problem

Outline

s Inference: Exact

i Bucket Elimination, Variable elimination

” ~ -

-

_

e Bre

BucketE: E=#D, ExC

BucketD: D==A D=
BucketC: C ¢B\>A;le
Bucket B: B ¢A\>B A

T
Bucket A: \contradiction

Adaptive Consistency (Dechter & Pearl, 1987)

i Bucket Elimination

Bucket(E): E#D, E+C, E#B
Bucket(D): D#A || Rpes

{1,2,3} Bucket(C): C#B || RACB
Bucket(B): B=A || Ryg

+ Bucket(A): R,

a2 Bucket(A): A=D, A=B
Bucket(D): D#E || Rpg
Bucket(C): C=B, C#E
Bucket(B): B=E || R, R e
Bucket(E): || Re

Complexity: O(nexp(w (d))),
w’ (d) - induced widthalong orderingd
we get a greedilysolved problem(backtrack- free)

Directional Resolution < Bucket-elimination

Bucket

Bucket

Bucket

Bucket

Bucket

Eo Width w=3

Directional Extension . *
Induced width w'=2

| bucket, |= O(exp(w"))
DR time and space : O(nexp(w"))

(Original Davis-Putnam algorithm 1960)

Partition function

i Belief Updating/Probability of evidence

P(ale=0) ocP(a,e=0)=

Z P(a)@@P(qa)P(dm a)P(e|b)=
\ l
Moral"graph b9 Z ZZP(c|a) ZP(bla)P(dlb a)P(elb,c)
'\X\/\ ~ _/

Variable Elimination h®(a,d,c,e)

i Bucket Elimination

Algorithm elim-be/ (Dechter 1996)

ZH<— Elimination operator

b A

bucket B: P(bla) P(db,a) P(elb,c)
N

bucket C: P(cla) KB a,d,c,e)

\/ Y
bucket D: h®(a,d,e)
bucket E: e=0 h®(a,e)

_ \AE/ W*=4 |

bucket A: P(a)\A ‘h/ (a) Exp(W*)

i Finding MPE = max P(X)

Y isreplaced by max :
MPE = mgbe(a)P(c|a)P(b|a)P(d |a,b)P(e|Db,c)

max m Elimination operator

bucket B: P(bj\A P(d|b a) P(elb, c)
bucket C: P(c|a) h (@ d, < e),

bucket D: h (a,d, e)
bucket E: e= O h" (a e)

bucket A: P(K h (a) mduced W|dth
I\/IPE (max clique size)

i Generating the MPE-tuple

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=arg max P(c|a')x
xh®(a' ,d',c,e")

3. d'=arg max h(' ,d,e')
2. e =0

1. a' =arg max P(a)-h"(a)

B: P(bla) P(db,a) P(e|b,c)

C: P(clay h°(ad,c,e)
D: h®(a,d,e)
E: e=0 h°(ae)

A: P@) hT@

Return (a',b',c',d',e')

Cluster Tree Propagation

Join-tree clustering (Spigelhalter et. Al. 1988, Dechter, Pearl 1987)

[ABC J
p(a), p(bla), p(cla,b) hesy(d.C)=3" p(a)-p(b|a)- p(c|a,b)

BC |
T h(z’l)(b’C):de: p(d|b)- p(f |C,d)-h(3’2)(b, f)
BCDF
p(d|b), p(flc,d)
h(2,3) (b1 f) = Zd p(d | b)‘ p(f | C, d)) h(1,2) (b,C)
BF ot he,®. D=3 plelb) hy (e)

l hiq (e)= Z p(elb, f)-h,4 (b, f)

b

EFE | Nua@f)=pG=g.lef)
EFG
p(9le.f)

For each cluster P(X|e) is computed

Time: O (exp(w+1))
Space: O (exp(sep))

Complexity of EIimination

OG- ®
Trees are easy Vs f

O(nexp(w'(d))

w’ (d) — the induced width of moral graph along ordering d

The effect of the ordering:

“Moral” graph W (d,) =14 a (d,)=2

Spigelhalter et. Al. 1983, Junction tree algorithm (join-tree algorithm)

i Outline

= Inference: approximate

Approximate Inference

= Mini-buckets, mini-clusters, i-consistency

= Belief propagation, constraint propagation,
Generalized belief propagation

From Global to Local Consistency

D
C r E Global consistency

()

ARC-CONSISTENCY

local consistency
approximations

Leads to one pass directional bounded inference, or Iterative propagation algorithms

Mini-Bucket Elimination

Bucket B

Bucket C

Bucket D

Bucket E

Bucket A

maxgll maxgll
K/\ , A B
P(EIB,C) P(B|A) P(DI|A,B) P(A)
P(C|A) hB (C,E) P(B|A)
h® (A,D)

E=0 hC(AE)

|

P(D|A,B)

P(A) h=(A) h"(A)

-

/

MPE* iIs an upper bound on MPE --U
Generating a solution yields a lower bound--L

P(CIA)

i MBE(I) (Dechter and Rish 1997)

n Input: i — max number of variables allowed in a mini-bucket
Output: [lower bound (P of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

Mini-buckets Max variables
N in a mini-bucket T

max, I_I | maxy N N
P(elb,c)’ P(dla,b)P(bla) 3 P(elb.c) P(dla,b) P(bla)

;f i\“\m

< /
P(cla) H® (e,c)] 3 P(C'Z‘)\Wa,/d, c,e)
I{ 4
A (‘,.i,a)\ 2 k€ (ad,e)

_ o E=0 R? (a,e)

E=0 hSe,a) 2 s
/

i P@\;,E/(;} 1P (a) 1 P%\ #” (a)

=2 e WF=4

;

U = Upper bound (MPE)

Properties of MBE(i)/mc(I)

Complexity: O(r exp(i)) time and O(exp(i)) space.
Yields an upper-bound and a lower-bound.

Accuracy: determined by upper/lower (U/L) bound.
As /increases, both accuracy and complexity increase.
Possible use of mini-bucket approximations:

= As anytime algorithms

= As heuristics in search

Other tasks: similar mini-bucket approximations for: belief
updating, MAP and MEU (Dechter and Rish, 1997)

Approximate Inference

= Belief propagation, constraint propagation,
Generalized belief propagation

vs Propagation algorithms

| Iterative, directional algorithms,

Arcs-consistency

X Y
@p——d
1<X,Y,Z, T<L3

X<Y
Y=Z N\ -
T<”Z

T @@y
<
T Z

i Arc-consistency

X Y
CO—D
A —

O©—O
T Z

Ry < |, Ry X Dy

Iterative (Loopy) Belief Proapagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
update

BEL(U,)
Ay, (u:\\

= NoO guarantees for convergence
= Works well for many coding networks

Collapsing Clusters

Join-Graphs

GHI
FGHI

more accuracy

less complexity

i Outline

= Conditioning Search: exact

Backtracking Search for a Solution

i I® :
P®, b
® ; r l
~ l : hap
b !

SNV 4 o I . NN L A O W G . W L 4 o I . N L A A WY A

p)
A R

(b)

Belief Updating:
Searching the Probability Tree

P(a,e=0)=P(a)> P(bla)d> P(c|a)d P(d|a,b)> P(e|b,c)

Brute-force Complexity: O(exp(n)), linear space
Same as counting solutions

OR search space

(A)
A

"
Ordering: ABECDF G Q
Constraint network
A 0] 1]
B 0] 1] 0] 1]
E 0] 1] 0] 1] 0] 1] [0] 1]

C [0 1] 0] 1] 0] 1] [0 1] 0] 1] [0 1] 0] 1] 0] 1]
D [of [4 [of [[of [1f [of [4] f[of [4] [of [af [of [1f f[of [4] f[of [4] [of [af [of [af f[of [4] f[o] [4] [of [af [of [af f[o] [4]

F loj[a]lo][1][o][1][o]{1][o][1][0][1][0][1][0][1][0][1][o][1][o]{1][o][1][o]{1][0][][0][1][0][1] [o][][o][1][o]{1][0]{1][o][1][0]{1][0][1][0][1][o][1][o]|1][o]{1][0]{1][o][1][0][][0][1][0][1]

Size of search space: O(exp n)

OR

OR

OR

OR

o] [o] ol [] o]

© ® o0 O o 6 © O
ol MG {6 WA B D6 00 D

rch-Space

o] [o] ol [] o]

© ® o0 O o 6 © O
ol MG {6 WG A B D6 00 D

OR (8) (8) AND/OR

oR (B O, G, O, (e) O, (® O,
o [@ [o [[1 o [[o [[1]

OR @ ® @@ & & ® & ® © 6O @@ & ® @ @ ®
d AR PION JEIdEIERNEN ORACANDOE O ICHG 0 6 0

AND/OR size: exp(4),

OR size exp(6)
A i
B 0 0 OR
E 0 1 0
C 0 0
D o [0 O [o [[

[o]{][olfl[o][1] ol[1]{olfllo][]

Pseudo-Trees

(Freuder 85, Bayardo 95, Bodlaender and Gilbert, 91)

4 (1) 6

O—~@ O—~0
h <=\W* Iog N (a) Graph

(b) DFS tree (c) pseudo- tree (d) Chain
depth=3 depth=2 depth=6

i Complexity of AND/OR Tree Search

AND/OR tree OR tree
Space O(n) O(n)

O(n d")
Time O(nawesry O

(Freuder & Quinn85), (Collin, Dechter & Katz91),
(Bayardo & Miranker95), (Darwiche01)

d = domain size

h = depth of pseudo-tree
n = number of variables
w*= treewidth

+

OR

OR

i Complexity of AND/OR Graph Search

AND/OR graph OR graph
Space O(n dw¥) O(n dPw)
Time O(n dw¥) O(n dPw)

d =domain size
n = number of variables * * *
w*= treewidth wW" s pW =W Iog n

pw*= pathwidth

OR

OR

OR

OR

Full OR search tree

q 1
& & & ®
(2 (8) ()

Full AND/OR search tree
54 AND nodes

Mmoo W >

Context minimal OR search graph
28 nodes

B q]

1] i 1
o da o o
ol 1 o X [0] 7] O] T7]
@ﬂ@f@'%@ﬁ o0

[O]T]

Context minimal AND/OR search graph
18 AND nodes

i How Big Is The Context?

Theorem: The maximum context size for a
pseudo tree is equal to the treewidth of the
graph along the pseudo tree.

(1) [c1

(A vy Max context size = treewidth

G [CHA]

(CKHABEJLNODPMFG)

i AND/OR Context Minimal Graph

AND/OR Search [

~

oofo?ofo?fo?ooooofo?ofo?oo
o|1]lo][1]o]1][o]l2] [o]1][o][1]o][a][o]l2] [o]llol[x]o][1]o]2] [o]]ofl]o]1]lo]x
1

%%
\01

= -
T3y gy oy =
Gttt e ot ettt tht

SNV 72lyr—

= 7

® ee ® ® © ©
o][1](o][1] [o][2]]ol(2] [o](2][o][2] [o][][0

[F]
[E]

Variable Elimination
(CKHABEJLNODPMEFG)

-

J

0| (1/[0]|1][O]|1][O]|1L

Shthih

~

1
J

i The impact of the pseudo-tree

What is a

good
pseudo-tree?

How to find
a good one?

(CDKBAOMLNPJHEFG)

i Outline

= Compilation, (e.g., AND/OR Decision Diagrams)

AOBDD vs. OBDD (Mateescu and Dechter 2006)

The context-minimal graph
Can be “"minimized into an AOMDD
By merging and redundancy removal

AOBDD OBDD

18 nonterminals 27 nonterminals

©
0 38 47 arcs

@ @+@+-@+-@-@+@+>

54 arcs

constramt Network vs
Bayesian Network

Constraint networks Probability networks
= Is it consistent? = Always consistent
= Find solution = Findts.tP(t)>0

= NP-complete = Easy: backtrack-free
= Count solutions = Find P(X]e)?

#P-complete = #P-complete

= unminimal const = Explicit minimal tables
= Solved by search = Solved by variable elimination
= Hard to sample = Easy to sample

P(D|B,C)

represents represents
sol (A,B,C,D,E,F) P(AB,C,D,E,F)

The End

L S

Thank You

