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can be used to represent and to draw inferences from probabilistic

knowledge in a highly transparent and computationally natural fashion.
Graphical models have had a transformative impact across many disciplines,
from statistics and machine learning to artificial intelligence; and they are
\the foundation of the recent emergence of Bayesian cognitive science. Dr. /

Pearl’s work can be seen as providing a rigorous foundation for a theory of
epistemology which is not merely philosophically defensible, but which can
be mathematically specified and computationally implemented. It also
provides one of the most influential sources of hypotheses about the
function of the human mind and brain in current cognitive science.



Rumelhart 1976:
Towards an interactive model of Reading

TOWARD AN INTERACTIVE MODEL OF READING
David E. Rumelhart

D
Pearl: so we have a combination of a top |

down and a bottom up modes of reasoning

which somehow coordinate their actions

resulting in a friendly handshaking.”
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Rumelhart’s Proposed Solution

Rumelhart (1976)
Figure 10
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the conditional probability of the hypothesis given h . This sum is then
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Figure 10 The message center well into the processing sequence.




Pear| 1982:

Inference Engines

From: AAAI-82 Proceedings. Copyright ©1982, AAAl (www.aaai.org). All rights reserved.
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ABSTRACT

This paper presents generalizations of Bayes
Tikelihood-ratio updating rule which facilitate an
asynchronous propagation of the impacts of new
heliefs and/or new evidence in hierarchically or-
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ganized inference structures with multi—hypotheses'

variables. The computational scheme proposed
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feature of hierarchical inference systems is tt
the relation P(D|H) is computable as a cascade
local, more elementary probability relations it
volving intervening variables. Intervening va:
ables, (e.g., organisms causing a disease) may
may not be directly observable. Their computaf
al role, however, is to provide a conceptual

summarization for loosely coupled subsets of gﬁ
vational data so that the compbutation of P(HI
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& Outline

= Bayesian networks, a short tutorial



Bayesian Networks (Pearl 1985)
A Medical Diagnosis Example(tauritsen and spigelhaiter, 1988)

P(s, G, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

The product of all these assessments constitue a joint-probability model
which supporst the assessed quantities

Belief Updating:
P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?

MPE = find argmax P(S)- P(C|S)- P(B|S)- P(X|C,S)- P(D|C,B)



Bayesian Networks Encode Independencies

Causal relationship

An important feature of a Bayesian network is that it provides a clear visual representa-
tion for many independence relationships embedded in the underlying probabilistic model. The
criterion for detecting these independencies is based on graph separation: namely, if all paths
between x; and x; are "blocked” by a subset S of variables, then x; is independent of x; given the
values of the variables in §. Thus, each variable x; is independent of both its siblings and its
grandparents, given the values of the variables in its parent set S;. For this "blocking" criterion
to hold in general, we must provide a special interpretation of separation for nodes that share
common children. We say that the pathway along arrows meeting head-to-head at node x, is
"blocked"”, unless x, or any of its descendants is in S. In Figure 1, for example, x, and x4 are in-
dependent given S, ={x,} or §,={x,x4}, because the two paths between x, and ~; will be
blocked by either S, or §,. However, x, and x; may not be independent given S = {x x4}, be-
cause xg, as a descendant of x5 , "unblocks" the head-to-head connection at x, thus opening a
pathway between x, and x;.



i Monitoring Intensive Care Patients
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i Outline

= Belief propagation on trees



Distributed Belief Propagation

The essence of belief propagation is to make global information be shared locally by
every entity

How many people?

D .y
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BIDIRECTIONAL Mﬂ A(n ) Mv)

Belief Proy

P(x/u)

uﬂ

Figure 4.7. A causal chain with evidential data at its head (e*) and tail

(e").
BEL(x)éP(x le”, e =aP(e Ix,e)Pxle)=aP(e lx)P(xleh
=om(x)Mx),
Where
My)=P(’1x) < Djagnostic support “&
Causal support—> ) =P(xle". )

Information about 7t(x ) propagates from e™ down the chain

nx)=P(x €)=Y P(xlu,e)P(ule").

u

Since U separates X from e*, we obtain

nx)=YPxlu)nu)=n(u). .M, . 4.7)
y



ﬂ Belief Propagation

DATA FUSION

BEL(x)=P(xlegf,ex)=aP(egle},x) P(xle)

=aP(egylx)P(x le}') , 4.13)

The probability distribution of every variable in the tree can

be computed if the node corresponding to that variable contains

the vectors

AMx)=P(exlx) @.15)

and

T(x)=P(xley). (4.16)

T(x ) = causal or predictive support attributed

to the assertion "X = x" by all non-descendants of X .
A(x) = diagnostic or retrospective support that

"X =x"receives from X ’s descendants.

BEL (x) = oA(x) T(x). @.17)

In Trees |, et

How information from several descendants fuses at node X.
Writc ey = ey U ez, and since X separates its children, we have
Ax) =P (exx)
=P(ey,ezlx)
=P(eylx)P(ezlx). (4.18)

So A(x) can be formed as a product of terms such as P (ey | x), if
these terms are delivered to X as messages from its children.

Denoting these messages by subscripted A's,
Ay(x)=P(eylx) (4.19a)
Az(x)=P(ezlx), (4.195)

we have the product rule:

Mx)=Ay(x)Az(x). (4.20)



Step 2 - Bottom-up propagation: X computes
Ay (1), which is sent to its parent U :

)= 3[4 ) Pl

Step 3 - Top-down propagation: X the new nyj(x) message
that X sends to its j-th child ¥; is computed by

=om(x) Il }”Yk (x). (4.29)

k#j



Distributed Belief Propagation

n(t) n(u) mx) n(y)
— —> — —>
At) Au) A(x) A(y) Az)

Causal support

|
|

Diagnostic support

Figure 4.14. Fragment of causal tree, showing incoming (solid arrows) and outgo-
ing (broken arrows) messages at node X .

e=ey Uey

ey stands for the evidence contained in the tree rooted at X ey stands for the evi-
dence contained in the rest of the network.



i Belief Propagation on Polytrees

(@)

(a) Fragment of a polytree, (b) the parents and children of a typical r



i Belief Propagation on Polytrees




Pearl (1982), (Belief Propogation)

O A
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-

figure 2
Propérties of the Updating Schene

1. The local corputations reguired by the pro-
posed scheme are efficient in both storage and time,
For an m-ary tree mth n states per node, e#ach pro-
cessor should store n’+*mn+2n real numbers, and per-
form 2o’ emn+Zn wultiplications per update. These
expressions are on the order of the number of rules
wnich esch variable invakes.




* Outline

s From trees to graphs



A Loopy Bayesian network

P(x1x3x3x4%5.x6) =P (xg|x35) P(x5]x9x3) P(x4lxx3) P(x3]x() P(x5]x) Plx)).

Figure |



& Coping with Loops (Pearl 1988)

m Clustering methods (4.4.1)

= Spigelhalter and Lauritsen: Junction-tree propagation
(1988), Join-tree propagation (Pearl 1988)

s Conditioning schemes (4.4.2)

= Loop-cutset scheme

m Stochastic simulation (Gibbs sampling) 4.4.3

m Loopy belief propagation (exercise)



i (Poly)-Tree Clustering

M, M, M, M,
(a)
DD DD
M,

(b)
Clustering network (a) into a (b) tree or (c) polytree



Join-tree Clustering

A




Metastatic cancer

o Loop-cutset Conditioning

Increased total o) Brain tumor

serum calcium O
Coma Severe headaches
A=0 A=0 A=1 A=1
P | —a) Pc |l ma) P |+a) Pc | +¢
B C B C
D E=1 D E=1
(a) - (b)

Figure 4.28. The multiply connected network of Figure 4.23 is decom-
posed into two polytrees corresponding to the two instantiations of A .




i The Cutset Conditioning

nxoo (x 5) = Z P (x 5 Ix z.x 3)”:0’(.17 2)7tfs(x 3)
x3x3y=0,1

1 - 1
Txs (xs5)= Z P (xs Ixz,x 3)}‘th(}€ Z)K):ls(x 3)
| x2x3=0,]

@ xy =0 x,ao
L Ry, o /\ |

HIORAOY I \;‘,‘(xa)‘“:‘;("a)
Bayes Net (1985) A% (x2) \,
Breaking a loop Xe A3 (xs)




Search vs. cluste

Exponential
in cutset

Search (conditioning)

But: 1
Have

A=1 A=k

And n

ring

Expponential
inw

Inference (elimination)

'he graph may
too large clusters
eed too many conditioning

variables

k “sparser” problems
p P

T
G’e‘!e

1 “denser” problem




i Belief Propagation when there are
® ® ®




SOm e Ap p I icaﬁOnS Human thought processes

Enable learning of BN

From data
Computer Vision Genetic Linkage Sensor Networks
s 2N a \
a allA al [A
—_— —_—
bl |B B\b B| |b
cl|c c cl |c
\J S U
M P Crossover /G ametes\

6 people, 3 markers

o

EEn S
‘ |
)

mim A

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.

HUJI 2012



i Outline

s From Bayesian network to graphical models;
general exact and approximate algorithms



Constraint Networks

Map coloring

Variables: countries (A B C etc.)

Values: colors (red green blue)

Constraints: @ A=D,D=E,..

A

red
red
green
green
yellow
yellow

L e

33



Example: map coloring

Constraint Satisfaction Tasks

Variables - countries (A,B,C,etc.)
Values - colors (e.g., red, green, yellow)

Constraints:

A=B, A=D, D=E, efc.

Are the constraints consistent?
Find a solution, find all solutions
Count all solutions

Find a good solution

A B C D E...
red | 9¢°" | red | green | blue
red | blu | gre | green | blue

gree
n
red
red | blu | red red

34




i Graphical Models

P(A)
P(B|A)
P(CIA)
P(D|A,B)
P(F|B,C)
P(G|D,F)

c) Influence diagram

R(A)
R(A,B)
R(A,C)
R(A,B,D)
R(B,C,F)
R(D,F,G)

G

d) Markov network

&)



Tree Solving is Easy

CSP — consistency

Belief updating (projection-join)
(sum-prod)
mzy (Y) My (Y) my,(Z) My, (Z)
o
MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory



Inference vs. Conditioning

s By Inference (thinking)

Exponential in treewidth
Time and memory

= By Conditioning (guessing)

Exponential in cycle-cutset
A=yelow] een : i .
B=blue|  |[B=green| B= red| IB=blue| Tlme'W|Se, linear memory

- T




i Outline

s Some observations on loopy belief propagation






Distributed Belief Propagation

The essence of belief propagation is to make global information be shared locally by
every entity

How many people?




* Linear Block Codes

Received bits ’ ‘_ ‘ ’ ‘_ ’ ‘_ ‘_

Input bits

Parity bits

Received bits

A

F

E
S {

+ [+ [+ [+ [+ |+

G

/

J

™\

/

Gaussian
channel noise



Belief Propagation on Loopy Graphs

SON

Pearl (1988): use of BP to loopy networks

McEliece, et. Al 1988: BP’s success on coding networks

Lots of research into convergence ... and accuracy if convergence, still:
= Why BP works well for coding networks
= When does BP converge?
= How accurate is it when converged?
= Can we characterize other good problem classes?

= Can we have any guarantees on accuracy (if we have
converges)



* Constraint Propagation

Arcs-consistency

X
D
1=X,Y,72, T<3
A

X<Y
Y=Z
T<Z

Y @ —@
<
T Z

Y




* Arc-consistency

X
CGO—
1=XY,7Z, T=<3
A

Ry < | | Ra™ Dy
Y

X<Y
Y=Z
T<Z

e
<
T Z




* Distributed Relational Arc-consistency

= Can be applied to nodes being the constraints (dual network):

h’i <_ sz’j(Ri > (I><] kEne(z)hzk)) (1)

R; — R; N ('X' kEne(z’)hi) (2)

45



Flattening the Bayesian Network

P(DIA,B)
1

......... D F G P(G|DF)
3 1
3 1
......... 0

Belief network
THEOREM 11. Given a belief network B = (X, D, G, P), where X = {X,,...,X,,},
for any tuple © = (xq,...,xy): Pp(x) > 0 < = € sol(flat(B)), where sol( flat(B)) is
the set of solutions of flat(B).

P(F|B,C)

Flat constraint network




Belief Zero Propagation = Arc-consistency

over belief propagation applies relational arc-consistency on the flat network

hz'j = (p;( thi ) hz‘j =7, (R;>a (< kEne(i)hli )

elim(, j) {k&ne; (i)}

1 i
A

A B PBIA)| A h2A) B hAB) (B h2B) , A 3 B| B
>0 >0 >0
>0 >0 (3 >0 AC
3 >0 |3 >0 .0
0 |l.. o0 e
B 3
s

Updated belief: Updated relation:
Bel(A,B)=P(B|A)-hl -h; -h: = R(A,B) = R(A,B)< b <1 hj < b =




An Example

Rz
A B P(BIA)
3 R3
7 A C P(CA)
4 X
6 |
1 0
9
0
P(D|A,B) P(F|B,C)

1

1
0

O = s e




* Belief Propagation Example: Iteration 1

R A : PQA)
1- ~0
- RO
SR
2
A B P(BA)
3 1 R3
>0 A C PCIA)
3 >0 X
3 1 |
...... 0 0
R4
A B D PDAB) P(F|B,C)
3 1 1
3 1 1
3 1 0
3 1
0

D F G P@GDF

" P

0




i Belief Propagation Example: Iteration 2

A PA)
&l =
30 >0
P00
R2 .
A B P@BA)
3 1 R3
3 ! A C PCA)
...... 0 |
3 1
...... 0
RS

B C F P(®FBC)

SEE

0

D F G P@GDF

B

0




i Belief Propagation Example: Iteration 3

A PA)
&l =
30 >0
10
R, .
A B P(BA)
3 1 R3
...... 0 REIEZR
1
3 1
...... 0
RS

B C F P(®FBC)

SEE

0

D F G P@GDF

B

0




* Belief Propagation Example: Iteration 4

A PA)
S
L0
Rz
A B P(BA)
3 1 R3
...... 0 ° REIE N
1
3 1
...... 0
R, Ry

B C F P(®FBC)

SEE

0

D F G P@GDF

B

0




* Belief Propagation Example: Iteration 5

A B P(BA)
3 1
...... 0

A PA)
sl
0

Belief

1

0

P(G|D,F)

1

0

B C F P(®FBC)

SEE

0




The Inference Power of BP for Zero Beliefs

= Theorem:

Iterative BP performs arc-consistency on the flat network.
(no more, no less)

= Soundness:

= Inference of zero beliefs by IBP converges (in nk iterations, n variables, k= |
domain|)

m  All the inferred zero beliefs are correct

= Incompleteness:

= BPis as weak and as strong as arc-consistency (weak for graph coloring, strong for
implicational constraints.)

s Continuity Hypothesis: IBP is sound for zero - IBP is accurate for
extreme beliefs? Tested empirically



Experimental Results

We investigated empirically if the results for
zero beliefs extend to € -small beliefs (& > 0)

~. = Network types: = Measures: = Algorithms:
§ = Coding = Exact/IJGP = IBP
€ YES< = Linkage analysis* histogram = JGP
2 = Grids* = Recall absolute
P No J Two-layer noisy-OR* error
® = CPCS54, CPCS360 = Precision absolute

error

* Instances from the UAIO8 competition
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Nets with Determinism: Linkage

[ Exact Histogram Il IJGP Histogram Recall Abs. Error —s— Precision Abs. Error
H K —

50 pedigree1, w* = 21 0.008
:g i 0.007
@ 35| 0.006
8 30¢ 0.005
§ 25 | 0.004
= fo' 0.003
* 12 0.002
5+ 0.001

0 0
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SooNoNoYcoRsQsNho®RS
o o o O o o o o O o
pedigree37, w* = 30

50 7 7 0.3

1 0.25
()
> 1 0.2
o 1 0.15
o

Y { 0.4
1 0.05

0

OVTLANLNOUVITVVNOVNDOLL O~
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i-bound =7

Absolute Error

Absolute Error



Percentage Percentage
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* Cutset Phenomena & Irrelevant Nodes

TN

:
|03

s Observed variables break the
flow of inference

s BP is exact when evidence variables
form a loop-cutset

= Unobserved variables without
observed descendents send
zero-information to the parent
variables — it is irrelevant

= In a network without evidence, BP
converges in one iteration top-down



Nodes with Extreme Support

Observed variables with xtreme priors or xtreme support can
nearly-cut information flow:

-

0.0002 —*— Root
- B1
—— C1
0.00015 o B
/ —x— C2

0.0001 —8— Sink

W

0.00005 /
O 'ﬁ"/ T T T T T T T T T

0.00001 0.01

0.2 0.5

prior

0.8

0.99 0.99999

Average Error vs. Priors




Conclusion: Networks with Determinism

BP converges & sound for zero beliefs

m IBP’s power to infer zeros is as weak or as strong as arc-
consistency

= However: inference of extreme beliefs can be wrong.

s Cutset property (Bidyuk and Dechter, 2000):
= Evidence and inferred singleton act like cutset
= |If zeros are cycle-cutset, all beliefs are exact

= Extensions to epsilon-cutset were supported empirically.

= |JGP is an anytime good tradeoff propagation scheme



Thank You

Rina Dechter, Bozhena Bidyuk, Robert Mateescu and Emma Rollon.
"On the Power of Belief Propagation: A Constraint Propagation Perspective" in
Festschrift book in honor of Judea Pearl, 2010

Heuristics, Probability and Causality, A Tribute to Judea Pearl
Editors Rina Dechter, Hector Geffner and Joseph Y. Halpern
http://bayes.cs.ucla.edu/TRIBUTE/pearl-tribute2010.htm

http://www.ics.uci.edu/~dechter/publications.html
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KL distance
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CPCS 422 — KL vs. Iterations

CPCS 422, evid=0, w*=23, 1instance

CPCS 422, evid=30, w*=23, 1instance
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Time vs Space for w-cutset

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

- Random Graphs (50 nodes, 200 edges, average degree 8, w*~23)

60
— Branch and bound

50 T

40 A
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30 A « elimination

W+c(w)

20 T

time 10 -
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W-cutset time O(exp(w+cutset-size)) w Space
Space O(exp(w))



