
On The Feasibility Of Distributed
Constraint Satisfaction

Rina Dechter, UC-Irvine

! Z. Collin and S. Katz, Technion, Israel
! R. Mateescu, K. Kask, UC-Irvine

Overview

! Distributed network consistency; the
self-stabilization framework, revisited
(Collin, Dechter and Katz, 1991, 1995)

! Distributed view of structured constraint
propagation and tree-clustering

! Distributing hybrids of arc-consistency
and stochastic local consistency

The network consistency
problems: Outline

! The problem and the distributed model
! Feasibility
! The network consistency (NC) protocol
! The tree consistency (TC) protocol
! Conclusions

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R
2R

4R

3R

5R

6R

Constraint networks

. theof thebeing
 s,constraint theare),(},,...,{

domains their ofset theis },...,{
 variablesofset a is },...,{

: where,,
 triplea is A

1

1

1

ii

iiit

n

n

Rrelation scopeS
RSCCCC

DDD
XXX

CDXR
network constraint

==
=
=

>=<

The main task:
! Determine if the problem has

a solution (an assignment that
satisfies all the relations);

! If yes, find one or all of them.

A

B C

D F

G

The Distributed Model

! Constraint-based connectionist model:
! Node i ⇔ processor Pi
! edge (i, j) ⇔ communication link between i and j

! The Network-Consistency (NC) Problem
! Given a communication network, each processor should

select a value from its domain that is compatible with its
neighbor's values (a binary csp)

! Two scheduling policies:
! Distributed, allows Parallelism – A subset of processors

activated simultaneously
! Central scheduler: One processor is activated at a time

Motivation and Assumptions of the Distributed Model

Applications: Communication radio networks, Multi-agents

! Limited computation power – (cannot move all
information to one node.) Pi is a finite state machine.

! Computation is only with neighbors (communicaion
network mirrors the constraint graph)

! Self stabilizing protocol: Execution starts from any initial
configuration, good for error correction

! All processors are identically programmed

Feasibility
! Question: Can we define a decision function so that the

network will converge to a consistent solution from any
initial configuration? For any schedule?

! Answer: NO! – not in a uniform model, even when one
processor is activated each time.

! Yes! – in an almost uniform model, where all processors,
but one, are identical.

! Result: we present a self-stabilizing, asynchronous,
almost uniform NC-protocol.

Feasibility
! Theorem: No uniform self stabilizing protocol can solve

the networks consistency problem even when a single
processor is activated at a time (under the central
demon).

! Proof: ring ordering problem

{0…5}

{0…5}
{0…5}

{(i,(i+1)mod6)}

n = 6 = 3 · 2

P0

P1

P2

P3

P4

P5

Prq-1P2q-1Pq-1

P(r-1)q+1P

P(r-1)qP2qPqP0

…
…

…

…

Feasibility
! Theorem: No uniform self stabilizing protocol can solve

the networks consistency problem even when a single
processor is activated at a time.

! Proof: ring ordering problem (n = 2x3= 6). Schedule
(1,4,2,5,3,6). Initial states are identical.

…

! The network consistency protocol is based on sequential
Backjumping with DFS ordering.

! The network

From Sequential to Distributed

X6 X5

X7 X1

X2 X3

X4

! Based on sequential Backjumping with DFS ordering.
! The network

! BFS ordering vs DFS ordering

! DFS orderings allows parallelism (Freuder & Quinn, 1987)

From Sequential to Distributed

X6 X5

X7 X1

X2 X3

X4

X1

X4

X3

X6

X7X2

X5

X1

X2

X3 X5

X4 X7X6

The Network Consistency protocol,
Almost uniform, stochastic

! Three sub-protocols
! DFS spanning tree generation
! Activation control mechanism
! Consistent assignment generation

The DFS search tree protocol

The DFS search tree protocol

The DFS spanning tree
generation protocol

The protocol creates a tree expressed by:

Control Activation Mechanism

! The activation mechanism extends
Dijkstra’s balance/unbalance scheme for
two processors.

! A processor changes its state when it is
privileged.

Privilege
! Control activation: a processor changes state when privilaged

! Every node has two boolean fields:
! parent-tag referring to its inlink,
! children-tag referring to its outlink.

! A processor is privileged when its inlink is unbalanced and its
outlinks are balanced.

+

+ +

±

- --

+

+ +

=

- --

← Privilaged

Pass privilage
to parent

Privilage passing

The NC Protocol

! When the privilege comes from the
parent
! Assign a consistent value, if possible, and pass

privilege to the children; or else, assign a
"dead-end" and return the privilege to the
parent.

! If privilege came from children
! Try another value, or else return privilege to

parent.

Properties of NC Protocol
! Every node verifies consistency only against its relevant

ancestors.

! Only privileged nodes change their states (i.e. reassign
value + pass privilege).

! Eventually there is no more than one privileged node on
every path from the root to a leaf.

! The privileges travel along the tree backwards and
forwards from the root to the leaves.

Theorem

! The NC protocol converges to a solution
if one exists from any initial
configuration.

! Complexity: exponential in depth of DFS
tree.

The network consistency
problems: Outline

! The problem and the distributed model
! Feasibility
! The network consistency (NC) protocol
! The tree consistency (TC) protocol
! Conclusions

Trees

! No uniform, self stabilizing protocol can solve the tree-
consistency problem under the distributed scheduler

! If start from identical states and activated simultaneously

! TC Uniform Protocol under central demon
! Generating directed tree
! Arc-consistency
! Directed value assignment

Arc Consistency

! Remove from Di all values inconsistent
with any of Xi’s neighbors

X0

X1 X2

X4 X3X5

X0

X1

X2

X3

X5

X4

Generating a Pseudo Tree

! Center of the tree – a node whose
maximal distance from a leaf is minimal

One center

Two centers

Finding the Centers
! Sequentially:

! Remove the leaves of the tree in phases.
! The remaining node(s) (1 or 2) are (is) the

center(s).
! In parallel:

! Simulate the sequential algorithm by using N-
vectors to represent phases.

! The ambivalence is resolved by the scheduling
order

. .
.

210

of neighbors

phase #

N-vector:

Resolving Ambiguity by
Scheduling Order

3 2

3

3

1

Resolving Ambiguity by
Scheduling Order

2 . .
.

123 2 . . .122

. .

.
. .
.

1

. . .123

. . .13

Summary

! Feasibility:
! Trees:

! Uniform and single node activation (synchronous),
! Almost uniform and asynchronous

! Networks:
! almost uniform and asynchronous

! Complexity:
! NC protocol is exponentially in the depth of the DFS tree.

! TC protocol is linear

Conclusions
! A uniform, self-stabilizing algorithm for solving the NC problem

is not possible.

! A uniform self –stabilizing protocol is realizable under the
distributed demon. Its complexity is exp in depth of dfs tree.

! The TC protocol is uniform and works under a central demon.

! Both protocols are self stabilizing, where any consistent
solution is a stable pattern.

! Question: under what scheduling policies a uniform self
stabilizing protocol do exists?

Overview

! Distributed network consistency; the
self-stabilization framework, revisited

! Distributed structured constraint
propagation

! Distributing hybrids of arc-consistency
and stochastic local consistency

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R
2R

4R

3R

5R

6R

Constraint networks

. theof thebeing
 s,constraint theare),(},,...,{

domains their ofset theis },...,{
 variablesofset a is },...,{

: where,,
 triplea is A

1

1

1

ii

iiit

n

n

Rrelation scopeS
RSCCCC

DDD
XXX

CDXR
network constraint

==
=
=

>=<

The main task:
! Determine if the problem has

a solution (an assignment that
satisfies all the relations);

! If yes, find one or all of them.

A

B C

D F

G

Distributed Arc-Consistency
! Arc-consistency can be formulated as a

distributed algorithm:
A

B C

D F

G

a Constraint network

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

DRAC on the dual join-graph

Distributed Relational
Arc-Consistency

! DRAC can be applied to the dual
problem of any constraint network:

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

AB

4 5

3

6

2

B

D

B

F

A

A

A

A

C

1

DR-AC on the
dual graph

A

Node 6 sends messagesNode 5 sends messagesNode 4 sends messagesNode 3 sends messagesNode 2 sends messages

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R

2R

4R

3R

5R

6R

2
1

3

A

2
1h

2
1

3

A

3
1h

2
1

3

A

3
2h

2
1

3

A

1
2h

2
3h

1
3

A

12
32
13
23

3
2
B

1
1
A

2
4h2

5h

1
3

B

2
1

3

A

4
1h4

5h

1
3

B

4
6h

1
2

D

12
32
13
23

3
2
B

1
1
A

4
2h

6
5h

1
3

F

6
4h

2
1

3

D

5
3h

2
C

5
2h

2
1

3

B

3
5h

2
C

5
4h

2
1

3

B

5
6h

1
3

F

Iteration 1 1
3h

1
3

A

1
4h

2
1

3

A
Node 1 sends messages

A

AB AC

ABD BCF

DFG

AB

4 5

3

6

2

B

D

B

F

A

A

A

A

C

A

4
3h

1
3

A

2
1

3

A

3
4h1

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

2
1

3

A2
1

3

A

2
1

3

A
1
3

A

2
1

3

B
1
3

B

2
1

3

A
1
2

D

1
3

F

2
1

3

D

2
C

2
1

3

B

2
C

1
3

F

2
1

3

A

2
1

3

B

Iteration 1

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

1
3

A

23
2
C

1
A12

32
13

3
B

1
A

1
3
F

23
2
C

1
B

132
213
1

2
D

23

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 1

1
3

A

23
2
C

1
A12

32
13

3
B

1
A

1
3
F

23
2
C

1
B

132
213
1

2
D

23

3
B

1
A

3
G

1
F

2
D

1
3

A

1
3

A

2
1

3

A
1
3

A

1
3

A
2
D

1
3

F

2
1
D

2
C

1
3

B

2
C

1
F

2
1

3

A

1
3

B

2
1

3

B

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

Iteration 2

1
3

B

1
3

A

23
2
C

1
A13

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

Iteration 2 1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

1
3

A

1
3

A

1
3

A

3
B

1
3

A
2
D

1
F

2
D

2
C

1
3

B

2
C

1
F

1
3

A
1
3

A
1
3

A

23
2
C

1
A13

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

1
3

B

1
3

B

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 3

1
3

A

23
2
C

1
A

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 3

1
3

A

1
3

A

1
A

3
B

1
3

A
2
D

1
F

2
D

2
C

3
B

2
C

1
F

1
3

A
1
3

A
1
3

A

23
2
C

1
A

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

1
3

B

1
3

B

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 4

1
A

23
2
C

1
A

3
B

1
A

1
F

23
CB

2
D

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 4

1
A

1
A

1
A

3
B

3
B

3
B

1
A

2
D

1
F

2
D

2
C

3
B

2
C

1
F

1
A

1
A

1
A

23
2
C

1
A

3
B

1
A

1
F

23
CB

2
D

3
B

1
A

3
G

1
F

2
D

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 5

1
A

2
C

1
A

3
B

1
A

1
F

23
CB

2
D

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 5

Extending DRAC to cluster
join-graphs

! Creates join-graphs where each cluster
contains several constraints

! The graph satisfies the running
intersection proprty: an equivalent
problem

! Send the messages between connected
clusters in the graph

Join-graphs

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

Message propagation

CDEF

CDE
ABCDE

FGI

BCE

GHIJ

FGH

BC

CE

F
F GH

GI

ABCDE
R(a), R(c), R(b,a,c),
R(d,a,b,e),R(e,b,c)

h(3,1)(b,c)

BCD

CDEF

BC

CDE CE

1 3

2

h(3,1)(b,c)

h(1,2)

Minimal arc-labeled:
sep(1,2)={D,E}
elim(1,2)={A,B,C}

Non-minimal arc-labeled:
sep(1,2)={C,D,E}
elim(1,2)={A,B}

∑=
ba

bchbcepabedpacbpcpapcdeh
,

)1,3()2,1()()|()|()|()()()(

∑=
cba

bchbcepabedpacbpcpapdeh
,,

)1,3()2,1()()|()|()|()()()(

Tree decompositions

property)on intersecti (running subtree connected
 a forms set the bleeach variaFor 2.

 and
such that vertex oneexactly is therefunction each For 1.

:satisfying
and sets, twox each verte with gassociatin functions,

labeling are and and treea is where,,, triple
aisnetwork beliefafor A

χ(v)}V|X{vXX
χ(v))scope(pψ(v)p

Pp
Pψ(v)

Xχ(v)Vv
ψχ(V,E)TT

X,D,G,PBNiondecomposit tree

ii

ii

i

∈∈∈
⊆∈

∈
⊆

⊆∈
=><

>=<
ψχ

A B C
R(a), R(b,a), R(c,a,b)

B C D F
R(d,b), R(f,c,d)

B E F
R(e,b,f)

E F G
R(g,e,f)

EF

BF

BC

G

E

F

C D

B

A

Belief network Tree decomposition

ABC

2

4

),,(),()(),()2,1(BACRABRARCBh BC ××∏=

1

3 BEF

EFG

),(),|()|(),()2,3(
,

)1,2(fbhdcfpbdpcbh
fd

⋅⋅= ∑

),(),|()|(),()2,1(
,

)3,2(cbhdcfpbdpfbh
dc

⋅⋅= ∑

),(),|(),()3,4()2,3(fehfbepfbh
e

⋅= ∑

),(),|(),()3,2()4,3(fbhfbepfeh
b

⋅= ∑

),|(),()3,4(fegGpfeh e==

EF

BF

BC

BCDF

G

E

F

C D

B

A

Join-tree clustering - Example

Tree-decomposition: an
architecture for distributed CSPs
! All the join-graphs, with/without min-arc labels represent

equivalent problems.

! Each cluster is a subproblem solved centrally in one node. Each
link corresponds to Relational arc-consistency.

! Only when the join-graph is a tree relational arc-consistency
solved the problem exactly.

! For join-graphs we get an approximation that can be followed
by the NC protocol over the arc-consistent join-graph

Tree-decomposition: an
architecture for distributed CSPs

! Once message-passing is accomplished
a solution can be accomplished by the
tree-consistency (TC) protocol over the
join-tree.

! Yields a uniform self-stabilizing
algorithm when each cluster is a
centralized computation.

! Exponential in cluster size

DRAC over join-trees
! Create a minimal arc join-tree dictating which

constraints cooperate and what are the neighbors of
clusters.

! Apply DRAC between clusters (uniform self-
stabilizing, stochastic)

! Generate a solution using a TC protocol
! Complexity: exponential in number of variables in

each cluster. Message passing like DRAC.
! Approximation: apply DRAC to a join-graph which is

not a tree.

Overview

! Distributed network consistency; the
self-stabilization framework, revisited

! Distributed structured constraint
propagation

! Distributing hybrids of arc-consistency
and stochastic local consistency

Approximating conditioning
with elimination

Energy minimization in neural networks
(Pinkas and Dechter, 1995)

For cycle-cutset nodes, use the greedy update function
(relative to neighbors).
For the rest of nodes, run the arc-consistency algorithm
followed by value assignment.

}1,0{=iX }1,0{=jX

cutset

GSAT with Cycle-Cutset
(Kask and Dechter, 1996)

Input: a CSP, a partition of the variables into cycle-cutset
and tree variables

Output: an assignment to all the variables

Within each try:
Generate a random initial asignment,
and then alternate between the two steps:

1. Run Tree algorithm (arc-consistency+assignment)
on the problem with fixed values of cutset variables.

2. Run GSAT on the problem with fixed values of tree variables.

Conslusions

! Distributed network consistency; the
self-stabilization framework, revisited

! Distributed structured constraint
propagation: complete and approximate

! Distributing hybrids of arc-consistency
and stochastic local consistency

