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Overview

! Distributed network consistency; the 
self-stabilization framework, revisited 
(Collin, Dechter and Katz, 1991, 1995)

! Distributed view of structured constraint 
propagation and tree-clustering

! Distributing hybrids of arc-consistency 
and stochastic local consistency



The network consistency 
problems: Outline

! The problem and the distributed model
! Feasibility
! The network consistency (NC) protocol
! The tree consistency (TC) protocol
! Conclusions
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The main task: 
! Determine if the problem has 

a solution (an assignment that 
satisfies all the relations);

! If yes, find one or all of them.
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The Distributed Model 

! Constraint-based connectionist model:
! Node i ⇔ processor Pi
! edge (i, j) ⇔ communication link between i and j

! The Network-Consistency (NC) Problem
! Given a communication network, each processor should 

select a value from its domain that is compatible with its 
neighbor's values (a binary csp)

! Two scheduling policies:
! Distributed, allows Parallelism – A subset of processors 

activated simultaneously
! Central scheduler: One processor is activated at a time



Motivation and Assumptions of the Distributed Model

Applications: Communication radio networks, Multi-agents

! Limited computation power – (cannot move all 
information to one node.) Pi is a finite state machine. 

! Computation is only with neighbors (communicaion
network mirrors the constraint graph)

! Self stabilizing protocol: Execution starts from any initial 
configuration, good for error correction

! All processors are identically programmed



Feasibility 
! Question: Can we define a decision function so that the 

network will converge to a consistent solution from any 
initial configuration? For any schedule?

! Answer: NO! – not in a uniform model, even when one 
processor is activated each time.

! Yes! – in an almost uniform model, where all processors, 
but one, are identical.

! Result: we present a self-stabilizing, asynchronous, 
almost uniform NC-protocol.



Feasibility
! Theorem: No uniform self stabilizing protocol can solve 

the networks consistency problem even when a single 
processor is activated at a time (under the central 
demon). 

! Proof: ring ordering problem
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Feasibility
! Theorem: No uniform self stabilizing protocol can solve 

the networks consistency problem even when a single 
processor is activated at a time.

! Proof: ring ordering problem (n = 2x3= 6). Schedule 
(1,4,2,5,3,6). Initial states are identical.

…



! The network consistency protocol is based on sequential 
Backjumping with DFS ordering.

! The network

From Sequential to Distributed

X6 X5

X7 X1

X2 X3

X4



! Based on sequential Backjumping with DFS ordering.
! The network

! BFS ordering vs DFS ordering

! DFS orderings allows parallelism (Freuder & Quinn, 1987)

From Sequential to Distributed

X6 X5

X7 X1

X2 X3

X4

X1

X4

X3

X6

X7X2

X5

X1

X2

X3 X5

X4 X7X6



The Network Consistency protocol,
Almost uniform, stochastic

! Three sub-protocols
! DFS spanning tree generation
! Activation control mechanism
! Consistent assignment generation



The DFS search tree protocol



The DFS search tree protocol



The DFS spanning tree 
generation protocol

The protocol creates a tree expressed by:



Control Activation Mechanism

! The activation mechanism extends 
Dijkstra’s balance/unbalance scheme for 
two processors.

! A processor changes its state when it is 
privileged.



Privilege
! Control activation: a processor changes state when privilaged

! Every node has two boolean fields:
! parent-tag referring to its inlink,
! children-tag referring to its outlink. 

! A processor is privileged when its inlink is unbalanced and its 
outlinks are balanced.
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+ +

±

- --

+
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- --

← Privilaged

Pass privilage
to parent



Privilage passing



The NC Protocol

! When the privilege comes from the 
parent
! Assign a consistent value, if possible, and pass 

privilege to the children; or else, assign a 
"dead-end" and return the privilege to the 
parent. 

! If privilege came from children
! Try another value, or else return privilege to 

parent.



Properties of NC Protocol 
! Every node verifies consistency only against its relevant 

ancestors. 

! Only privileged nodes change their states (i.e. reassign 
value + pass privilege). 

! Eventually there is no more than one privileged node on 
every path from the root to a leaf. 

! The privileges travel along the tree backwards and 
forwards from the root to the leaves.



Theorem

! The NC protocol converges to a solution 
if one exists from any initial 
configuration.

! Complexity: exponential in depth of DFS  
tree.



The network consistency 
problems: Outline

! The problem and the distributed model
! Feasibility
! The network consistency (NC) protocol
! The tree consistency (TC) protocol
! Conclusions



Trees

! No uniform, self stabilizing protocol can solve the tree-
consistency problem under the distributed scheduler

! If start from identical states and activated  simultaneously

! TC Uniform Protocol under central demon
! Generating directed tree
! Arc-consistency
! Directed value assignment



Arc Consistency

! Remove from Di all values inconsistent 
with any of Xi’s neighbors

X0

X1 X2

X4 X3X5
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X4



Generating a Pseudo Tree

! Center of the tree – a node whose 
maximal distance from a leaf is minimal

One center

Two centers



Finding the Centers
! Sequentially:

! Remove the leaves of the tree in phases. 
! The remaining node(s) (1 or 2) are (is) the 

center(s).
! In parallel:

! Simulate the sequential algorithm by using N-
vectors to represent phases. 

! The ambivalence is resolved by the scheduling 
order

. . 
.

210

# of neighbors

phase #

N-vector:



Resolving Ambiguity  by 
Scheduling Order
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Resolving Ambiguity  by 
Scheduling Order
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Summary

! Feasibility:
! Trees: 

! Uniform and single node activation (synchronous),
! Almost uniform and asynchronous

! Networks:
! almost uniform and asynchronous

! Complexity:
! NC protocol is exponentially in the depth of the DFS tree. 

! TC protocol is linear



Conclusions
! A uniform, self-stabilizing algorithm for solving the NC problem 

is not possible.  

! A uniform self –stabilizing protocol is realizable under the 
distributed demon. Its complexity is exp in depth of dfs tree. 

! The TC protocol is uniform and works under a central demon.

! Both protocols are self stabilizing, where any consistent 
solution is a stable pattern.

! Question: under what scheduling policies a uniform self 
stabilizing protocol do exists?



Overview

! Distributed network consistency; the 
self-stabilization framework, revisited

! Distributed structured constraint 
propagation

! Distributing hybrids of arc-consistency 
and stochastic local consistency
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! If yes, find one or all of them.

A

B C

D F

G



Distributed Arc-Consistency
! Arc-consistency can be formulated as a 

distributed algorithm:
A

B C

D F

G

a Constraint network
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Distributed Relational 
Arc-Consistency 

! DRAC can be applied to the dual 
problem of any constraint network:
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Node 6 sends messagesNode 5 sends messagesNode 4 sends messagesNode 3 sends messagesNode 2 sends messages
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Extending DRAC to cluster 
join-graphs

! Creates join-graphs where each cluster 
contains several constraints

! The graph satisfies the running 
intersection proprty: an equivalent 
problem

! Send the messages between connected  
clusters in the graph



Join-graphs
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Message propagation
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Tree-decomposition: an 
architecture for distributed CSPs
! All  the join-graphs, with/without min-arc labels represent 

equivalent problems.

! Each cluster is a subproblem solved centrally in one node. Each 
link corresponds to Relational arc-consistency.

! Only when the join-graph is a tree relational arc-consistency 
solved the problem exactly.

! For join-graphs we get an approximation that can be followed 
by the NC protocol over the arc-consistent join-graph



Tree-decomposition: an 
architecture for distributed CSPs

! Once message-passing is accomplished 
a solution can be accomplished by the 
tree-consistency (TC) protocol over the 
join-tree.

! Yields a uniform self-stabilizing 
algorithm when each cluster is a 
centralized computation.

! Exponential in cluster size



DRAC over join-trees
! Create a minimal arc join-tree dictating which 

constraints cooperate and what are the neighbors of 
clusters.

! Apply DRAC between clusters (uniform self-
stabilizing, stochastic)

! Generate a solution using a TC protocol
! Complexity: exponential in number of variables in 

each cluster. Message passing like DRAC.
! Approximation: apply DRAC to a join-graph which is 

not a tree.



Overview

! Distributed network consistency; the 
self-stabilization framework, revisited

! Distributed structured constraint 
propagation

! Distributing hybrids of arc-consistency 
and stochastic local consistency



Approximating conditioning 
with elimination

Energy minimization in neural networks
(Pinkas and Dechter, 1995)

For cycle-cutset nodes, use the greedy update function 
(relative to neighbors).
For the rest of nodes, run the arc-consistency algorithm 
followed by value assignment.

}1,0{=iX }1,0{=jX

cutset



GSAT with Cycle-Cutset
(Kask and Dechter, 1996)

Input: a CSP, a partition of the variables into cycle-cutset
and tree variables

Output: an assignment to all the variables

Within each try:
Generate a random initial asignment, 
and then alternate between the two steps:

1. Run  Tree algorithm (arc-consistency+assignment)
on the problem with fixed values of cutset variables.

2. Run GSAT on the problem with fixed values of tree variables.



Conslusions

! Distributed network consistency; the 
self-stabilization framework, revisited

! Distributed structured constraint 
propagation: complete and approximate

! Distributing hybrids of arc-consistency 
and stochastic local consistency


