On The Feasibility Of Distributed
Constraint Satisfaction

!'_ Rina Dechter, UC-Irvine

s Z. Collin and S. Katz, Technion, Israel
» R. Mateescu, K. Kask, UC-Irvine

i Overview

= Distributed network consistency; the
self-stabilization framework, revisited
(Collin, Dechter and Katz, 1991, 1995)

= Distributed view of structured constraint
oropagation and tree-clustering

= Distributing hybrids of arc-consistency
and stochastic local consistency

The network consistency
i problems: Outline

= The problem and the distributed model
= Feasibility

= The network consistency (NC) protocol
= The tree consistency (TC) protocol

= Conclusions

Constraint networks

A'Constraint network isatriple

R=<X,D,C >where: R,
X ={X,,..., X }isasetof variables

D ={D,,...,D,} istheset of their domains
C ={C,...,C},C, =(S,,R) aretheconstraints,
S. being the scope of therelation R..

The main task R, e
= Determine if the problem has A B g
a solution (an assignment that R
satisfies all the relations); 3 D F
3

= If yes, find one or all of them.

The Distributed Model

= Constraint-based connectionist model:
= Node i < processor P,
= edge (i, /) < communication link between i and

= The Network-Consistency (NC) Problem

= Given a communication network, each processor should
select a value from its domain that is compatible with its
neighbor's values (a binary csp)
= Two scheduling policies:

= Distributed, allows Parallelism — A subset of processors
activated simultaneously

= Central scheduler: One processor is activated at a time

Motivation and Assumptions of the Distributed Model

Applications: Communication radio networks, Multi-agents

= Limited computation power — (cannot move all
Information to one node.) Pi is a finite state machine.

= Computation is only with neighbors (communicaion
network mirrors the constraint graph)

= Self stabilizing protocol: Execution starts from any initial
configuration, good for error correction

s All processors are identically programmed

i Feasibility

= Question: Can we define a decision function so that the
network will converge to a consistent solution from any
Initial configuration? For any schedule?

= Answer: NO! — not in a uniform model, even when one
processor is activated each time.

= Yes! —in an almost uniform model, where all processors,
but one, are identical.

= Result: we present a self-stabilizing, asynchronous,
almost uniform NC-protocol.

Feasibility

= Theorem: No uniform self stabilizing protocol can solve
the networks consistency problem even when a single

processor is activated at a time (under the central
demon).

= Proof: ring ordering problem

n=6=3-2
I:)o I:)q I:)2q P(r-l)q
P Pr-1)q+1
o P -
{(1,(1+1)mod6)} 4 Pq-l P2q—1 I:)rq-l

Feasibility

= Theorem: No uniform self stabilizing protocol can solve
the networks consistency problem even when a single
processor is activated at a time.

= Proof: ring ordering problem (n = 2x3= 6). Schedule
(1,4,2,5,3,6). Initial states are identical.

i From Sequential to Distributed

= The network consistency protocol is based on sequential
Backjumping with DFS ordering.

= The network ‘ I/I I

From Sequential to Distributed

= Based on sequential Backjumping with DFS ordering.

= The network

= BFS ordering vs DFS ordering

= DFS orderings allows parallelism (Freuder & Quinn, 19::87)

The Network Consistency protocol,
i Almost uniform, stochastic

= Three sub-protocols
= DFS spanning tree generation
= Activation control mechanism
= Consistent assignment generation

i The DFS search tree protocol

‘('-"l,‘ (e, b, c)
—)

(e, b)

{u,c)

i The DFS search tree protocol

The DFS spanning tree
‘L generation protocol

("-'\,‘ (e, b, c)
I._'i;; xg} k._‘I 3)
(e, b)

{u,c)

The protocol creates a tree expressed by:

predecedors(i) children(i) children(i) predecedors(i)

i Control Activation Mechanism

= The activation mechanism extends
Dijkstra’s balance/unbalance scheme for
two processors.

= A processor changes its state when it is
privileged.

i Privilege

= Control activation: a processor changes state when privilaged

= Every node has two boolean fields:
= parent-tag referring to its inlink,
= children-tag referring to its outlink.
= A processor is privileged when its inlink is unbalanced and its
outlinks are balanced.

® ® ®

Pass privilage
v to parent v
" Privilaged

i Privilage passing

@® - Privileged node

i The NC Protocol

= When the privilege comes from the

parent
= Assign a consistent value, if possible, and pass
privilege to the children; or else, assign a

"dead-end" and return the privilege to the
parent.

= If privilege came from children

= Try another value, or else return privilege to
parent.

Properties of NC Protocol

= Every node verifies consistency only against its relevant
ancestors.

= Only privileged nodes change their states (i.e. reassign
value + pass privilege).

= Eventually there is no more than one privileged node on
every path from the root to a leaf.

= The privileges travel along the tree backwards and
forwards from the root to the leaves.

i Theorem

= The NC protocol converges to a solution
If one exists from any initial
configuration.

= Complexity: exponential in depth of DFS
tree.

The network consistency
i problems: Outline

= The problem and the distributed model
= Feasibility

= The network consistency (NC) protocol
= The tree consistency (TC) protocol

= Conclusions

Trees

No uniform, self stabilizing protocol can solve the tree-
consistency problem under the distributed scheduler

e—O

If start from identical states and activated simultaneously

TC Uniform Protocol under central demon
= Generating directed tree
= Arc-consistency
= Directed value assignment

‘L Arc Consistency

» Remove from Dr all values inconsistent
with any of Xi's neighbors

/‘\f\'\

‘L Generating a Pseudo Tree

s Center of the tree — a node whose
maximal distance from a leaf iIs minimal

One center —

\/

Two centers

i Finding the Centers

= Sequentially:

= Remove the leaves of the tree in phases.
= The remaining node(s) (1 or 2) are (is) the

center(s).
= In parallel:

= Simulate the sequential algorithm by using N-
vectors to represent phases.

N-vector:

= The ambivalen

order

/ # of neighbors

LRy

gsotved by the scheduling

Resolving Ambiguity by
* Scheduling Order

Resolving Ambiguity by
i Scheduling Order

3122

11..

i Summary

s Feasibility:
s [Iees:

=« Uniform and single node activation (synchronous),
=« Almost uniform and asynchronous

= Networks:
= almost uniform and asynchronous
s Complexity:
= NC protocol is exponentially in the depth of the DFS tree.
= TC protocol is linear

Conclusions

= A uniform, self-stabilizing algorithm for solving the NC problem
IS not possible.

= A uniform self —stabilizing protocol is realizable under the
distributed demon. Its complexity is exp in depth of dfs tree.

= The TC protocol is uniform and works under a central demon.

= Both protocols are self stabilizing, where any consistent
solution is a stable pattern.

= Question: under what scheduling policies a uniform self
stabilizing protocol do exists?

i Overview

= Distributed network consistency; the
self-stabilization framework, revisited

= Distributed structured constraint

oropagation

= Distributing hybrids of arc-consistency
and stochastic local consistency

Constraint networks

A'Constraint network isatriple

R=<X,D,C >where: R,
X ={X,,..., X }isasetof variables

D ={D,,...,D,} istheset of their domains
C ={C,...,C},C, =(S,,R) aretheconstraints,
S. being the scope of therelation R..

The 1;4 i e

= Determine if the problem has N -
a solution (an assignment that R
satisfies all the relations); (3 D F
3

= If yes, find one or all of them.

Distributed Arc-Consistency

= Arc-consistency can be formulated as a
distributed algorithm: 0

a Constraint network

-graph

join

DRAC on the dual

Distributed Relational
i Arc-Consistency

= DRAC can be applied to the dual
problem of any constraint network:

hi N Wﬁ@'j(Ri > (m kEne(@)h;)) (1)

R; — K; N (DCiI ke:me(é)hi) (2)

DR-AC on the

dui graph

lteration 1

(1)

o)

R; —
; R
AN (= h
ne(?)

Iteration 2

?

Rl — mj(Rg' >1 (D ke«n,e(i)hi))

s hg
B B
3

he hy R
ﬁ

R,

B
3
3

3

R w ho
Al (Al A A
[[0

3 3

)

R; — R;N (<

; R;

i M (> e (h
ne(?)

2
5 h4

B

oY)

w

hg

) (2)

?
k

R; — K; N (m kEne(é)h

Iteration 4

h“: — Wiéj(Ri >1 (D kEne(é)hi))

s hy
B |B]

w

Al [al lal A
3 3| 3
oo R
A A B
3 Rs > ht'?

AcCl [a
- R R R
. N BCFl [B ﬁ
. 3 3
3

R; «— Ri N (04 pepe(iyh))

Iteration 4
R3
R5

hy sk
‘BT

Iteration 5

+

6 6
4 5
D |F

DFG

Extending DRAC to cluster
i join-graphs

= Creates join-graphs where each cluster
contains several constraints

= The graph satisfies the running
Intersection proprty: an equivalent
problem

= Send the messages between connected
clusters in the graph

Join-graphs

Message propagation

ABCDE

ABCDE
R(a), R(c), R(b,a,c),
R(d,a,b,e),R(e,b,c)
h(3,1)(b,c)

hg (b,

Minimal arc-labeled:
sep(1,2)={D,E} has (de) = 2 p(a)p(c) p(b | ac) p(d | abe) p(e | be)hy (be)
elim(1,2)={A,B,C} s

Non-minimal arc-labeled: 4, ,,(cde) = Z pla)p(c)p(b|ac)p(d |abe)p(e|bc)h s, (be)
sep(1,2)={C,D,E} a,b
elim(1,2)={A,B}

Tree decompositions |

At composition for abelief network BN =< X,D,G,P >isa
triple< T, v, >, whereT = (V,E) isatreeand y and y arelabeling BC

ABC
R(a), R(b,a), R(c,a,b)

functions, associating with each vertex v e I two sets, y(v) < X and SCDF
w(v) < P satisfying: [R(d,b), R(f,cd)]
1. For each function p, € P thereisexactly one vertex such that
BF
p; €y(v)and scope(p;) < x(v)
2.For each variable X, € X theset {v e V| X, € y(v)}formsa [BEF J
R(eb/f)

connected subtree (rynqing intersecti on property)

IS> o
4%@ (&

Belief network (=] Tree decomposition

Join-tree clustering - Example

1] ABC

BC

BF

3| BEF

EF

ha(B,C) =11, R(4)x R(B,A4)x R(C, 4, B)

h(zyl)(b,c)zz p(d |b)-p(f|c,d)-h(3’2)(b,f)

h(2’3)(b,f):z p(d |b)-p(f|c,d)-h(1,2)(b,c)

h(s,z)(b,f) = Z p(e|b,f)-h(4’3)(e,f)

h(3’4)(e,f) = z ple |b,f)-h(2’3)(b,f)

has(e, [)=p(G=g,le f)

4| EFG

Tree-decomposition: an
architecture for distributed CSPs

All the join-graphs, with/without min-arc labels represent
equivalent problems.

= Each cluster is a subproblem solved centrally in one node. Each
link corresponds to Relational arc-consistency.

= Only when the join-graph is a tree relational arc-consistency
solved the problem exactly.

= For join-graphs we get an approximation that can be followed
by the NC protocol over the arc-consistent join-graph

Tree-decomposition: an
i architecture for distributed CSPs

= Once message-passing is accomplished
a solution can be accomplished by the
tree-consistency (TC) protocol over the
join-tree.

= Yields a uniform self-stabilizing
algorithm when each cluster is a
centralized computation.

= Exponential in cluster size

i DRAC over join-trees

Create a minimal arc join-tree dictating which
constraints cooperate and what are the neighbors of
clusters.

Apply DRAC between clusters (uniform self-
stabilizing, stochastic)

Generate a solution using a TC protocol

Complexity: exponential in number of variables in
each cluster. Message passing like DRAC.
Approximation: apply DRAC to a join-graph which is
not a tree.

i Overview

= Distributed network consistency; the
self-stabilization framework, revisited

= Distributed structured constraint

propagation

m Distributing hybrids of arc-consistency
and stochastic local consistency

Approximating conditioning
with elimination

Energy minimization in neural networks
(Pinkas and Dechter, 1995)

For cycle-cutset nodes, use the greedy update function
(relative to neighbors).

For the rest of nodes, run the arc-consistency algorithm
followed by value assignment.

_-Ccutset
'- ._-'-—_
X,' :{O,]}

GSAT with Cycle-Cutset

(Kask and Dechter, 1996)

Input: a CSP, a partition of the variables into cycle-cutset
and tree variables
Output: an assignment to all the variables

Within each try:
Generate a random initial asignment,
and then alternate between the two steps:

1. Run Tree algorithm (arc-consistency+assignment)
on the problem with fixed values of cutset variables.
2. Run GSAT on the problem with fixed values of tree variables.

i Conslusions

= Distributed network consistency; the
self-stabilization framework, revisited

= Distributed structured constraint
propagation: complete and approximate

m Distributing hybrids of arc-consistency
and stochastic local consistency

