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Outline 
l  Haplotype Inference as Bayes Net query. 
l  AND/OR Branch and Bound for Graphical Models. 

-  State-of-the-art MPE solver. Won all three MPE tracks in 
PASCAL'11 Challenge. 

-  Very complex instances necessitate parallelism. Run on 
grid of loosely coupled commodity hardware. 

-  Pruning power causes significant job imbalance. 
l  Load Balancing through Complexity Estimation. 

-  Learn linear regression models offline. 
l  Good parallel results on complex pedigree instances. 



The Haplotype Configuration Problem 
•  Haplotype: the sequence of alleles at different loci inherited by an individual 

from one parent . 

•  Genotype: the two haplotypes of an individual constitute this individual's 
genotype. Measured genotypes results in a list of unordered pairs of alleles; 
one pair for each locus. 

•   A recombination occurrs between two loci, if an haplotype of an individual 
contains two alleles that resided in different haplotypes of the individual's 
parent.  

 
•  The Maximum Likelihood Haplotype Configuration problem, consists of 

finding a joint haplotype configuration for all members of the pedigree which 
maximizes the probability of the data. 

•   The haplotyping problem often does not have a unique solution. 



 
5 

Problem Statement 
l  Find most likely haplotype 

given partial genotypes. 
-  Pedigree chart models 

ancestral relations. 
 
 

l  Encode problems as 
Bayesian Network. 

-  “Most Probable 
Explanation” (MPE) yields 
haplotype. 

[Wikipedia] 



 
6 

Bayesian Networks 
l  Given is a graphical model and a query: 

-  Bayesian Network: 
l  Variables {Xi } and conditional 

probability tables { P(Xi |pari ) } . 
-  Factorizes joint probability distribution. 

-  MPE Query: 
l  Most Probable Explanation: Find 

assignment that maximizes joint 
probability. 

-  Problem is NP-hard in general. 
l  Advanced algorithms exist, expo- 

nential in tree width w* of graph. 
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Bayesian Network for Recombination 
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Searching the standard space 
(Depth-First Search) 

l  Standard depth-first search procedure: 
-  Instantiate variables one at a time. 

l  Backtrack in case of inconsistencies. 
-  Time complexity: exp(n) . 

l  Linear space. 



Branch-and-Bound Search 

n	  

 g(n)=cost of the 
search path to n 

H(n) = estimates the 
optimal cost below n 

LB(n) = g(n) + h(n) 

Lower	  Bound	  LB(n)	  

OR	  Search	  Tree	  

Prune	  if	  LB(n)	  ≥	  UB	  

Upper	  Bound	  UB	  

(Lawler & Wood66) 
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AND/OR Search Spaces 

l  Improves upon standard search: 
-  Decompose independent 

subproblems. 
-  Merge unifiable subproblems. 

[BE] 

[AB] 

[BC] 

[AB] 

[A] 

[ ] 

Decomposition 

B E sol
0 0 0.8
0 1 0.3
1 0 ...
1 1 ...

Cachetable for F 
(independent of A) 

Time and space: exp(w*) 

Prune based on 
current best solution 
and heuristic estimate. 
(mini-bucket heuristic) 

v=12 

h=9 v=10 
2 

Marinescu  & Dechter 
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All Four Search Spaces 
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Static Mini-Bucket Heuristics 
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Ordering:	  (A,	  B,	  C,	  D,	  E,	  F,	  G)	  

h(a,	  b,	  c)	  =	  hD(a)	  +	  hD(b,	  c)	  +	  hE(b,	  c)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ≤	  h*(a,	  b,	  c)	  

MBE(3) 

Node duplication à lower bound 
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Searching in Parallel 
l  Parallel tree search. [Kumar] 

l  Introduce parallelization frontier : 
-  Condition on partial instantiations. 
-  Solve subtrees in parallel and combine solutions. 

l  Speedup at most linear. 

frontier 
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AND/OR Search Parallelization 
l  Depth 2 cutoff: 8 subproblems. 

-  Conditioning and decomposition. 
-  Full parallelization upfront (static). 

{A=0, B=1} {A=0, B=0} {A=1, B=0} {A=1, B=1} 
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Subproblem Variance 
l  Fixed-depth cutoff: 

-  Subproblems have identical structure. 
-  But large variance in runtime complexity? 
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Subproblem Variance 
l  In spite of identical structure: 

-  Effect of bounds and pruning differs vastly. 
-  Few subproblems dominate overall performance. 

Predict subproblem complexities 
to enable better load balancing 
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Subproblem Complexity Prediction 
l  Model number of nodes N(n) as exponential function of 

subproblem features φj(n) : 

𝑁(𝑛)= 𝑏↑∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛)   
l  Then consider log number of nodes: 

log 𝑁(𝑛) =∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛)  
l  Thus, finding parameter values λj can be seen as a linear 

regression problem. 
-  Given m sample subproblems nk , minimize MSE: 

1/𝑚 ∑𝑘=1↑𝑚▒(∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛↓𝑘 )− log 𝑁( 𝑛↓𝑘 )  )↑2   



 
21 

34 Subproblem Features 
l  Static, structural properties: 

-  Number of variables. 
-  Avg. and max. width. 
-  Height of sub pseudo tree. 
-  Etc. 

l  Dynamic, runtime properties: 
-  Upper and lower bound. 
-  Pruning ratio and depth of 

small AOBB probe. 
-  Etc. 



Problem Features 

l  Subproblem variable statistics (static): 
-  N: Number of variables in subproblem. 
-  Min, Max, mean, average, and std. dev. of variable 

domain sizes in subproblem. 
l  Pseudo tree depth/leaf statistics (static): 

-  h: Depth of subproblem root in overall search space. 
-  Min, max, mean, average, and std. dev. of depth of 

subproblem pseudo tree leaf nodes, counted from 
subproblem root. 

-  L: Number of leaf nodes in subproblem pseudo tree. 



Problem Features 

l  Pseudo tree width statistics (static): 
-  Min, max, mean, average, and std. dev. of induced width of 

variables within subproblem. 
-  Min, max, mean, average, and std. dev. of induced width of 

variables within subproblem, when conditioning on 
subproblem root conditioning set. 

l  Subproblem cost bounds (dynamic): 
-  Lower bound L on subproblem solution cost, derived from 

current best overall solution. 
-  Upper bound U on subproblem solution cost, provided by 

mini bucket heuristics. 
-  Difference U-L between upper and lower bound, expressing 

“constrainedness” of the subproblem. 



Problem Features 

l  Pruning ratios (dynamic), based on running 5000 
node expansion probe of AOBB: 
-  Ratio of nodes pruned using heuristic upper bound. 
-  Ratio of nodes pruned due to determinism (zero 

probabilities, e.g.). 
-  Ratio of nodes corresponding to pseudo tree leaf. 

l  Sample statistics (dynamic), based on running 5000 
node expansion probe of AOBB: 
-  Average depth of terminal search nodes within probe. 
-  Average node depth within probe (denoted d ). 
-  Average branching degree, defined as  d√5000



Problem Features 

l  Various: 
-  Mini bucket i-bound parameter. 
-  Max. subproblem variable context size minus mini 

bucket i-bound. 
 
l  In total 34 features. 



Specifics of Learning 
l  Lasso learning to avoid overfitting. 

-  Add regularization term to MSE. 
1/𝑚 ∑𝑘=1↑𝑚▒(∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛↓𝑘 )− log 𝑁( 𝑛↓𝑘 )  )↑2  +𝛼
‖𝜆‖↓1  

-  Encourages sparsity, implicit feature selection. 
-  α = 0.1 through cross validation. 

l  Measure: 
-  MSE: Prediction error (MSE) 
-  TER: Training error (MSE) 
-  PCC: Pearson correlation coefficient (normalized cov.) 



Regression Results 
l  31 instances total (13 pedigrees) from 4 classes. 

-  Run each with fixed-depth cutoff. 
-  Choose up to 500 subproblem samples. 
-  Yields 11,500 samples overall. 

l  Most general regression approach: 
-  Train model on samples from 30 instances. 
-  Test on samples from remaining instance. 

l  Other scopes of learning evaluated: 
-  Per-instance and per-class, comparable results. 



Regression Results 
l  Prediction on two pedigree examples: 

-  Test error (MSE) close to training error (TER). 
-  Fairly high correlation coefficient. 



Across all Problems/Classes 



Parallelization Scheme 
l  Iteratively split estimated largest subproblem. 

-  Until desired number of subproblems is reached. 



Detailed Parallel Results 
l  Pedigree41: 

-  Left: detailed subproblem statistics 
-  Right: actual vs. predicted complexity 



Detailed Parallel Results 
l  Pedigree19: 

-  Left: detailed subproblem statistics. 
-  Right: actual vs. predicted complexity. 



Overall Parallel Results 
l  Pedigrees with 20-25 individuals and 20-25 loci. 

-  n is number of variables, k max. domain size, w induced 
width, h pseudotree height. Runtime in hh:mm. 



Overall Parallel Results 
l  Parallel runtimes plotted. 



Parallel Speedup 
l  Speedup relative to sequential algorithm. 

-  Highest potential with most complex problems. 



Summary 
l  Express haplotype computation as MPE query. 

-  Exploit graph structure and apply advanced AND/OR 
search algorithms (decomposition and caching and 
mini-bucket heuristics). 

l  Parallel AND/OR Branch and Bound: 
-  Powerful pruning impedes load balancing. 
-  Learn complexity regression model offline. 

l  Empirical results: Improved load balancing. 
-  Good parallel performance and speedup on hard 

pedigree instances. 
l  Deployed in Superlink-Online SNP: 

-  http://cbl-hap.cs.technion.ac.il/superlink-snp 


