
Finding Most Likely Haplotypes
in General Pedigrees through

Parallel Branch and Bound Search

 Rina Dechter, UC Irvine
 (joint work with Lars Otten)

Outline
l  Haplotype Inference as Bayes Net query.
l  AND/OR Branch and Bound for Graphical Models.

-  State-of-the-art MPE solver. Won all three MPE tracks in
PASCAL'11 Challenge.

-  Very complex instances necessitate parallelism. Run on
grid of loosely coupled commodity hardware.

-  Pruning power causes significant job imbalance.
l  Load Balancing through Complexity Estimation.

-  Learn linear regression models offline.
l  Good parallel results on complex pedigree instances.

The Haplotype Configuration Problem
•  Haplotype: the sequence of alleles at different loci inherited by an individual

from one parent .

•  Genotype: the two haplotypes of an individual constitute this individual's
genotype. Measured genotypes results in a list of unordered pairs of alleles;
one pair for each locus.

•  A recombination occurrs between two loci, if an haplotype of an individual
contains two alleles that resided in different haplotypes of the individual's
parent.

•  The Maximum Likelihood Haplotype Configuration problem, consists of

finding a joint haplotype configuration for all members of the pedigree which
maximizes the probability of the data.

•  The haplotyping problem often does not have a unique solution.

5

Problem Statement
l  Find most likely haplotype

given partial genotypes.
-  Pedigree chart models

ancestral relations.

l  Encode problems as
Bayesian Network.

-  “Most Probable
Explanation” (MPE) yields
haplotype.

[Wikipedia]

6

Bayesian Networks
l  Given is a graphical model and a query:

-  Bayesian Network:
l  Variables {Xi } and conditional

probability tables { P(Xi |pari) } .
-  Factorizes joint probability distribution.

-  MPE Query:
l  Most Probable Explanation: Find

assignment that maximizes joint
probability.

-  Problem is NP-hard in general.
l  Advanced algorithms exist, expo-

nential in tree width w* of graph.

B A p(B|A)
0 0 0.8
1 0 0.2
0 1 0.4
1 1 0.6

Two Loci Inheritance

Recombinant

 2 1
A A
B B

a a
b b

A a
B b 3 4

a a
b b

A a
b b 5 6

A a
B b

Slide thanks to Geiger

9

Bayesian Network for Recombination

S23m

L21f L21m

L23m

X21 S23f

L22f L22m

L23f

X22

X23

S13m

L11f L11m

L13m

X11 S13f

L12f L12m

L13f

X12

X13

y3

y2 y1

 {m,f}tssP tt ∈⎥
⎦

⎤
⎢
⎣

⎡

−

−
= where

1
1

),|(1323 θθ

θθ
θ

Locus 1

Locus 2

P(e|Θ) ?

Deterministic relationships

Probabilistic relationships

SP2 10

L11m L11f

X11

L12m L12f

X12

L13m L13f

X13

L14m L14f

X14

L15m L15f

X15

L16m L16f

X16

S13m

S15m

S16m S15m

S15m

S15m

L21m L21f

X21

L22m L22f

X22

L23m L23f

X23

L24m L24f

X24

L25m L25f

X25

L26m L26f

X26

S23m

S25m

S26m S25m

S25m

S25m

L31m L31f

X31

L32m L32f

X32

L33m L33f

X33

L34m L34f

X34

L35m L35f

X35

L36m L36f

X36

S33m

S35m

S36m S35m

S35m

S35m

6 people, 3 markers

11

Searching the standard space
(Depth-First Search)

l  Standard depth-first search procedure:
-  Instantiate variables one at a time.

l  Backtrack in case of inconsistencies.
-  Time complexity: exp(n) .

l  Linear space.

Branch-and-Bound Search

n	

 g(n)=cost of the
search path to n

H(n) = estimates the
optimal cost below n

LB(n) = g(n) + h(n)

Lower	 Bound	 LB(n)	

OR	 Search	 Tree	

Prune	 if	 LB(n)	 ≥	 UB	

Upper	 Bound	 UB	

(Lawler & Wood66)

13

AND/OR Search Spaces

l  Improves upon standard search:
-  Decompose independent

subproblems.
-  Merge unifiable subproblems.

[BE]

[AB]

[BC]

[AB]

[A]

[]

Decomposition

B E sol
0 0 0.8
0 1 0.3
1 0 ...
1 1 ...

Cachetable for F
(independent of A)

Time and space: exp(w*)

Prune based on
current best solution
and heuristic estimate.
(mini-bucket heuristic)

v=12

h=9 v=10
2

Marinescu & Dechter

14

All Four Search Spaces

Full OR search tree
126 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C
D

F
E

B
A 0 1

Full AND/OR search tree
54 AND nodes

A OR
0 AND
B OR

0 AND

OR E

OR F F

AND 0 1 0 1

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

Context minimal OR search graph
28 nodes

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

0 1 0 1

C
D

F
E

B
A 0 1

Context minimal AND/OR search graph
18 AND nodes

A OR
0 AND
B OR

0 AND
OR E

OR F F
AND 0 1

AND 0 1

C

D D

0 1

0 1

1

E C

D D

0 1

1

B

0

E

F F

0 1

C
1

E C

A	

E	

C	

B	

F	

D	

Any query is best computed
Over the c-minimal AO space

Static Mini-Bucket Heuristics
A	

f(A,B) B	

f(B,C) C	 f(B,F) F	

f(A,G)
f(F,G)

G	 f(B,E)
f(C,E)

E	 f(B,D)
f(C,D)

D	

hG (A,F)

hF (A,B)

hB (A)

hE (B,C) hD (B,C)

hC (B)

hD (A)

f(A,D) D	

mini-‐buckets	

A B

C D

E

F

G

A

B

C F

G D E

Ordering:	 (A,	 B,	 C,	 D,	 E,	 F,	 G)	

h(a,	 b,	 c)	 =	 hD(a)	 +	 hD(b,	 c)	 +	 hE(b,	 c)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ≤	 h*(a,	 b,	 c)	

MBE(3)

Node duplication à lower bound

16

Searching in Parallel
l  Parallel tree search. [Kumar]

l  Introduce parallelization frontier :
-  Condition on partial instantiations.
-  Solve subtrees in parallel and combine solutions.

l  Speedup at most linear.

frontier

17

AND/OR Search Parallelization
l  Depth 2 cutoff: 8 subproblems.

-  Conditioning and decomposition.
-  Full parallelization upfront (static).

{A=0, B=1} {A=0, B=0} {A=1, B=0} {A=1, B=1}

18

Subproblem Variance
l  Fixed-depth cutoff:

-  Subproblems have identical structure.
-  But large variance in runtime complexity?

19

Subproblem Variance
l  In spite of identical structure:

-  Effect of bounds and pruning differs vastly.
-  Few subproblems dominate overall performance.

Predict subproblem complexities
to enable better load balancing

20

Subproblem Complexity Prediction
l  Model number of nodes N(n) as exponential function of

subproblem features φj(n) :

𝑁(𝑛)= 𝑏↑∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛)  
l  Then consider log number of nodes:

log 𝑁(𝑛) =∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛) 
l  Thus, finding parameter values λj can be seen as a linear

regression problem.
-  Given m sample subproblems nk , minimize MSE:

1/𝑚 ∑𝑘=1↑𝑚▒(∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛↓𝑘 )− log 𝑁(𝑛↓𝑘 )  )↑2  

21

34 Subproblem Features
l  Static, structural properties:

-  Number of variables.
-  Avg. and max. width.
-  Height of sub pseudo tree.
-  Etc.

l  Dynamic, runtime properties:
-  Upper and lower bound.
-  Pruning ratio and depth of

small AOBB probe.
-  Etc.

Problem Features

l  Subproblem variable statistics (static):
-  N: Number of variables in subproblem.
-  Min, Max, mean, average, and std. dev. of variable

domain sizes in subproblem.
l  Pseudo tree depth/leaf statistics (static):

-  h: Depth of subproblem root in overall search space.
-  Min, max, mean, average, and std. dev. of depth of

subproblem pseudo tree leaf nodes, counted from
subproblem root.

-  L: Number of leaf nodes in subproblem pseudo tree.

Problem Features

l  Pseudo tree width statistics (static):
-  Min, max, mean, average, and std. dev. of induced width of

variables within subproblem.
-  Min, max, mean, average, and std. dev. of induced width of

variables within subproblem, when conditioning on
subproblem root conditioning set.

l  Subproblem cost bounds (dynamic):
-  Lower bound L on subproblem solution cost, derived from

current best overall solution.
-  Upper bound U on subproblem solution cost, provided by

mini bucket heuristics.
-  Difference U-L between upper and lower bound, expressing

“constrainedness” of the subproblem.

Problem Features

l  Pruning ratios (dynamic), based on running 5000
node expansion probe of AOBB:
-  Ratio of nodes pruned using heuristic upper bound.
-  Ratio of nodes pruned due to determinism (zero

probabilities, e.g.).
-  Ratio of nodes corresponding to pseudo tree leaf.

l  Sample statistics (dynamic), based on running 5000
node expansion probe of AOBB:
-  Average depth of terminal search nodes within probe.
-  Average node depth within probe (denoted d).
-  Average branching degree, defined as d√5000

Problem Features

l  Various:
-  Mini bucket i-bound parameter.
-  Max. subproblem variable context size minus mini

bucket i-bound.

l  In total 34 features.

Specifics of Learning
l  Lasso learning to avoid overfitting.

-  Add regularization term to MSE.
1/𝑚 ∑𝑘=1↑𝑚▒(∑𝑗↑▒𝜆↓𝑗 𝜑↓𝑗 (𝑛↓𝑘 )− log 𝑁(𝑛↓𝑘 )  )↑2  +𝛼
‖𝜆‖↓1 

-  Encourages sparsity, implicit feature selection.
-  α = 0.1 through cross validation.

l  Measure:
-  MSE: Prediction error (MSE)
-  TER: Training error (MSE)
-  PCC: Pearson correlation coefficient (normalized cov.)

Regression Results
l  31 instances total (13 pedigrees) from 4 classes.

-  Run each with fixed-depth cutoff.
-  Choose up to 500 subproblem samples.
-  Yields 11,500 samples overall.

l  Most general regression approach:
-  Train model on samples from 30 instances.
-  Test on samples from remaining instance.

l  Other scopes of learning evaluated:
-  Per-instance and per-class, comparable results.

Regression Results
l  Prediction on two pedigree examples:

-  Test error (MSE) close to training error (TER).
-  Fairly high correlation coefficient.

Across all Problems/Classes

Parallelization Scheme
l  Iteratively split estimated largest subproblem.

-  Until desired number of subproblems is reached.

Detailed Parallel Results
l  Pedigree41:

-  Left: detailed subproblem statistics
-  Right: actual vs. predicted complexity

Detailed Parallel Results
l  Pedigree19:

-  Left: detailed subproblem statistics.
-  Right: actual vs. predicted complexity.

Overall Parallel Results
l  Pedigrees with 20-25 individuals and 20-25 loci.

-  n is number of variables, k max. domain size, w induced
width, h pseudotree height. Runtime in hh:mm.

Overall Parallel Results
l  Parallel runtimes plotted.

Parallel Speedup
l  Speedup relative to sequential algorithm.

-  Highest potential with most complex problems.

Summary
l  Express haplotype computation as MPE query.

-  Exploit graph structure and apply advanced AND/OR
search algorithms (decomposition and caching and
mini-bucket heuristics).

l  Parallel AND/OR Branch and Bound:
-  Powerful pruning impedes load balancing.
-  Learn complexity regression model offline.

l  Empirical results: Improved load balancing.
-  Good parallel performance and speedup on hard

pedigree instances.
l  Deployed in Superlink-Online SNP:

-  http://cbl-hap.cs.technion.ac.il/superlink-snp

