

Models

Common **structure** of certain classes of problems can be abstracted and expressed in terms of **mathematical model**; e.g.,

- Constraint Satisfaction Problems (CSP) are models of the form $\langle X, D, C \rangle$ where X, D, and C are sets of variables, domains, and constraints
- A solution to a CSP assigns to each variable a value from its domain such that all constraints satisfied

Key point:

- Many problems can be formulated as CSPs
- If we know how to solve CSPs, we know to solve those problems

3

- Same for other models . . .

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005

Example: Linear Equations Model • John's age is three times Peter's age • In 10 years, John's age will be twice Peter's age • How old are John and Peter now? Tormulate problem as 2-linear equations with 2 unknowns: J = 3P J + 10 = 2(P + 10)Solve model using general method; e.g. variable elimination 3P + 10 = 2P + 20Then P = 20 - 10 = 10 J = 3P = 30

Plan for the tutorial	
• Introduction (Hector)	
– Models based on States – Models based on Variables – Overview of Techniques	
 Solving models with Search and Inference 	
– State-based Models (Hector) – Variable-based [Factored or Graphical] Models (Rina)	
• Solving models with Pure Inference and No Search (Adnan)	
• Hybrid Methods (Rina)	
• Wrap up	
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005	6

Models	
• Models define what is to be solved	
• Algorithms define how to solve models	
E.g, we understand what $\sqrt{43}$ is without necessarily knowing how to compute value	
Same with models: they define the solutions we are looking for, without commitment about their computation	
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 10	

Problems mapping naturally into State Models	
Grid Navigation	
• 15-puzzle	
• Rubik	
• Route Finding in Map	
• TSP (Traveling Salesman Problem)	
• Jug Puzzles (e.g., 4 & 3 liter jars, have 2 liters in 4 lit. jar)	
• :	
This is the model underlying Classical Planning	
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 12	2

Bayesian Networks (BNs)

BNs are graphical models that express a joint probability distribution over a set of variables X_1, \ldots, X_n by means of

- a directed acyclic graph over the variables
- conditional probability tables $P(X_i|pa(X_i))$ of each variable X_i given its parents $pa(X_i)$ in the graph

The joint distribution is the product of the tables:

$$P(X_1,\ldots,X_n) = \prod_{i=1,n} P(X_i | pa(X_i))$$

BNs and CSPs are similar; they specify joint **probability** and joint **consistency** through local factors that define the interaction graph

Мар	
Introduction	
 Models based on States Models based on Variables Overview of Techniques Search Space Pruning Learning Decomposition Compilation Variable Elimination 	
 Solving models with Search and Inference 	
— State-based Models — Variable-based [Factored or Graphical] Models	
 Solving models with Pure Inference and No Search 	
• Hybrid Methods	
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005	34

Pruning (2)
• Pruning criterion has to be sound and cost-effective
 Two ideas: lower bounds (LBs) and constraint propagation (CP) LBs: prune n if f(n) > Bound where f(n) is LB of cost of best solution that extends n
- CP: prune value x from variable X domain, if $X = x$ proved inconsistent with constraints and commitments in n ; prune node n itself if some domain becomes empty
 LBs and CP mechanisms can both be obtained as inference in relaxed model; e.g.
 in Strips: forget 'deletes' and assume (relaxed) actions can be done in parallel ('simple reachability heuristic') in CSPs: e.g., solve each constraint in isolation ('arc consistency')
We will say more about LBs and CP mechanisms
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 36

39

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005

<section-header><text><text><list-item><list-item><list-item><equation-block><equation-block><text>

Мар	
Introduction	
 Models based on States Models based on Variables Overview of Techniques Search Space Pruning Learning Decomposition Compilation Variable Elimination 	
 Solving models with Search and Inference 	
– State-based Models – Variable-based [Factored or Graphical] Models	
• Solving models with Pure Inference and No Search	
• Hybrid Methods	
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005	42

State Models Reminder	
• Basic State Model characterized by	
- finite and discrete state space S - an initial state $s_0 \in S$ - a set $G \subseteq S$ of goal states - actions $A(s) \subseteq A$ applicable in each state $s \in S$ - a state transition function $f(s, a)$ for $s \in S$ and $a \in A(s)$ - action costs $c(a, s) > 0$ • A solution is a sequence of applicable actions that map initial state	s_0
Optimal solutions minimize total cost	
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005	48

Strips: From Language to Model
Strips problem $P = \langle A, O, I, G \rangle$ determines state model $\mathcal{S}(P)$ where
• the states $s \in S$ are collections of atoms
• the initial state s_0 is I
• the goal states s are such that $G \subseteq s$
• the actions a in $A(s)$ are s.t. $Prec(a) \subseteq s$
• the next state is $s' = s - Del(a) + Add(a)$
• action costs $c(a,s)$ are all 1
The (optimal) solution of problem P is the (optimal) solution of State Model $\mathcal{S}(P)$
H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 50

- Graph and resulting heuristic $h^2_G(s)$ computed for one state s only, but valid for any goal G . . .

61

- [8] B. Bonet and H. Geffner. Learning in DFS: A unified approach to heuristic search in deterministic, non-deterministic, probabilistic, and game tree settings. 2005.
- [9] S. Edelkamp. Planning with pattern databases. In Proc. ECP 2001, 2001.
- [10] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow: Exploiting determinism in planning as satisfiability. In Proc. AAAI-98, pages 948-953, 1998.
- [11] E. Hansen and S. Zilberstein. Lao*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 129:35--62, 2001.
- [12] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for optimal planning. In Proc. AAAI-05, 2005. To appear.
- [13] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc. of the Fifth International Conference on AI Planning Systems (AIPS-2000), pages 70--82, 2000.
- [14] M. Helmert. A planning heuristic based on causal graph analysis. In Proc. ICAPS-04, pages 161--170, 2004.
- [15] J. Hoffmann and H. Geffner. Branching matters: Alternative branching in graphplan. In E. Giunchiglia, N. Muscettolla, and D. Nau, editors, Proc. 13th Int. Conf. on Automated Planning and Scheduling (ICAPS-2003), pages 22--31. AAAI Press, 2003.
- [16] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 14:253--302, 2001.
- [17] A. Jonsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary space: Theory and practice. In Proc. AIPS-2000, pages 177--186, 2000.
- [18] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A unified framework for evaluating design tradeoffs in partial-order planning. Artificial Intelligence, 76(1-2):167--238, 1995.
- [19] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In Proceedings of AAAI-96, pages 1194--1201. AAAI Press / MIT Press, 1996.
- [20] R. Korf. Real-time heuristic search. Artificial Intelligence, 42:189--211, 1990.
- [21] P. Laborie and M. Ghallab. Planning with sharable resources constraints. In C. Mellish, editor, Proc. IJCAI-95, pages 1643--1649. Morgan Kaufmann, 1995.
- [22] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of AAAI-91, pages 634--639, Anaheim, CA, 1991. AAAI Press.
- [23] D. McDermott. Using regression-match graphs to control search in planning. Artificial Intelligence, 109(1-2):111--159, 1999.

```
63
```

- [24] X. Nguyen, S. Kambhampati, and R. Sanchez Nigenda. Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search. Artificial Intelligence, 135(1-2):73--123, 2002.
- [25] J. Penberthy and D. Weld. Temporal planning with continous change. In Proc. AAAI-94, pages 1010--1015, 1994.
- [26] A. Plaat, J. Schaeffer, W. Pijls, and A.de Bruin. Best-first fixed-depth minimax algorithms. Artificial Intelligence, 87(1-2):255--293, 1996.
- [27] A. Reinefeld and T. Marsland. Enhanced iterative-deepening search. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(7):701-710, 1994.
- [28] J. Rintanen. A planning algorithm not based on directional search. In *Proceedings KR'98*, pages 617--624. Morgan Kaufmann, 1998.
- [29] D. Smith, J. Frank, and A. Jonsson. Bridging the gap between planning and scheduling. Knowledge Engineering Review, 15(1), 2000.
- [30] V. Vidal. A lookahead strategy for heuristic search planning. In Proc. ICAPS-04, pages 150--159, 2004.
- [31] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based on constraint programming. In D. McGuiness and G. Ferguson, editors, Proceedings of 19th Nat. Conf. on Artificial Intelligence (AAAI-04), pages 570-577. AAAI Press, X004.
- [32] Daniel S. Weld. An introduction to least commitment planning. Al Magazine, 15(4):27--61, 1994.

width		OR space			AND/OR space			
	height	Time (sec.)	Nodes	Backtracks	Time (sec.)	AND nodes	OR nodes	
5	10	3.154	2,097,150	1,048,575	0.03	10,494	5,247	
4	9	3.135	2,097,150	1,048,575	0.01	5,102	2,551	
5	10	3.124	2,097,150	1,048,575	0.03	8,926	4,463	
4	10	3.125	2,097,150	1,048,575	0.02	7,806	3,903	
5	13	3.104	2,097,150	1,048,575	0.1	36,510	18,255	

Problem Solving by Inference

A. Darwiche

Constraint Satisfaction

Example: map coloring Variables - countries (A,B,C,etc.)	\uparrow	A red	B red	C red	 red	F() 0
Values - colors (e.g., red, green, yellow) Constraints:		red	red	red	green	1
						0
Are the constraints consistent?	•••				1	
					1	
Find a solution, find all solutions				yellow	0	
Count all solutions			<u> </u>		A. D	arwiche

Basic Principle

<u>Reduce</u>: A query about a function $f = f_1 f_2 \dots f_m$ over n variables into a query about a function f' over n-1 variables.

<u>Eliminate</u> a variable X from f, while keeping the result, f', as factored as possible

A. Darwiche

Basic Principle

If variable X appears in only one factor f_1 of f, all we have to do is replace f_1 with $elm(f_1,X)$:

 $\mathbf{f} = \mathbf{elm}(\mathbf{f}_1, \mathbf{X}) \mathbf{f}_2 \dots \mathbf{f}_m$

If variable X appears in more than one factor, say, f_1 and f_2 , we must combine (multiply) them first before eliminating X: $f' = elm(f_1 f_{22}X) f_3 \dots f_m$

Notes:

The more factors we have to combine, the less factored the result is. The order in which we eliminate variables matters only computationally.

A. Darwiche

Elimination in Logic Different notions of elimination: Existential elimination (quantification) Universal elimination (quantification) Preserve ability to answer different queries E.g. Existential preserves SAT Different types of eliminations can be mixed to solve more sophisticated problems: diagnosis and planning

A. Darwiche

Basic Principle

<u>Reduce</u>: A query about a function $f = f_1 f_2 \dots f_m$ into a query about a function f' over m-1 factors.

<u>Eliminate</u> factor f_i while keeping result, f', as factored as possible

Allows n queries to be answered in $O(n \exp(w))$ time instead of $O(n^2 \exp(w))$ [Standard VE]

A. Darwiche

Basic Principle

$$\label{eq:Reduce:Aquery about a function} \begin{split} \underline{Reduce}: A & query about a function \\ & f = f_1 \ f_2 \ \dots \ f_m \end{split}$$
 into queries about a <u>decomposition</u> $f_L = f_1 \dots f_i \qquad \qquad f_R = f_{i+1} \dots \ f_m$

Must condition on variables shared by \boldsymbol{f}_L and \boldsymbol{f}_R

Allows inference in O(n exp(w)) time Facilitates time-space tradeoffs

A. Darwiche

Knowledge Compilation

A. Darwiche

Conclusion

- Knowledge compilation converts a representational factorization into a computational factorization:
 - Target language (succinctness, tractability)
- Knowledge compilers can be constructed by keeping the trace of various search algorithms
- Another view of knowledge compilation is based on <u>deductive closure</u>

```
A. Darwiche
```


References

- Dechter. Bucket elimination: A unifying framework for probabilistic inference. In UAI, pages 211-219, 1996.
- Zhang and Poole. Exploiting causal independence in bayesian network inference. JAIR, 5:301-328, 1996.
- Lauritzen and Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of Royal Statistics Society, Series B, 50(2):157-224, 1988.
- Jensen, Lauritzen, and Olesen. Bayesian updating in recursive graphical models by local computation. Computational Statistics Quarterly, 4:269-282, 1990.
- Huang and Darwiche. Inference in Belief Networks: A procedural guide. International Journal of Approximate Reasoning, 15(3): 225-263, 1996.
- Darwiche. Recursive Conditioning. Artificial Intelligence, 126(1-2):5-41, 2001.
- Darwiche and Marquis. A knowledge compilation map. JAIR, 17, 229-264, 2002.

A. Darwiche

