

Models

Common **structure** of certain classes of problems can be abstracted and expressed in terms of **mathematical model**; e.g.,

- **Constraint Satisfaction Problems (CSP)** are models of the form $\langle X, D, C \rangle$ where X, D, and C are sets of variables, domains, and constraints
- A **solution** to a CSP assigns to each variable a value from its domain such that all constraints satisfied

Key point:

- Many problems can be formulated as CSPs
- If we know how to solve CSPs, we know to solve those problems
- Same for other models . . .

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 3

Example: Linear Equations Model • John's age is three times Peter's age • In 10 years, John's age will be twice Peter's age • How old are John and Peter now? Formulate problem as **2-linear equations with 2 unknowns**: $J = 3P$ $J + 10 = 2(P + 10)$ Solve **model** using **general method**; e.g. variable elimination $3P + 10 = 2P + 20$ Then $P = 20 - 10 = 10$ $J = 3P = 30$ H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005

Bayesian Networks (BNs) BNs are graphical models that express a **joint probability distribution** over a set of variables X_1, \ldots, X_n by means of • a **directed acyclic graph** over the variables • **conditional probability tables** $P(X_i|pa(X_i))$ of each variable X_i given its parents $pa(X_i)$ in the graph The joint distribution is the product of the tables: $P(X_1, \ldots, X_n) = \prod P(x)$ $i=1,n$ $P(X_i|pa(X_i))$ BNs and CSPs are similar; they specify joint **probability** and joint **consistency** through local factors that define the interaction graph H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 24

Alternative Problem Spaces from Strips Encodings • **regression space:** branch by applying actions backward from goal til finding conditions that hold in initial state • **plan space:** branch by refining partial plan, removing its flaws In certain cases, these alternative branching schemas/problem spaces more suitable (e.g., plan space seems best for optimal temporal planning) Strips problems with fixed planning horizon can also be mapped into SAT, which works very well when **optimal parallel plans** are sought H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 30

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 39

Decomposition and AND/OR Search Graph • Decomposition by **recursive conditioning** maps search over **OR-graph** into search over **AND/OR graph** $T'_{x=0}$ $T''_{x=0}$ $T'_{x=1}$ $T''_{x=1}$ T $x=0$ \times $x=1$ • By suitable choice of decompositions and caching, worst-case complexity can be reduced from $O(Exp(n))$ to $O(Exp(w^*))$, where $w^* \leq n$ is theory **treewidth** (e.g., linear for trees) • Similar decomposition methods can be used (and are used!) for enumeration tasks like **Model Counting** (MC) and **Belief Update** but with different agregation operators; e.g., $MC(T) = \sum MC$ x $MC(T'_{X=x}) * MC(T''_{X=x})$ H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 40

• Graph and resulting heuristic $h_G^2(s)$ computed for one state s only, but valid for any goal $G \ldots$

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 61

- [8] B. Bonet and H. Geffner. Learning in DFS: A unified approach to heuristic search in deterministic, non-deterministic, probabilistic, and game tree settings. 2005.
- [9] S. Edelkamp. Planning with pattern databases. In *Proc. ECP 2001*, 2001.
- [10] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow: Exploiting determinism in planning as satisfiability. In *Proc. AAAI-98*, pages 948--953, 1998.
- [11] E. Hansen and S. Zilberstein. Lao*: A heuristic search algorithm that finds solutions with loops. *Artificial Intelligence*, 129:35--62, 2001.
- [12] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for optimal planning. In *Proc. AAAI-05*, 2005. To appear.
- [13] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In *Proc. of the Fifth International Conference on AI Planning Systems (AIPS-2000)*, pages 70--82, 2000.
- [14] M. Helmert. A planning heuristic based on causal graph analysis. In *Proc. ICAPS-04*, pages 161--170, 2004.
- [15] J. Hoffmann and H. Geffner. Branching matters: Alternative branching in graphplan. In E. Giunchiglia, N. Muscettolla, and D. Nau, editors, *Proc. 13th Int. Conf. on Automated Planning and Scheduling (ICAPS-2003)*, pages 22--31. AAAI Press, 2003.
- [16] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search. *Journal of Artificial Intelligence Research*, 14:253--302, 2001.
- [17] A. Jonsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary space: Theory and practice. In *Proc. AIPS-2000*, pages 177--186, 2000.
- [18] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A unified framework for evaluating design tradeoffs in partial-order planning. *Artificial Intelligence*, 76(1-2):167--238, 1995.
- [19] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In *Proceedings of AAAI-96*, pages 1194--1201. AAAI Press / MIT Press, 1996.
- [20] R. Korf. Real-time heuristic search. *Artificial Intelligence*, 42:189--211, 1990.
- [21] P. Laborie and M. Ghallab. Planning with sharable resources constraints. In C. Mellish, editor, *Proc. IJCAI-95*, pages 1643--1649. Morgan Kaufmann, 1995.
- [22] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In *Proceedings of AAAI-91*, pages 634--639, Anaheim, CA, 1991. AAAI Press.
- [23] D. McDermott. Using regression-match graphs to control search in planning. *Artificial Intelligence*, 109(1-2):111--159, 1999.

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 63

- [24] X. Nguyen, S. Kambhampati, and R. Sanchez Nigenda. Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search. *Artificial Intelligence*, 135(1-2):73--123, 2002.
- [25] J. Penberthy and D. Weld. Temporal planning with continous change. In *Proc. AAAI-94*, pages 1010--1015, 1994.
- [26] A. Plaat, J. Schaeffer, W. Pijls, and A.de Bruin. Best-first fixed-depth minimax algorithms. *Artificial Intelligence*, 87(1-2):255--293, 1996.
- [27] A. Reinefeld and T. Marsland. Enhanced iterative-deepening search. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 16(7):701--710, 1994.
- [28] J. Rintanen. A planning algorithm not based on directional search. In *Proceedings KR'98*, pages 617--624. Morgan Kaufmann, 1998.
- [29] D. Smith, J. Frank, and A. Jonsson. Bridging the gap between planning and scheduling. *Knowledge Engineering Review*, 15(1), 2000.
- [30] V. Vidal. A lookahead strategy for heuristic search planning. In *Proc. ICAPS-04*, pages 150--159, 2004.
- [31] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based on constraint programming.
In D. McGuiness and G. Ferguson, editors, Proceedings of 19th Nat. Conf. on Artificial Intelligence (AA editors, Proceedings of 19th Nat. Conf. on Artificial Intelligence (AAAI-04), pages 570--577. AAAI Press/MIT Press, 2004.
- [32] Daniel S. Weld. An introduction to least commitment planning. *AI Magazine*, 15(4):27--61, 1994.

Problem Solving Problem Solving by Inference by Inference

A. Darwiche

Constraint Satisfaction Constraint Satisfaction

Basic Principle Basic Principle

Reduce: A query about a function $f = f_1 f_2 ... f_m$ **over n variables into a query about a function f' over n-1 variables.**

Eliminate a variable X from f, while keeping the result, f' , as factored as possible

A. Darwiche

Basic Principle Basic Principle

If variable X appears in only one factor f_1 of f , all we have to do is replace f_1 with $elm(f_1, X)$:

 $f' =$ **elm**(f_1, X) $f_2, ... f_m$

If variable X appears in more than one factor, say, f_1 and f_2 , **we must combine (multiply) them first before eliminating X:** $f' =$ **elm**($f_1 f_2$ **,X**) f_3 ... f_m

Notes:

The more factors we have to combine, the less factored the result is. The order in which we eliminate variables matters only computationally.

A. Darwiche

Elimination in Logic Elimination in Logic • Different notions of elimination: – Existential elimination (quantification) – Universal elimination (quantification) • Preserve ability to answer different queries – E.g. Existential preserves SAT • Different types of eliminations can be mixed to solve more sophisticated problems: diagnosis and planning

A. Darwiche

Basic Principle Basic Principle

Reduce: A query about a function $f = f_1 f_2 \dots f_m$ **into a query about a function f' over m-1 factors.**

Eliminate factor fi while keeping result, f' , as factored as possible

Allows n queries to be answered in O(n exp(w)) time instead of O(n2 exp(w)) [Standard VE]

A. Darwiche

Basic Principle Basic Principle

Reduce: A query about a function $\dot{\mathbf{f}} = \mathbf{f}_1 \, \mathbf{f}_2 \, \dots \, \mathbf{f}_m$ **into queries about a decomposition** $f_L = f_1...f_i$ **f**_R = $f_{i+1}...f_m$

Must condition on variables shared by f_L and f_R

Allows inference in O(n exp(w)) time Facilitates time-space tradeoffs

A. Darwiche

Knowledge Compilation Knowledge Compilation

A. Darwiche

Conclusion Conclusion

- Knowledge compilation converts a representational factorization into a computational factorization:
	- Target language (succinctness, tractability)
- Knowledge compilers can be constructed by keeping the trace of various search algorithms
- Another view of knowledge compilation is based on deductive closure

A. Darwiche

References References

- Dechter. Bucket elimination: A unifying framework for probabilistic inference. In UAI, pages 211-219, 1996.
- Zhang and Poole. Exploiting causal independence in bayesian network inference. JAIR, 5:301-328, 1996.
- Lauritzen and Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of Royal Statistics Society, Series B, 50(2):157-224, 1988.
- Jensen, Lauritzen, and Olesen. Bayesian updating in recursive graphical models by local computation. Computational Statistics Quarterly, 4:269-282, 1990.
- Huang and Darwiche. Inference in Belief Networks: A procedural guide. International Journal of Approximate Reasoning, 15(3): 225-263, 1996.
- Darwiche. Recursive Conditioning. Artificial Intelligence, 126(1-2):5-41, 2001.
- Darwiche and Marquis. A knowledge compilation map. JAIR, 17, 229-264, 2002.

A. Darwiche

