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Problems

Problem solving in AI is about representation and automated solution
of a wide variety of problems

diagnosis, planning, scheduling, logistics, control
games: sokoban, mastermind, 15-puzzle, n-queens, chess
robot navigation, traveling salesman, map coloring, . . .
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Models

Common structure of certain classes of problems can be abstracted and
expressed in terms of mathematical model; e.g.,

• Constraint Satisfaction Problems (CSP) are models of the form
〈X, D, C〉 where X, D, and C are sets of variables, domains, and
constraints

• A solution to a CSP assigns to each variable a value from its domain
such that all constraints satisfied

Key point:

– Many problems can be formulated as CSPs
– If we know how to solve CSPs, we know to solve those problems
– Same for other models . . .
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Example: Linear Equations Model

• John's age is three times Peter's age

• In 10 years, John's age will be twice Peter's age

• How old are John and Peter now?

Formulate problem as 2-linear equations with 2 unknowns:

J = 3P

J + 10 = 2(P + 10)

Solve model using general method; e.g. variable elimination

3P + 10 = 2P + 20

Then

P = 20− 10 = 10

J = 3P = 30
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Problem Solving in AI

• define models of interest

• develop effective methods for solving them

In this tutorial:

-- We'll cover a wide range of models, including State Models, SAT, CSPs,
Bayesian Networks, Markov Decision Processes (MDPs), . . .

-- Focus on key principles underlying current solution methods:

– Search Space
– Pruning
– Learning
– Decomposition
– Compilation
– Variable Elimination
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Plan for the tutorial

• Introduction (Hector)

– Models based on States
– Models based on Variables
– Overview of Techniques

• Solving models with Search and Inference

– State-based Models (Hector)
– Variable-based [Factored or Graphical] Models (Rina)

• Solving models with Pure Inference and No Search (Adnan)

• Hybrid Methods (Rina)

• Wrap up
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More about Tutorial

• assumes basic course in AI

• focuses on principles; not exhaustive (e.g., no approx. methods)

• conceptual but also technical

Please ask questions along the way . . .
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Part 1: Introduction
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Principles of AI Problem Solving: Introduction

• Contents

– Models based on States
– Models based on Variables
– Overview of Techniques

• Format; Style

– general, high-level view of field
– emphasize intuitions and coherence
– raise questions that will be addressed in detail later on
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Models

• Models define what is to be solved

• Algorithms define how to solve models

E.g, we understand what
√

43 is without necessarily knowing how to
compute value

Same with models: they define the solutions we are looking for, without
commitment about their computation
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State Models

• Basic State Model characterized by

– finite and discrete state space S
– an initial state s0 ∈ S
– a set G ⊆ S of goal states
– actions A(s) ⊆ A applicable in each state s ∈ S
– a state transition function f(s, a) for s ∈ S and a ∈ A(s)
– action costs c(a, s) > 0

• A solution is a sequence of applicable actions ai, i = 0, . . . , n, that
maps the initial state s0 into a goal state s ∈ SG; i.e.,

si+1 = f(ai, si) and ai ∈ A(si) for i = 0, . . . , n and sn+1 ∈ SG

• Optimal solutions minimize total cost
∑i=n

i=0 c(ai, si)
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Problems mapping naturally into State Models

• Grid Navigation

• 15-puzzle

• Rubik

• Route Finding in Map

• TSP (Traveling Salesman Problem)

• Jug Puzzles (e.g., 4 & 3 liter jars, have 2 liters in 4 lit. jar)

• ...

This is the model underlying Classical Planning . . .
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Languages

State-Models often represented implicitly in terms of (planning) lan-
guages

E.g.: Strips is a simple language for representing the Basic State Models

• A problem in Strips is a tuple 〈A,O, I, G〉:

– A stands for set of all atoms (boolean vars)
– O stands for set of all operators (actions)
– I ⊆ A stands for initial situation
– G ⊆ A stands for goal situation

• Operators o ∈ O represented by three lists

-- the Add list Add(o) ⊆ A
-- the Delete list Del(o) ⊆ A
-- the Precondition list Pre(o) ⊆ A

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 13

Strips: From Language to Model
Strips problem P = 〈A,O, I, G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

The (optimal) solution of problem P is the (optimal) solution of State
Model S(P )

Later on we'll see how Strips descriptions can play a computational role
as well . . .
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Model with Incomplete Information and Non-Determinsm

• finite and discrete state space S

• a set of possible initial states S0 ⊆ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F s.t. F (a, s) is a set of states,
a ∈ A(s)

• action costs c(a, s) > 0

-- A solution is a sequence of actions that lead to SG for any possible
initial state and transition

-- An optimal solution miminizes the sum of action costs

-- Planning over this class of models called Conformant Planning
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Model with Non-determinism and Full Feedback

• finite and discrete state space S

• a set of possible initial states S0 ⊆ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F . . .

• action costs c(a, s) > 0

• states fully observable

-- Solutions become functions mapping states into actions (closed-loop
control policies)

-- This is because dynamics is Markovian and past history of system is
not relevant

-- Optimal solutions minimize cost in worst case (min-max state policies)
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Stochastic Model with Full Feedback
(Markov Decision Process - MDP)

• finite and discrete state space S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• transition probabilities Pa(s′|s) for s and a ∈ A(s)

• action costs c(a, s) > 0

• states fully observable

-- Solutions like before are functions mapping states into actions (closed-
loop control policies)

-- Optimal solutions minimize expected cost

-- This model underlies Probabilistic Planning; although variations possible
(e..g, partial observability, achieving goal with certain probability,
discounted formulations, . . . ).
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Example: Navigation Problems

Consider robot that has to reach target G when

• initial state is known and actions are deterministic

• initial state is unknown and actions are deterministic

• states are fully observable and actions are stochastic

• states are partially observable and actions are stochastic . . .

G

-- How do these problems map into the models considered?

-- What is the form of the solutions?
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Models based on Variables: Factored or Graphical Models

• Constraint Satisfaction Problems (CSP)

• Satisfiability (SAT)

• Bayesian Networks

• Influence Diagrams, . . .

Several tasks associated with these models . . .
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Constrain Satisfaction Problems (CSPs)

• CSPs are triplets 〈Variables,Domains,Constraints〉

• A solution assigns values to the variables from their corresponding
domains satisfying all constraints

• A CSP is consistent if it has one or more solutions

E.g., first CSP below is consistent; second is not

〈{X, Y }, {DX, DY = [1..10]}, {X + Y > 10, X − Y > 7}〉

〈{A,B, C}, {DA, DB, DC = [a, b]}, {A 6= B,B 6= C,A 6= C}〉
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Problems that Map into CSPs

• Scheduling

• Planning

• Resource allocation

• Map coloring

• N-queens

• ...
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Satisfiability (SAT)

• SAT is special type of CSP where variables x, y, . . . are boolean and
constraints are clauses

x ∨ ¬y ∨ z . . .

• A set of clauses denotes a formula in Conjunctive Normal Form (CNF):
a conjunction of disjunctions of literals

• Current SAT solvers are very powerful, and used in Planning and
Verification

• Any CSP can be mapped into SAT and vice versa, and solving techniques
have a lot in common
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The Graph Underlying Graphical Models

• SAT and CSP are both NP-Complete, yet complexity bounded by
treewidth of interaction graph

• The interaction graph of a problem is an undirected graph where

– the vertices are the variables, and
– two variables are connected iff if they appear in same con-

straint/clause

• The treewidth measures how 'tree-like' is the interaction graph

– treewidth = 1 implies linear complexity, while
– bounded treewidth implies polynomial complexity
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Bayesian Networks (BNs)
BNs are graphical models that express a joint probability distribution
over a set of variables X1, . . . , Xn by means of

• a directed acyclic graph over the variables

• conditional probability tables P (Xi|pa(Xi)) of each variable Xi given
its parents pa(Xi) in the graph

The joint distribution is the product of the tables:

P (X1, . . . , Xn) =
∏

i=1,n

P (Xi|pa(Xi))

BNs and CSPs are similar; they specify joint probability and joint consis-
tency through local factors that define the interaction graph
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Models and Tasks: SAT and CSPs

• Consistency is basic task in SAT and CSPs: find a satisfying assignment
o that no one exists

Yet other tasks common:

• Optimization: find best satisfying assigment according to some function
(COP)

• Enumeration: find number of satisfying assignments (Model Counting);
find all solutions, . . .

All tasks are NP-hard; Consistency and (Bounded) Optimization are
NP-Complete while Enumeration is #P.
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Models and Tasks: Bayesian Networks

• Enumeration: find probability given evidence: P (X = x|Y = y, Z = z, ...)
(Bel)

• Optimization: find most probable instantiation given evidence (MPE)

• Other: find most probable instantiation of subset of variables given
evidence (MAP)

All tasks are NP-hard; (Bounded) MPE is NP-Complete, and Bel is #P
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Map

• Introduction

– Models based on States
– Models based on Variables
� Overview of Techniques
∗ Search Space
∗ Pruning
∗ Learning
∗ Decomposition
∗ Compilation
∗ Variable Elimination

• Solving models with Search and Inference

– State-based Models
– Variable-based [Factored or Graphical] Models

• Solving models with Pure Inference and No Search

• Hybrid Methods
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Search

• Basic tasks can be formulated as search problem in suitable problem
space

• Problem or Search space is a Directed Graph given by

– root node n0 of the search
– set of terminal nodes; either dead-ends or goals
– branching rule generating children n′ of non-terminal nodes n
– costs c(n, n′) ≥ 0

• A solution is a directed path that connects the root node with a goal
node. It is optimal if it minimizes the sum of the edge costs.
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Direct Problem Space for Basic State Models

The nodes correspond to the states and

• root node is initial state s0

• goal nodes are the goal states

• dead ends are states s s.t no action applies in s

• branching rule: s → s′ if s′ = f(a, s) for some a applicable in s

• cost is then c(s, s′) = c(a, s)

In spite of direct mapping from Basic State Model to Search Graph, it's
good to keep in mind that first is a description of the problem, while
second is the structure explored for finding a solution

When the State Model is described in Strips, this is the so-called pro-
gression space, as alternative spaces are possible . . .
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Alternative Problem Spaces from Strips Encodings

• regression space: branch by applying actions backward from goal til
finding conditions that hold in initial state

• plan space: branch by refining partial plan, removing its flaws

In certain cases, these alternative branching schemas/problem spaces
more suitable (e.g., plan space seems best for optimal temporal planning)

Strips problems with fixed planning horizon can also be mapped into SAT,
which works very well when optimal parallel plans are sought
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Problem Space for Non-Deterministic State models

Conformant Planning can be formulated as Search Problem over belief
space, where nodes are belief states, i.e., sets of states deemed possible

• root node is set of possible initial states

• goal nodes are sets of goal states

• edge n → n′ if for some action, n′ is the set of states that may follow
the states in n

• . . .

-- This is most common formulation for Conformant Planning currently

-- Belief states represented often by propositional formula in suitable
'compiled' form (e.g., OBDDs, d-DNNF, . . . ; more about this later on)
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Problem Space for Graphical Models: OR Space

Consistency and Optimization Problems for SAT, CSP, and Bayesian Net-
works are formulated as search problems over suitable Search Graph.

In the standard formulations, the nodes are partial assignments:

• root node is empty assignment

• dead-ends are partial assignments that violate a constraint

• 'goal' nodes are complete assignments

• children n′ of node n obtained by picking up unassigned variable in
n, and assigning it a value

• costs c(n, n′) uniform in consistency problems, and dependent on local
functions in COP and BNets.

-- Choice of branching variable affects size of Search Tree and critical
for performance
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Problem Space for Graphical Models: AND/OR Space

• Solution to enumeration problems, like model counting over CNFs and
belief updating over BNets, do not correspond to solution paths in
graph but can be computed from it

• We will also see an alternative formulation of all these tasks in terms
of AND/OR Graphs rather than (OR) Graphs that exploit decomposition

• This AND/OR space is (almost) explicit in some algorithms (e.g., Re-
cursive Conditioning) and implicit in others (e.g., non-chronological
backtracking).
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Map

• Introduction

– Models based on States
– Models based on Variables
– Overview of Techniques
∗ Search Space
� Pruning
∗ Learning
∗ Decomposition
∗ Compilation
∗ Variable Elimination

• Solving models with Search and Inference

– State-based Models
– Variable-based [Factored or Graphical] Models

• Solving models with Pure Inference and No Search

• Hybrid Methods
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Pruning in Depth-First Search

• Search graph can be solved by Depth-First Search (DFS) and variations

• More effective DFS obtained by pruning nodes that cannot lead to
acceptable solutions; e.g.,

Consistency: prune node n if it can only lead to dead-ends

State Models/Optimization: prune node n if it can only lead to
solutions with cost > than given Bound

• By playing with Bound one can get Bounded DFS, IDA*, DFS Branch &
Bound

• Key issue: how to predict when paths up to node n

– can only lead to dead-ends? [consistency]
– can only lead to solutions with cost > Bound? [optimization]
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Pruning (2)

• Pruning criterion has to be sound and cost-effective

• Two ideas: lower bounds (LBs) and constraint propagation (CP)

– LBs: prune n if f(n) > Bound where f(n) is LB of cost of best
solution that extends n

– CP: prune value x from variable X domain, if X = x proved
inconsistent with constraints and commitments in n; prune node n
itself if some domain becomes empty

• LBs and CP mechanisms can both be obtained as inference in relaxed
model; e.g.

– in Strips: forget `deletes' and assume (relaxed) actions can be done
in parallel (`simple reachability heuristic')

– in CSPs: e.g., solve each constraint in isolation ('arc consistency')

We will say more about LBs and CP mechanisms . . .
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Learning during Search (State Models)

• Results of (partial) search can be used to improve pruning in rest of
the search

• E.g., if node shown not to lead to solution found again in the search,
it can be pruned right away

• However one can do better; e.g., in IDA*, for example, right after
all sons n′ of node n return without a solution (for given Bound),
heuristic value h(n) can be increased to:

h(n) := minn′:n→n′ c(n, n′) + h(n′)

• Resulting algorithm known as IDA* + Transposition Tables

• Exactly same update rule used in Learning Real Time A* (LRTA*)

• Actually updates can be done without search at all and they eventually
yield h∗! This is what Value Iteration does, which also applies to MDPs
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Learning during Search (Factored Models)

• For consistency tasks (SAT, CSP), one can actually do even better

• Rather than updating the value of a node, update the theory itself!

• Use structure for identifying and ruling out cause of the inconsistency

• This is the idea of no-good learning in SAT and CSPs

• Learned information

– applies to other nodes as well
– results in non-chronological backtracking
– enables further inferences and pruning

• It is a key idea in current SAT solvers
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Decomposition

• Consider solving a SAT problem T made up of two independent sub-
problems T ′ and T ′′ with n variables each, none in common

• By decomposing the problem in two as

SAT (T ) = SAT (T ′) & SAT (T ′′)

worst case complexity is reduced from 2n ∗ 2n to 2n + 2n

• Interestingly, if T ′ and T ′′ overlap over single variable X, T can still
be decomposed by conditioning on X as

SAT (T ) =
∨
x

SAT (T ′
X=x) & SAT (T ′′

X=x)

where TX=x means T with variable X replaced by value x.

• This idea can be applied recursively, even if T ′ and T ′′ overlap over
set of variables
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Decomposition and AND/OR Search Graph

• Decomposition by recursive conditioning maps search over OR-graph
into search over AND/OR graph

T´ T´x́=0x=0 T´ T´x́=1x=1

T

x=1x=0

• By suitable choice of decompositions and caching, worst-case complex-
ity can be reduced from O(Exp(n)) to O(Exp(w∗)), where w∗ ≤ n is
theory treewidth (e.g., linear for trees)

• Similar decomposition methods can be used (and are used!) for enu-
meration tasks like Model Counting (MC) and Belief Update but with
different agregation operators; e.g.,

MC(T ) =
∑

x

MC(T ′
X=x) ∗ MC(T ′′

X=x)
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From Decomposition to Knowledge Compilation (1)

• Suitable 'trace' of AND/OR Search can be used to perform a large class
of intractable boolean operations in time linear in size of 'trace'

• Indeed, just map AND/OR Graph for P into logically equivalent AND/OR
formula F (T ) by simple transformation:

=⇒

T´ T´x́=0x=0 T´ T´x́=1x=1

T

x=1x=0

x

F(T´    )
x=0

F(T´    )
x=1

−x

F(T´´    )
x=0

F(T´´    )
x=1

F(T)

• AND/OR formula F (T ) is in Deterministic Decomposable Negation Nor-
mal Form (d-DNNF): disjuncts are exclusive, conjuncts share no vari-
ables, and negations affect vars only; closely related to OBDDs
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Map

• Introduction

– Models based on States
– Models based on Variables
– Overview of Techniques
∗ Search Space
∗ Pruning
∗ Learning
∗ Decomposition
∗ Compilation
� Variable Elimination

• Solving models with Search and Inference

– State-based Models
– Variable-based [Factored or Graphical] Models

• Solving models with Pure Inference and No Search

• Hybrid Methods
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Variable Elimination

• Gaussian Elimination used to solve n linear equations Tn with n un-
knowns X1, . . . , Xn

– Eliminate Xn obtaining n− 1 equations Tn−1 with n− 1 unknowns
– Iterate til obtaining 1 equation T1 with 1 unknown (X1)
– Solve T1 for X1 and plug result into T2

– Solve T2 for X2 and plug result x2 for X2 into T3, etc

• Method can be be generalized to graphical models; only change is way
for eliminating variables; e.g.,

– in CNF, Xi eliminated by resolving upon Xi

– in CSPs, Xi eliminated by join and project DB operations
– in Belief Update (BNets), Xi eliminated by sum and products, . . .
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Variable Elimination, Inference, and AND/OR Search

• Variable Elimination solves problems by inference and no search

• Yet same complexity bounds (O(Exp(w∗))) as Decomposition Methods
with Caching that search over AND/OR graphs, and furthermore . . .

• Variable Elimination can be understood as bottom up search of same
AND/OR graph!

Few powerful ideas that span a large terrain and have a lot of connections
and ramifications. This is what the tutorial is about . . .
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Map

• Introduction (Hector)

– Models based on States
– Models based on Variables
– Overview of Techniques
∗ Search Space
∗ Pruning
∗ Learning
∗ Decomposition
∗ Compilation
∗ Variable Elimination

• Solving models with Search and Inference

� State-based Models (Hector)
– Variable-based [Factored or Graphical] Models (Rina)

• Solving models with Pure Inference and No Search (Adnan)

• Hybrid Methods (Rina)
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Part 2: Search and Inference
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Techniques for Solving State Models: Focus

• Models

– Basic State Models: Complete Knowledge, Deterministic Actions
– Markov Decision Processes: Stochastic Actions and Full Feedback

• Techniques

– Problem Space: Branching Schemes
– Pruning: Admissible heuristics or LBs h(s) ≤ h∗(s)
– Learning: Improving h(s) while Searching

• Language

– We assume Models specified in a Strips-like language
– This takes us into what is called Planning in AI
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State Models Reminder

• Basic State Model characterized by

– finite and discrete state space S
– an initial state s0 ∈ S
– a set G ⊆ S of goal states
– actions A(s) ⊆ A applicable in each state s ∈ S
– a state transition function f(s, a) for s ∈ S and a ∈ A(s)
– action costs c(a, s) > 0

• A solution is a sequence of applicable actions that map initial state s0

into goal state

• Optimal solutions minimize total cost . . .
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Strips Reminder

• A problem in Strips is a tuple 〈A,O, I, G〉:

– A stands for set of all atoms (boolean vars)
– O stands for set of all operators (actions)
– I ⊆ A stands for initial situation
– G ⊆ A stands for goal situation

• Operators o ∈ O represented by three lists

-- the Add list Add(o) ⊆ A
-- the Delete list Del(o) ⊆ A
-- the Precondition list Pre(o) ⊆ A
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Strips: From Language to Model

Strips problem P = 〈A,O, I, G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

The (optimal) solution of problem P is the (optimal) solution of State
Model S(P )
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Pruning: Getting Lower Bounds for Strips Problems

Admissible Heuristics (LBs) for Strips obtained by solving relaxed models

• ignore delete-lists

• ignore certain atoms

• decompose goals sets into smaller subsets

– e.g., assume cost of achieving set given by cost of achieving most
costly pair in the set . . .
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Lower Bounds for Strips: Reachability Graph
Ignore deletes and apply all actions in parallel:

P0 A0 P1 A1

...

...

...

P0 = {p ∈ s}
Ai = {a ∈ O | Prec(a) ⊆ Pi}

Pi+1 = {p ∈ Add(a) | a ∈ Ai}

Define then admissible heuristic

h1
G(s) def= min i such that G ⊆ Pi

Need No-op(p) action for each p: Prec = Add = {p}
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Planning Graph = Reachability Graph + Mutexes

• Better relaxation: assume no deletes and that all actions can be done
in parallel except certain incompatible action pairs

• This relaxation not tractable but good LB approximation exists, in
particular for parallel planning (where only diff is that deletes are not
ignored)

– action pair mutex at i if incompatible or preconditions mutex at i
– atom pair mutex at i + 1 if all supporting action pairs mutex at i

• Mutex x, y at i implies that no valid plan can have both x and y at i
but not the converse

• Define then more informed admissible heuristic h2
G(s) as:

h2
G(s) def= min i such that G ⊆ Pi & not mutex at i
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• Graph and resulting heuristic h2
G(s) computed for one state s only, but

valid for any goal G . . .
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How to use Strips Heuristics? Problem Spaces in Planning

• Option 1: Progression Space: search forward from s0

– recompute graph and h2
G(s) for every s; this is costly

• Option 2: Regression Space: search backward from Goal (Graphplan)

– no need to recompute graph which encodes h2
G′(s) for all goals G′!

but high branching factor when lots of parallel actions

• Option 3: Action Space: non-directional search

– Branch by picking an action a and time point i and trying the two
possibilities: a in the plan at i ; a not in the plan at i

– At each node n recompute planning graph from s0 respecting
commitments in n, and prune n if Goals pushed beyond horizon

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 55

Current State of the Art in Planning

No single best Problem Space or Pruning Criterion for all types of
planning tasks:

• Sequential (Classical) Planning: Heuristic Search in Progression Space
currently best with both admissible and non-admissible h's

• Optimal Parallel Planning: SAT formulation fed to state-of-the-art
solvers (Siege) currenty best

• Optimal Temporal Planning: Search in Plan Space (POCL) best with
pruning scheme based on Constraint Propagation
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Learning while Searching in State Models

A number of algorithms combine search with state value updates:

• Learning Real time A* (LRTA*)

• IDA* + Memory (Tranposition Tables)

• Real Time Dynamic Programming (RTDP)

• MTD (algorithm for Game Trees better than Alpha-Beta)

• . . .

Other algorithms do updates with no search

• Value Iteration
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Understanding Value Updates: Dynamic Programming

• Solutions to wide range of models can be expressed in terms of solution
of so-called Bellman equation:

V (s) = mina∈A(s) QV (a, s)

where cost-to-go term QV (a, s) depends on model (F (a, s): next states)

c(a, s) + V (s′), s′ ∈ F (a, s) for OR Graphs
c(a, s) + maxs′∈F (a,s) V (s′) for Max AND/OR Graphs
c(a, s) +

∑
s′∈F (a,s) V (s′) for Additive AND/OR Graphs

c(a, s) +
∑

s′∈F (a,s) Pa(s′|s)V (s′) for MDPs
maxs′∈F (a,s) V (s′) for Game Trees

• The greedy policy πV is optimal when V = V ∗ solves Bellman

πV (s) = argmina∈A(s) QV (a, s)

• Question: how to get V ∗?
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Updates with No Search: Value Iteration

• Value Iteration finds V ∗ by successive approximations

• Starting with an arbitrary V , uses Bellman equation to update V ; e.g.
for Basic State Models (OR Graphs)

V (s) := mina∈A(s) [c(a, s) + V (sa)]

• As long as all states updated sufficiently often (and certain general
conditions hold), left and right hand sides converge, and V = V ∗

• VI is simple and general but also exhaustive

• Can the updates be restricted to subset of states preserving optimality?

• Yes: like in Heuristic Search, use Lower Bounds and Initial State

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 59

Focusing Value Iteration using LBs and Initial State

• Say that a state s is

– inconsistent if V (s) < mina∈A(s) QV (a, s), and
– greedy if reachable from s0 using greedy policy πV

• Then starting with an admissible, follow loop:

– Find an inconsistent greedy state s and Update it

• Loops delivers greedy policy that is optimal even if some states not
updated or visited at all!

• Unlike DP method, both LBs (V ≤ V ∗) and Initial State (s0) used
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Learning During Search in State Models

• Convergence of all Learning Algorithms in State Models (LRTA*, MTD,
IDA*+TT, . . . ) can be understood in these terms: update an inconsis-
tent greedy state in all iterations til no more such states

• Speed up obtained by updating multiple such states in every iteration

• This can be done by implementing Find as a DFS over greedy states
with inconsistent states as terminals (Learning in Depth-First Search)

• This is what IDA* + Trans. Tables (Basic State Models) and MTD
(Game Trees) actually do

• Same idea underlies current heuristic-search methods for solving
MDPs: LAO*, RTDP, HDP, . . .
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Bibliography: Techniques for Solving State Models Part
• Heuristics for Strips Planning: [23, 6, 16, 14, 30]; admissible heuristics [13, 9, 12]; heuristics and the planning graph

[6, 13, 24]; Graphplan [4].
• Planners searching in Regression Space [4, 5, 13].
• Planners searching in `Plan Space': [22, 18, 32].
• Planners searching in (non-directional) `Action Space': SAT-formulation and CSP formulations like [19, 28] (and in particular

[10]), and [15].
• Temporal Planning: [21, 25, 17], Optimal Temporal Planning [31], Planning and Scheduling [29].
• Learning while Searching in State Models: IDA* with Transposition Tables [27], LRTA* [20], RTDP [1], MTD for Game Trees

[26]; general LDFS framework [8].
• Value Iteration and Dynamic Programming [2, 3].
• Focusing Value Iteration: General Find-and-Revise procedure [7, 8]
• Learning in DFS [8], Heuristic Search Algorithms for MDPs [1, 11, 7]

References

[1] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming. Artificial Intelligence,
72:81--138, 1995.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] D. Bertsekas. Dynamic Programming and Optimal Control, Vols 1 and 2. Athena Scientific, 1995.

[4] A. Blum and M. Furst. Fast planning through planning graph analysis. In Proceedings of IJCAI-95, pages 1636--1642.
Morgan Kaufmann, 1995.

[5] B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proceedings of ECP-99, pages 359--371. Springer,
1999.

[6] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129(1--2):5--33, 2001.

[7] B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with uncertainty and full feedback. In Proc.
IJCAI-03, pages 1233--1238, 2003.

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 62



[8] B. Bonet and H. Geffner. Learning in DFS: A unified approach to heuristic search in deterministic, non-deterministic,
probabilistic, and game tree settings. 2005.

[9] S. Edelkamp. Planning with pattern databases. In Proc. ECP 2001, 2001.

[10] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow: Exploiting determinism in planning as
satisfiability. In Proc. AAAI-98, pages 948--953, 1998.

[11] E. Hansen and S. Zilberstein. Lao*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence,
129:35--62, 2001.

[12] P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for optimal planning. In Proc. AAAI-05, 2005. To appear.

[13] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc. of the Fifth International Conference on
AI Planning Systems (AIPS-2000), pages 70--82, 2000.

[14] M. Helmert. A planning heuristic based on causal graph analysis. In Proc. ICAPS-04, pages 161--170, 2004.

[15] J. Hoffmann and H. Geffner. Branching matters: Alternative branching in graphplan. In E. Giunchiglia, N. Muscettolla,
and D. Nau, editors, Proc. 13th Int. Conf. on Automated Planning and Scheduling (ICAPS-2003), pages 22--31. AAAI Press,
2003.

[16] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253--302, 2001.

[17] A. Jonsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary space: Theory and practice. In Proc.
AIPS-2000, pages 177--186, 2000.

[18] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning. Artificial Intelligence, 76(1-2):167--238, 1995.

[19] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In Proceedings of
AAAI-96, pages 1194--1201. AAAI Press / MIT Press, 1996.

[20] R. Korf. Real-time heuristic search. Artificial Intelligence, 42:189--211, 1990.

[21] P. Laborie and M. Ghallab. Planning with sharable resources constraints. In C. Mellish, editor, Proc. IJCAI-95, pages
1643--1649. Morgan Kaufmann, 1995.

[22] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of AAAI-91, pages 634--639, Anaheim, CA,
1991. AAAI Press.

[23] D. McDermott. Using regression-match graphs to control search in planning. Artificial Intelligence, 109(1-2):111--159,
1999.

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 63

[24] X. Nguyen, S. Kambhampati, and R. Sanchez Nigenda. Planning graph as the basis for deriving heuristics for plan synthesis
by state space and CSP search. Artificial Intelligence, 135(1-2):73--123, 2002.

[25] J. Penberthy and D. Weld. Temporal planning with continous change. In Proc. AAAI-94, pages 1010--1015, 1994.

[26] A. Plaat, J. Schaeffer, W. Pijls, and A.de Bruin. Best-first fixed-depth minimax algorithms. Artificial Intelligence,
87(1-2):255--293, 1996.

[27] A. Reinefeld and T. Marsland. Enhanced iterative-deepening search. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 16(7):701--710, 1994.

[28] J. Rintanen. A planning algorithm not based on directional search. In Proceedings KR'98, pages 617--624. Morgan
Kaufmann, 1998.

[29] D. Smith, J. Frank, and A. Jonsson. Bridging the gap between planning and scheduling. Knowledge Engineering Review,
15(1), 2000.

[30] V. Vidal. A lookahead strategy for heuristic search planning. In Proc. ICAPS-04, pages 150--159, 2004.

[31] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based on constraint programming.
In D. McGuiness and G. Ferguson, editors, Proceedings of 19th Nat. Conf. on Artificial Intelligence (AAAI-04), pages
570--577. AAAI Press/MIT Press, 2004.

[32] Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27--61, 1994.

H. Geffner, Principles of AI Problem Solving , IJCAI Tutorial 7/2005 64



1

7/2005 Principles of AI Problem Solving 1 R. Dechter

Solving problems with search 

and inference
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Road Map: 

Search in variable-based models

� Variable-based (Graphical) models
� Basic search 
� Constraint propagation as bounded inference
� Improving search by bounded inference in 

branching ahead.
� Improving search by looking-back
� The alternative AND/OR search space
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Road Map: 

Search in variable-based models

� Variable-based (Graphical) models
• Constraints and cost  networks
• Probabilistic  networks

� Basic search and basic Inference 
� Constraint propagation: bounded inference
� Improving search by branching ahead
� Improving search by looking-back
� The alternative AND/OR search space
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A B
red green
red yellow
green red
green yellow
yellow green
yellow red

Example: map coloring
Variables - countries (A,B,C,etc.)

Values    - colors (e.g., red, green, yellow)

Constraints: etc.  ,ED  D,  AB,A ≠≠≠

C

A

B

D
E

F

G

Task:  consistency?
Find a solution, all 
solutions, counting

Constraint Satisfaction
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ϕϕϕϕ = {(¬C), (A v B v C), (¬A v B v E), (¬B v C v D)}.

Propositional Satisfiability
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Constraint Optimization 

� Variables ⇒ Nodes
� Constrained 

Variables ⇒ Edges
� e.g.:

f1(x1,x2,x3)
f2(x2,x3,x5)
f3(x1,x4)
f4(x4,x5)

x1

x3

x5x4

x2

})({
'

1
∑

=∈

m

i
i

Solt
tfmin
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Probabilistic Networks

Smoking

BronchitisCancer

X-Ray

Dyspnoea

P(S)

P(B|S)

P(D|C,B)

P(C|S)

P(X|C,S)

P(S,C,B,X,D) = P(S)� P(C|S)� P(B|S)� P(X|C,S)� P(D|C,B)

0.10.911

0.20.801

0.30.710

0.90.100

D=1D=0BC

P(D|C,B)
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� A graphical model  (X,D,C):
• X = {X1,…Xn} variables
• D = {D1, … Dn} domains
• C = {F1,…,Ft} functions

(constraints, CPTS, cnfs)
• Primal graph

Graphical modelsGraphical modelsGraphical modelsGraphical models

CAFF

CAFPF

i

i

+==
=
:

),|(:

A

D

B C

E

F
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� A graphical model  (X,D,C):
• X = {X1,…Xn} variables
• D = {D1, … Dn} domains
• C = {F1,…,Ft} functions

(constraints, CPTS, cnfs)
• Primal graph

Graphical modelsGraphical modelsGraphical modelsGraphical models

CAFF

CAFPF

i

i

+==
=
:

),|(:

A

D

B C

E

F

�MPE: maxX ∏∏∏∏j Pj

�CSP: ∏∏∏∏X ××××j Cj

�Max-CSP: minX Σj Fj
�Belief updating: ΣΣΣΣX-y ∏∏∏∏j Pi 

�Optimization: minX Σj Fj
�MEU:

A  reasoning problem
defined by operators 
combine and project:
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� A graphical model  (X,D,C):
• X = {X1,…Xn} variables
• D = {D1, … Dn} domains
• C = {F1,…,Ft} functions

(constraints, CPTS, cnfs)
• Primal graph

Graphical modelsGraphical modelsGraphical modelsGraphical models

CAFF

CAFPF

i

i

+==
=
:

),|(:

A

D

B C

E

F

�MPE: maxX ∏∏∏∏j Pj

�CSP: ∏∏∏∏X ××××j Cj

�Max-CSP: minX Σj Fj
�Belief updating: ΣΣΣΣX-y ∏∏∏∏j Pi 

�Optimization: minX Σj Fj
�MEU:

A  reasoning problem
defined by operators 
combine and project:

All these tasks are NP-hard
���� identify special cases
���� approximate
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The  Graphs of Graphical Models

Hyper-graph Primal graph

Dual graph Acyclic dual graph

R= {f(AEF),f(ABC),
f(ACE),f(CDE)}
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Induced-width and Tree-width
E

D

A

C

B
EDCB

DCBA

DBE

ADB

CBE

Tree-width
=3

Tree-width
=2

Induced-width
Of ordering
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Induced-width and Tree-width
E

D

A

C

B
EDCB

DCBA

DBE

ADB

CBE

Tree-width
=3

Tree-width
=2

Induced-width
Of ordering

Tree-width of a graph = smallest cluster in a cluster-tree
Path-width of a graph = smallest cluster in a cluster-path
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Two Primary Reasoning Methods

� Inference
• Variable elimination 
• Tree-clustering 

� Search
• Backtracking (conditioning)
• Branch and Bound

� Hybrids of search and inference
• Cycle-cutset scheme
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Road Map: 

Search in Variable-based Models

� Variable-based (Graphical) models

� Basic search: DFS search, Backtracking
� Constraint propagation: bounded inference
� Improving search by bounded-inference in 

branching ahead
� Improving search by looking-back
� The alternative AND/OR search space
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Focus: Constraint Networks

� Relation: allowed 
tuples (semantics)

� Algebraic 
expression:

� Propositional 
formula:

YXYX ≠≤+ ,102

cba ¬→∨ )(

312

231

Ζ
YX
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The Full Search Space

X

.....                                 .....                     .....

Y

T

X Y

T Z

=∧∧∧∧

<<<<

<<<<

D={1,2,3}

Z
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The Search Space

X

.....                                 .....                     .....

Y

T

X Y

T Z

<<<<

=

<<<<
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1 2 3

2 3 3

Z

X<Y
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The  Search Space

X

.....                                 .....                     .....

Y

T

X Y

T Z
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Z
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The Search Space

X

.....                                 .....                     .....

Y

T

X Y

T Z
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2 3 3
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X<Y

X<T

Y=Z
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The Search Space

X

.....                                 .....                     .....

Y

T

X Y

T Z

<<<<

=

<<<<

∧∧∧∧

1 2 3

2 3 3

2 3

Z

•Search space contains only partial 
solutions

•Can be tight
•Depends on variable orderings
•Depends on tightness of constraints
•Depends on….
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Traversing the search space:
Backtracking (DFS) Search for a Solution

Not-equal
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Search for a Single Solution
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Search for All Solutions
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Search for All Solutions

For all tasks
Time:  O(exp(n))
Space: linear
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Traversing Breadth-First (BFS)?  

Not-equal

BFS space is exp(n) while no
Time gain ���� use DFS
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Road Map: 

Search in Variable-Based Models

� Variable-based (Graphical) models
� Basic search
� Constraint propagation: bounded inference
� Improving search by branching ahead

� Improving search by looking-back
� The alternative AND/OR search space
� Hybrid Schemes
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32,1,

32,1, 32,1,

1 ≤≤≤≤ X, Y, Z, T ≤≤≤≤ 3
X <<<< Y
Y = Z
T <<<< Z
X ≤≤≤≤ T

X Y

T Z

32,1,
<<<<

=

<

∧

Arc-consistency
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1 ≤≤≤≤ X, Y, Z, T ≤≤≤≤ 3
X <<<< Y
Y = Z
T <<<< Z
X ≤≤≤≤ T

X Y

T Z

<<<<

=

<

∧

1 3

2 3

• Only domains are reduced: 

• Can be accomplished  efficiently

∏←
X YXYX DRR      

Arc-consistency

)( 2ekO
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Arc-consistency

A binary constraint R(X,Y) is arc-consistent w.r.t. X is 
every value in x’s domain has a match in y’s domain.

YXRR YX <==   constraint },3,2,1{ },3,2,1{

).(},2,1{  to ofdomain  reduces y)Revise(x, 2kORX X =
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The message that R2 sends to R1 is

R1 updates its relation and domains and 
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Gausian and Boolean 

Propagation, Resolution

� Linear inequalities

� Boolean constraint propagation, unit 
resolution

)(),( BCBA ¬¬∨∨

⇒≥≤++ 13,15 zzyx
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Gausian and Boolean 

Propagation, Resolution

� Linear inequalities

� Boolean constraint propagation, unit 
resolution
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Path-consistency

A pair (x, y) is path-consistent relative to Z, if every consistent

assignment (x, y) has a consistent extension to z.

)( 33knO
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From Global to Local Consistency
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Road Map:

Search in Variable-Based Models 

� Variable-based (Graphical) models
� Basic search and basic Inference 
� Constraint propagation: bounded inference
� Improving search by constraint propagation 

in branching ahead
� Improving search by looking-back
� The alternative AND/OR search space
� Hybrid Schemes
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� Before search: (reducing the search space)
• By constraint propation (e.g., Arc-consistency)

� During search:
• apply constraint propagation at each node, 
• pruning values, and 
• advising values and variable orderings.

Improving Search by constraint 

propagation 
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The Search Space

Before Arc-Consistency
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The Search Space

After Arc-Consistency
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Branching-Ahead: 

Constraint Propagation in Search

� Apply some level of constraint propagation 
at each node,
• Forward-checking (FC) 
• Arc- consistency (MAC)

� Then:
• Value pruning 
• Value ordering (choose a value that leaves most

options open) 
• Variable ordering (choose a variable that leaves 

least options open
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Forward-Checking for Value Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:
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Forward-Checking for Value Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:
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MAC for Value Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:
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MAC for Value Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:

Arc-consistency prunes x1=red
Prunes the whole tree Not searched

By MAC
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Forward-Checking, Variable Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:
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Forward-Checking, Variable Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:

After X1 = red choose X3 and not X2
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Forward-Checking, Variable Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:

After X1 = red choose X3 and not X2
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Forward-Checking, Variable Ordering

)( 2ekO

)(

)(
3

2

ekO

ekOFW overhead: 

MAC overhead:

After X1 = red choose X3 and not X2
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Branching-Ahead for SAT: DLL
example: (~AVB)(~CVA)(AVBVD)(C)

Only enclosed area will be explored with unit-propagation

Backtracking look-ahead with 
Unit propagation= 
Generalized arc-consistency

(Davis, Logeman and Laveland, 1962) 
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Look-Back: Backjumping

� (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})
� (r,b,b,b,g,r) conflict set of x7
� (r,-,b,b,g,-) c.s. of x7
� (r,-,b,-,-,-,-) minimal conflict-set
� Leaf deadend : (r,b,b,b,g,r)
� Every conflict-set is a no-good
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Jumps  at dead-ends 

(Gascnnig 1977)
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Jumps  at Dead-Ends 

(Gascnnig 1977)
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Complexity of  Backjumping

Uses Pseudo-Tree Analysis

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(w*)
Complexity for csp: exp(w*log n)
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Complexity of  Backjumping

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(w*)
Complexity for csp: exp(w*log n)
From exp(n) to exp(w*logn) while linear space
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Look-back: No-good Learning

� (x1=2,x2=2,x3=1,x4=2) is a 
dead-end

� Conflicts to record:
• (x1=2,x2=2,x3=1,x4=2) 4-ary
• (x3=1,x4=2) binary
• (x4=2) unary

Learning means recording conflict sets
used as constraints to prune future 
search space.
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No-good Learning Example
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Complexity of Nogood-Learning

for consistency

� The number of dead-ends is bounded by
� Number of constraint tests per dead-end are

Space  complexity is 
Time  complexity is )(

)(
)*(2

)*(

dw

dw

kenO

nkO

⋅

� The complexity of learning along d is time 
and space exponential in w*(d): 

)( )*( dwnkO
)(eO
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Complexity of Nogood-Learning

for consistency

� The number of dead-ends is bounded by
� Number of constraint tests per dead-end are

Space  complexity is 
Time  complexity is
No-good Learning reduces time 
to O(exp(w*)) but O(exp(w*)) space.

)(

)(
)*(2

)*(

dw

dw

kenO

nkO

⋅

� The complexity of learning along d is time 
and space exponential in w*(d): 

)( )*( dwnkO
)(eO
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All Solutions and Counting

� For all solutions and counting we will see 
• The additional impact of Good learning 
• BFS makes sense with good learning
• BFS and DFS time and space exp(path- width)
• Good- learning doesn’t help consistency task
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#CSP – OR Search Tree
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#CSP - OR Search Tree
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#CSP - OR Search Tree
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#CSP - Tree DFS Traversal
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#CSP - Searching the Graph by 

Good Caching
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#CSP - Searching the Graph by 

Good Caching
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#CSP - Searching the Graph by 

Good Caching
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(A=0,E=0) is good
V(A=0,E=0)=1
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#CSP - Searching the Graph by 

Good Caching
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Summary: Time-Space for 

Constraint Processing
� Constraint-satisfaction one 

solution
• Naive backtracking

• Space: O(n), 
• Time: O(exp(n))

• Backjumping
• Space: O(n),
• Time: O(exp(log n  w*))

• Learning no-goods
• Space: O(exp(w*)) 
• Time: O(exp(w*))

• Variable-elimination
• Space: O(exp(w*)) 
• Time: O(exp(w*))

� Counting, enumeration

• Backtracking, backjumping
• Space: O(n),
• Time: O(exp(n ))

• Learning  no-goods 
• space:  O(exp(w*))
• Time: O(exp(n))

• Search with goods and no-
goods learning

• Space: O(exp(pw*)) 
• Time: O(exp(pw*)),  pw

<=w*logn
• Variable-elimination

• Space: O(exp(w*)) 
• Time: O(exp(w*))

• BFS is time and space 
O(exp(pw*))
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Summary: Search Principles

� DFS is better  than BFS search 
� Constraint propagation (bounded inference) 

prunes search space
� Constraint propagation yields good advise for 

how to branch and where to go 
� Backjumping and no-good learning helps  

prune search space and revise problem.
� Good learning revise problem but helps only 

counting, enumeration
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From Constraint Processing to

� Belief networks tasks
� Optimization tasks
� Task expressed as a value of a root node:

• V(n) = probability of sub-tree below n
• V(n) = optimal solution below n
• V(n) can be derived recursively 
• V(n) have Bellman recursive equations
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Belief Updating: Belief Updating: Belief Updating: Belief Updating: 

Searching the  Probability TreeSearching the  Probability TreeSearching the  Probability TreeSearching the  Probability Tree

∑∑∑∑
=

==
0

),|(),|()|()|()()0,(
ebcb

cbePbadPacPabPaPeaP

Brute-force Complexity: exponential time, linear space
Very similar to counting solution task
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Caching Goods for Beliefs

� For strictly positive distributions only caching 
goods is relevant.

� Both BFS and DFS are relevant

� Time and space O(exp(path-width))
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Optimization Tasks
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Optimization Tasks

Arc-cost is caculated based on cost components.
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Tree DFS Traversal for Values

Value of node = minimal cost solution below it
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Tree DFS Traversal for Values

Value of node = minimal cost solution below it
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Searching the  Graph

C   context(C) = [ABC]

D    context(D) = [ABD]
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Searching the  Graph

C   context(C) = [ABC]

D    context(D) = [ABD]

F    context(F) = [F]

E    context(E) = [AE]

B    context(B) = [AB]
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Summary: 

Time-Space for Optimization/Belief

• DFS Search (with/without backjumping) 
• Space: O(n), Time: O(exp(n ))

• DFS Search with no-goods caching only
• space:  O(exp(w*)) Time: O(exp(n))

• Search with goods and no-goods learning
• Space: O(exp(pw*)) Time: O(exp(pw*)),  pw

<=w*logn
• For optimization 

• BFS Space:  O(exp(c*)) Time: O(exp(c*)), 
c*=best-solution length.

• Variable-elimination
• Space: O(exp(w*)) Time: O(exp(w*))
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Road Map: 

Search in Graphical Models

� Variable-based (Graphical) models
� Basic search
� Constraint propagation: bounded inference
� Improving search by bounded-inference in 

branching ahead
� Improving search by looking-back

� The alternative AND/OR search space
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OR Search Space
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AND/OR Search Space
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AND/OR vs. OR
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AND/OR vs. OR
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AND/OR vs. OR
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AND/OR vs. OR
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Time:
O(exp(n))
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OR space vs. AND/OR space
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Random graphs with 20 nodes, 20 edges and 2 values per node.
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#CSP – AND/OR Search Tree
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#CSP – AND/OR Search Tree
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#CSP – AND/OR Tree DFS
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Mixed Networks
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The Effect of Constraint 
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P(D=1|B=0,C=0)×
P(C=0|A=0)

P(D=1|B=0,C=1)×
P(C=1|A=0)

P(D=0|B=1,C=0)×
P(C=0|A=0)

P(D=0|B=1,C=1)×
P(C=1|A=0)

P(D=1|B=1,C=0)×
P(C=0|A=0)

P(E=1|A=0,B=0) P(E=0|A=0,B=1) P(E=1|A=0,B=1)

A

C

B

DE

A

D

B C

EBelief-Updating

DFS: Linear space
O(w* log n)
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Tasks and value of nodes
� V( n) is the value of the tree T(n) for the task:

• Consistency :  v(n)  is 0 if T(n)  inconsistent, 1 othewise.
• Counting :  v(n)  is number of solutions in T(n) 
• Optimization : v(n)  is the optimal solution in T(n)
• Belief updating : v(n), probability of evidence in T(n).
• Partition function: v(n) is the total  probability in T(n). 

� Goal :  compute   the value of the root node recursively  using DFS or BFS 
search of the AND/OR tree.

� Theorem: Complexity of AO DFS search is
• Space: O(n)
• Time: O(n km)
• Time: O(exp(w* log n))

� Time and Space of BFS: O(exp(w* log n))
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From Search Trees to Search Graphs

� Any two nodes  that root identical 
subtrees/subgraphs can be merged

� Minimal AND/OR search graph: 
closure under merge of the AND/OR search tree

• Inconsistent sub-trees can be pruned too.
• Some portions can be collapsed or reduced.
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AND/OR TreeAND/OR TreeAND/OR TreeAND/OR Tree

A

D

B C

E

F

A

D

B

CE

F

G H

J

K

G

H

J

KAOR

0AND 1

BOR B

0AND 1 0 1

EOR C E C E C E C

OR D F D F D F D F D F D F D F D F

AND

AND 0 10 1 0 10 1 0 10 1 0 10 1

OR

OR

AND

AND

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

0

G

H H

0 1 0 1

0 1

1

G

H H

0 1 0 1

0 1

0

J

K K

0 1 0 1

0 1

1

J

K K

0 1 0 1

0 1

August 2005 Ijcai-05 - Principles 110

An AND/OR Graph: 

Caching Goods
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Context-based Caching

� Caching is possible when context is the same

� context = parent-separator set in induced pseudo-graph
= current variable + 

parents connected to subtree below
A

D

B C

E

F

A

D

B

CE

F

G H

J

K

G

H

J

K

context(B) = {A, B}

context(c) = {A,B,C}

context(D) = {D}

context(F) = {F}
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Complexity of AND/OR Graph Complexity of AND/OR Graph Complexity of AND/OR Graph Complexity of AND/OR Graph 

� Theorem: Traversing the AND/OR search 
graphis time and space exponential in the 
induced width/tree-width.

� If applied to the OR graph complexity is time 
and space exponential in the path-width.
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#CSP – AND/OR Search Tree
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#CSP – AND/OR Tree DFS
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#CSP – AND/OR Search Graph

(Caching Goods)

A

E

C

B

F

D

A

D

B

EC

F0111
1011
1101
1001
1110
0010
1100
1000

RABCCBA

0111
1011
1101
0001
1110
1010
0100
1000

RABEEBA

0111
1011
1101
1001
1110
1010
1100
0000

RAEFFEA

1111
1011
0101
1001
0110
1010
1100
1000

RBCDDCB

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

August 2005 Ijcai-05 - Principles 116

#CSP – AND/OR Search Graph

(Caching Goods)
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Time and Space
O(exp(w*))
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All Four Search Spaces

Full OR search tree 

126 nodes

Full AND/OR search tree

54 AND nodes

Context minimal OR search graph

28 nodes

Context minimal AND/OR search graph

18 AND nodes
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Searching AND/OR Graphs

� AO(i): searches depth-first, cache i-context
• i = the max size of a cache table (i.e. number 

of variables in a context)

i=0 i=w*

Space: O(n) 

Time: O(exp(w* log n))

Space: O(exp w*) 

Time: O(exp w*)

AO(i) time complexity?
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Impact of  AND/OR

for Constraint Processing

� Minor impact for Constraint-satisfaction
• Search with backjumping or without backjumping

• Space: linear, Time: O(exp(logn w*))
• Search with learning no-goods

• time and space: O(exp(w*))
• Variable-elimination

• time and space:  O(exp(w*))

� Counting, enumeration
• Search with backjumping

• Space: linear, Time: O(exp(n ))
• Space: linear, Time: O(exp(log n  w*))

• Search with no-goods caching only
• space:  O(exp(w*))  Time: O(exp(n)) 
• space:  O(exp(w*))  Time: O(exp(log n w*))

• Search with goods and no-goods learning
• Time and space: O(exp(path-width), O(exp(log n w*))
• Time and space: O(exp(tree-width), O(exp(w*))

• Variable-elimination
• Time and space:  O(exp(w*))
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Impact of  AND/OR

for Any Graphical Model

� Optimization, Belief
• Search with backjumping

• Space: O(n), Time: O(exp(n ))
• Space: linear, Time: O(exp(log n  w*))

• Search with no-goods caching only
• space:  O(exp(w*)) Time: O(exp(n))
• space:  O(exp(w*))  Time: O(exp(log n w*))

• Search with goods and no-goods learning
• Space: O(exp(pw*)) Time: O(exp(pw*)),  pw <=w*logn
• Time and space: O(exp(w*), O(exp(w*))

• For optimization can be
• Space:  O(exp(c*)) Time: O(exp(c*)), c*=best-solution length.

• Variable-elimination
• Space: O(exp(w*)) Time: O(exp(w*))
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Algorithms for AND/OR Space

� Backjumping for CSPs (Gaschnig 1977, Dechter
1990, Prosser, Bayardo et. Al, 1994.)

� Pseudo-search rearangement , for any CSP task 
(Freuder 1987)

� Recursive Conditioning (Darwiche, 1999), explores 
the AND/OR tree or graph for any query

� Searching tree-decomspositions for optimization:  
(Jeagou, 2000)

� Valued-elimination (Bacchus, 2003)
� Variable-elimination ( next session, pure inference)
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A. Darwiche

Problem Solving Problem Solving 
by Inferenceby Inference

A. Darwiche

Basic PrinciplesBasic Principles

• Inference by Variable Elimination
• Inference by Factor Elimination 

(Tree-clustering, Jointree)
• Inference by Recursive Conditioning 

(Decomposition)
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A. Darwiche

The Inference ProblemThe Inference Problem

• Answer queries about a function which 
is given in factored form.

• Logic/Constraints: Boolean functions
• Probability: Probability functions

• Techniques apply to other types of inference: 
belief functions, penalty logics, etc.

A. Darwiche

Bayesian NetworksBayesian Networks
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Bayesian NetworksBayesian Networks
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Probabilistic InferenceProbabilistic Inference
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MPE: row r with max Pr(r)

MAP: partial instantiation i with max Pr(i)

Probability Function

A. Darwiche

Propositional Knowledge BasesPropositional Knowledge Bases
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Propositional Knowledge BasesPropositional Knowledge Bases

A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

Boolean FunctionPropositional KB

Is there a satisfying assignment?

How many satisfying assignments

Are two KBs equivalent?

F
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T

OK_YOK_Y

0FFFF
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……………

……...……

0TTTT

1TTTT

F(…)F(…)OK_XOK_XCCBBAA

A. Darwiche

Example: map coloring
Variables - countries (A,B,C,etc.)
Values    - colors (e.g., red, green, yellow)
Constraints: etc.  ,ED D,  AB,A ≠≠≠

Constraint SatisfactionConstraint Satisfaction

0yellow………

1…………

1…………

0…...……

0greenredredred

0redredredred

F()F()……CCBBAA

C

A

B

D
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A. Darwiche

Example: map coloring
Variables - countries (A,B,C,etc.)
Values    - colors (e.g., red, green, yellow)
Constraints: etc.  ,ED D,  AB,A ≠≠≠

Are the constraints consistent?

Find a solution, find all solutions

Count all solutions

Constraint SatisfactionConstraint Satisfaction

0yellow………

1…………

1…………

0…...……

1greenredredred

0redredredred

F()F()……CCBBAA

A. Darwiche

Inference by Variable Inference by Variable 
EliminationElimination
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A. Darwiche

Basic PrincipleBasic Principle

Reduce: A query about a function 
f = f1 f2 … fm

over n variables into a query about a 
function f’ over n-1 variables.

Eliminate a variable X from f, while keeping 
the result, f’, as factored as possible

A. Darwiche

Basic PrincipleBasic Principle
If variable X appears in only one factor f1 of f, all we have 
to do is replace f1 with elm(f1,X):

f’ = elm(f1,X) f2 …fm

If variable X appears in more than one factor, say, f1 and f2 , 
we must combine (multiply) them first before eliminating X:

f’ = elm(f1 f2,X) f3 …fm

Notes: 
The more factors we have to combine, the less factored the result is.
The order in which we eliminate variables matters only computationally.
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Elimination in ProbabilityElimination in Probability
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Eliminate B

Project on A

Elimination in ProbabilityElimination in Probability
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.5FF

.2TF

.2FT

.1TT
F(AB)BA

.7F

.3T

F(A)A
Eliminate B

Project on A

Elimination in ProbabilityElimination in Probability

∑=
B

ABFAF )()(

A. Darwiche

.5FF

.2TF

.2FT

.1TT
F(AB)BA

.7F

.3T

F(A)A
Eliminate B

Project on A

Elimination in ProbabilityElimination in Probability

Different notions of elimination: sum out, max out
Each preserves ability to answer a different type of query
Sum out: compute probabilities      Max out: compute MPE        
Sum then Max: compute MAP
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Variable Elimination ExampleVariable Elimination Example
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A. Darwiche

Variable Elimination ExampleVariable Elimination Example
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Variable Elimination ExampleVariable Elimination Example

A B C
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To eliminate B
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Variable Elimination ExampleVariable Elimination Example
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Variable Elimination ExampleVariable Elimination Example

A B C
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f6(BC)CB

Eliminate B       

A. Darwiche

Variable Elimination ExampleVariable Elimination Example

A B C
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f7(C)C



13

A. Darwiche

Elimination in LogicElimination in Logic
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Project on A C
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Elimination in LogicElimination in Logic

1FFF
1TFF
0FTF
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A => B, B => C

1FF
1TF
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Eliminate B

A => C

Project on A C
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Elimination in LogicElimination in Logic

1FFF
1TFF
0FTF
1TTF
0FFT
0TFT
0FTT
1TTT
F(ABC)CBA

A => B, B => C

1FF
1TF
0FT
1TT
F(AC)CA

Eliminate B

A => C

Project on A C

A. Darwiche

Elimination in LogicElimination in Logic

A => B, B => C

Eliminate B

A => C

Project on A C

~A or B
~B or C

Resolve on B
~A or B
~B or C
~A or C

Throw out B clauses

~A or C

∆∃ .B
∆
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Elimination in LogicElimination in Logic

• Different notions of elimination:
– Existential elimination (quantification)
– Universal elimination (quantification)

• Preserve ability to answer different queries
– E.g. Existential preserves SAT

• Different types of eliminations can be mixed
to solve more sophisticated problems: 
diagnosis and planning

A. Darwiche

Interaction GraphsInteraction Graphs

• Can simulate variable elimination on 
connectivity graph:
– Node for every variable
– Edge between two nodes iff appear in same factor

f(ABCDEF) = 
f1(AB) f2(BCD) f3(CF) f4(EF)

B

D

A

C

F

E



16

A. Darwiche

Interaction Graph: ExampleInteraction Graph: Example

A B C

OK_X OK_Y

Interaction Graph

A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

Also known as primal graph in constraint satisfaction
Other types of graphs can be defined: dual & hyper

A. Darwiche

Interaction GraphsInteraction Graphs
• Eliminate F:

f(ABCDEF) = f1(AB) f2(BCD)  f3(CF) f4(EF)

f’(ABCDE) = f1(AB) f2(BCD)  f34(CE)

B

D

A

C

F

E B

D

A

C E

Interaction graph for f Interaction graph for f’

Connect neighbors of F
Remove node F
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Interaction GraphsInteraction Graphs
• Eliminate C:

f’(ABCDEF) = f1(AB) f2(BCD) f34(CE)

f’’(ABCDEF) = f1(AB)  f234(BDE)

B

D

A

C E

Interaction graph for f’

Connect neighbors of C
Remove node C

B

D

A

E

Interaction graph for f’’

A. Darwiche

Induced Width / Induced Width / TreewidthTreewidth
• The factor constructed upon eliminating variable X will 

be over X’s neighbors in interaction graph.

• If w is largest number of neighbors encountered when 
eliminating variables according to order O, then 
w is called the induced width of elimination order O.

• The complexity of variable elimination is O(n exp(w)), 
where n is number of variables

• The induced width of a graph is width of its best 
elimination order

• This is also known as treewidth in graph theoretic literature
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A. Darwiche

TreewidthTreewidth

Higher treewidth

A. Darwiche

Bucket EliminationBucket Elimination
A mechanism for managing variable elimination

f3(CF)C
D

f4(EF)E
F

f2(BCD)B
A

FactorsVar

f(ABCDEF) = f1(AB) f2(BCD) f3(CF) f4(EF)

C
D
E
F

B
A

FactorsVar
Elm A

f5(B)
f1(AB)
f2(BCD)
f3(CF)

f4(EF)
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Bucket EliminationBucket Elimination
A mechanism for managing variable elimination

f3(CF)C
D

f4(EF)E
F

f2(BCD) f5(B)B
A

FactorsVar

f(ABCDEF) = f1(AB) f2(BCD) f3(CF) f4(EF)

f3(CF)C
D

f4(EF)E
F

B
A

FactorsVar

Elm B
f6(CD)

A. Darwiche

Another View of Another View of TreewidthTreewidth

ABC

BCD

CE

EF EG

BH

Tree decomposition

A

B C

D
H

E

F G

Interaction graph
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Tree DecompositionTree Decomposition

ABC

BCD

CE

EF EG

BH

Tree decomposition

• A tree of clusters

• Every pair of variables connected by
an edge in interaction graph must 
appear together in some cluster

• If a variable appears in two clusters,
it must appear in all clusters on the
path between them

A. Darwiche

Tree DecompositionTree Decomposition

ABC

BCD

CE

EF EG

BH

Tree decomposition

• A tree of clusters

• The variables of every factor must 
appear in some cluster

• If a variable appears in two clusters,
it must appear in all clusters on the
path between them
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Tree DecompositionTree Decomposition

ABC

BCD

CE

EF EG

BH

Tree decomposition• Width of tree decomposition is size
of its largest cluster - 1

• Width of best tree decomposition is
treewidth of connectivity graph

• Treewidth quantifies the 
resemblance of a graph to a tree 
structure

• Tree decompositions correspond to
jointrees (junction trees)

A. Darwiche

Inference by FactorInference by Factor
EliminationElimination

(Jointree algorithm)
(Tree clustering algorithm)
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Basic PrincipleBasic Principle
Reduce: A query about a function 

f = f1 f2 … fm
into a query about a function f’ over m-1 factors.

Eliminate factor fi while keeping result, f’, as factored 
as possible

Allows n queries to be answered in O(n exp(w)) time 
instead of O(n2 exp(w))  [Standard VE]

A. Darwiche

Basic PrinciplesBasic Principles

• To eliminate a factor f1 :
– Eliminate all variables appearing in f1 but not 

in other factors f2….fm

– Multiply resulting factor into one of f2…fm

• To control elimination:
– Choose a factor to eliminate
– Decide on which factor to multiply into

• Factor elimination is controlled by an 
elimination tree (instead of elimination order)
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Elimination TreesElimination Trees
• Spanning tree of factors
• Any spanning tree will do, some lead to 

more work than others

2

1

4

3

5f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

2

1

4

3

5f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

A. Darwiche

2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

∑ E
CEf )(

Eliminate factor f5

Factor EliminationFactor Elimination
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2

1

4

3

f(AB)

f(A)

f(BCD)

f(AC)

Factor EliminationFactor Elimination

Eliminate factor f2

)( ABf

A. Darwiche

1

4

3

f(AB)

f(BCD)

f(AC)

Factor EliminationFactor Elimination

)(f

Eliminate factor f1

)(ABf



25

A. Darwiche

4

3

f(ABCD)

f(AC)

Factor EliminationFactor Elimination

)(f

Eliminate factor f4

∑
BD

ABCDf )(

A. Darwiche

3
f(AC)

Factor EliminationFactor Elimination

∑
∑

=

=

BDE

BDE

CEfBCFfACfAfABf

ABCDEf
ACf

)()()()()(

)(
)(

Resulting factor represents projection 
of original factors on variables AC
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2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

SeparatorsSeparators

CE
ABCD

A. Darwiche

2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

SeparatorsSeparators

C



27

A. Darwiche

2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

SeparatorsSeparators

ACE

ABCD

A. Darwiche

2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

SeparatorsSeparators

AC
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2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

SeparatorsSeparators

AB

AB

AC
C

A. Darwiche

2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

Messages over SeparatorsMessages over Separators

∑=
E

CEfCm )()(
)(ABm

)(ABm

)(ACm
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2

1

4

3

5
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

ClustersClusters

AB

AB

AC
C

Cluster of node: variables of its factor union neighboring separators

A. Darwiche

AB

AB

ABCD

AC

CE
f(AB)

f(A)

f(BCD)

f(AC)

f(CE)

ClustersClusters

AB

AB

AC
C

Cluster of node: variables of its factor union neighboring separators
Width of elm tree: size of largest cluster -1
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ComplexityComplexity

Project on AC

AB

AB

ABCD

AC

CEf(AB)

f(A)

f(BCD)

f(AC)

f(CE)

AB

AB

ABCD

AC

CEf(AB)

f(A)

f(BCD)

f(AC)

f(CE)

Project on CE

AB

AB

ABCD

AC

CEf(AB)

f(A)

f(BCD)

f(AC)

f(CE)

Project on ABCD

-To project on variables of a cluster, choose cluster as root
-Number of messages passed is twice number of edges
-Sending a message from a cluster is exponential in size of cluster
-With appropriate elim tree, all messages passed in O(n exp(w))

A. Darwiche

Tree Decomposition     Elm TreeTree Decomposition     Elm Tree

Every tree decomposition of width w 
embeds 

an elimination tree of width w
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Tree Decomposition     Elm TreeTree Decomposition     Elm Tree

A

B

C

D

E F

f(ABE) f(ACD) f(DEF)
Interaction graph

ABE

DEF

ADE

ACD

Tree decomposition

f(ACD)f(ABE)

f(DEF)

Elimination tree

A. Darwiche

Elm Tree     Elm Tree     TreeTree DecompositionDecomposition

Every elimination tree of width w 
induces 

a tree decomposition of width w
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A

B

C

D

E F

f(ABE) f(ACD) f(DEF)
Interaction graph

f(ACD)f(ABE)

f(DEF)

Elimination tree

AE AD

DE

ACDABE

DEF

Tree decomposition

ADE

Elm Tree     Elm Tree     TreeTree DecompositionDecomposition

A. Darwiche

Inference by RecursiveInference by Recursive
ConditioningConditioning
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Basic PrincipleBasic Principle
Reduce: A query about a function 

f = f1 f2 … fm
into queries about a decomposition

fL = f1…fi fR = fi+1…. fm

Must condition on variables shared by fL and fR

Allows inference in O(n exp(w)) time 
Facilitates time-space tradeoffs

A. Darwiche

DecompositionDecomposition

Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start
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DecompositionDecomposition

Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

A. Darwiche

DecompositionDecomposition

Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start
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DecompositionDecomposition
Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

LP RP*

A. Darwiche

DecompositionDecomposition
Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

LP RP*
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Causal NetworkCausal Network

Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

A. Darwiche

Causal NetworkCausal Network

Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start
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Case AnalysisCase Analysis
Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Case I

Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Case II

A. Darwiche

Case AnalysisCase Analysis
Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Case I Case II

LP   *  RP
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Case AnalysisCase Analysis
Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Case I Case II

LP   *  RP LP   *  RP+

A. Darwiche

Case AnalysisCase Analysis
Battery Age Alternator Fan Belt

Battery
Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

LP   *  RP LP   *  RP+
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Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

Battery Age Alternator Fan Belt

Battery

Charge Delivered

Battery Power

Starter

Radio Lights Engine Turn Over

Gas Gauge

Gas

Leak

Fuel Line

Distributor

Spark Plugs

Engine Start

• Decomposition and Case Analysis 
can answer any query

• Non-Deterministic!

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B

f(A) f(AB) f(BC)

f(CD) f(BDE)
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Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E

A A B C

C D
D E

B
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Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B
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Decomposition TreeDecomposition Tree

A B C D E

A A B C

C D
D E

B
LP RP

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B LP * RP
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Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B LP * RP

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E

A A B C

C D
D E

B LP * RP

LP RP
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Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

B LP * RP    LP * RP

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E

A A B B C

C D
D
B

E

LP * RP + LP * RP
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Computational ComplexityComputational Complexity

A B C D E

A A B B C

C D
D
B

E

A

B

C

D

B

BC

BCD
Ancestoral Cutset

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E F

A

A B

B C

C D

D E E F

A
B

C
A B C
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Decomposition TreeDecomposition Tree

A B C D E F

A

A B

B C

C D

D E E F

A
B

C C
C

.27

.39

ABC
ABC
ABC
ABC
ABC
ABC
ABC
ABC

A B C

Context(N)= A-Cutset(N)&Vars(N)

A. Darwiche

Decomposition TreeDecomposition Tree

A B C D E F

A

A B

B C

C D

D E E F

A
B

C
D

E

A
B

C
D
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Computational ComplexityComputational Complexity
• Given 

– DAG with n nodes
– elimination order of width w

• Can construct a dtree, such that
– time complexity: O(n exp(w logn))

space complexity O(n) [no caching]
• Can construct a dtree, such that

– time complexity: O(n exp(w))
space complexity: O(n exp(w)) [ full caching]

A. Darwiche

3.3 MB = 28 Sec
7.6 MB = 12 Sec
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Recursive Conditioning in Logic/CSPRecursive Conditioning in Logic/CSP

SAT

X=t X=f

SAT SATor

X=t        X=t X=f        X=f

A. Darwiche

Graphical ModelsGraphical Models

Elimination Order Jointree/Elm trees

Dtree

W Width preserving transformations

Variable Elimination Factor Elimination

Recursive Conditioning
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Elimination Orders to Elimination Orders to dtreesdtrees
A

D
B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BC

A

W=2

Cutset <= w+1

A. Darwiche

A

D
B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BC

A

W=2

Elimination Orders to Elimination Orders to dtreesdtrees
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A

D

B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BC

A

W=2

Elimination Orders to Elimination Orders to dtreesdtrees

A. Darwiche

A

D

B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BC

A

W=2

Elimination Orders to Elimination Orders to dtreesdtrees
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A

D
B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BC

A

W=2

D
BC

AB ABC

Context <= w+1

Elimination Orders to Elimination Orders to dtreesdtrees

A. Darwiche

A

D
B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BC

A

W=2

D
BC

AB ABC

DtreesDtrees to to JointreeJointree
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A

D
B

E

C

F

F  E  A  B  C  D

A AB AC ABE BCD DF

D
BCD

ABC

W=2

AB ABC

Cluster<= w+1

DtreesDtrees to to JointreesJointrees

A. Darwiche

Hypergraph PartitioningHypergraph Partitioning

The problem of hypergraph
partitioning is well-studied

in VLSI design.
….and is alive!

A hypergraph is a generalization 
of a graph, such that an edge is 
permitted to connect an arbitrary 
number of vertices, rather than 
exactly two.

The task of hypergraph partitioning is to find a way to split the 
vertices of a hypergraph into k approximately equal parts, such 
that the number of hyperedges connecting vertices in different 
parts is minimized.
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HypergraphHypergraph Partitioning => dtreesPartitioning => dtrees

A AB

CDBC

A AB CDBC

A AB CDBC

For DAG:

A. Darwiche

A

CB

ED

F

HG

DFDF

AC ACE

EFH A AF

AB ABD

DFG

CC
EE

HH

AA
GG

BB

dtreesdtrees to Elimination Ordersto Elimination Orders
C H E B A G DF
G C H E B A DF
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Graphical ModelsGraphical Models

Elimination Order Jointree/Elm trees

Dtree

W Width preserving transformations

Variable Elimination Factor Elimination

Recursive Conditioning

A. Darwiche

SummarySummary
• Inference by variable elimination:

Elimination orders
• Inference by factor elimination:

Elimination trees / tree decompositions / 
cluster trees / jointrees

• Inference by recursive conditioning:
Decomposition trees (dtrees)

• Treewidth guarantees shared between 
all methods
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Knowledge CompilationKnowledge Compilation

A. Darwiche

Knowledge CompilationKnowledge Compilation

• Representational factorization: Compact
representation/specification of a function 
(Bayesian network, CNF, CSP, …)

• Computational factorization: A representation
of a function on which (some) inference can 
be performed in polytime

• Knowledge Compilation: Convert a representational 
factorization into a (smallest) computational 
factorization
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KC in Logic: Boolean CircuitsKC in Logic: Boolean Circuits
((NNFsNNFs / AND/ AND--OR Graphs)OR Graphs)

Succinctness

Polytime Operations
Consistency (CO)
Validity (VA)
Clausal entailment (CE)
Sentential entailment (SE)
Implicant testing (IP)
Equivalence testing (EQ)
Model Counting (CT)
Model enumeration (ME)

Projection (existential quantification)
Conditioning
Conjoin, Disjoin, Negate

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or Decomposability
Determinism
Smoothness

Flatness
Decision
Ordering

Negation Normal Form

A. Darwiche

Example from DiagnosisExample from Diagnosis

X YA CB

A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

KB =

Is A, ¬C a normal device behavior?
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A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

Is A, ¬C a normal 
device behavior?

A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

A, ¬C,  ok_X,  ok_Y

Satisfiability Algorithm

Example from DiagnosisExample from Diagnosis

A. Darwiche

FFFFF

……………

……………

……...……

FTTTT

TTTTT

OK_YOK_YOK_XOK_XCCBBAAA & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

A, ¬C,  ok_X,  ok_Y

Satisfiability Algorithm

Is there a satisfying assignment?

Example from DiagnosisExample from Diagnosis
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FFFFF

……………

……………

……...……

FTTTT

TTTTT

OK_YOK_YOK_XOK_XCCBBAAA & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

A, ¬C,  ok_X,  ok_Y

Counting Algorithm

How many satisfying assignments?

Example from DiagnosisExample from Diagnosis

A. Darwiche

A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

Compiled
StructureCompiler

Knowledge CompilationKnowledge Compilation

EvaluatorQueries
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A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C ?Compiler

Knowledge CompilationKnowledge Compilation

EvaluatorQueries

A. Darwiche

A & ok_X => ¬B
¬A & ok_X =>  B

B & ok_Y => ¬C
¬B & ok_Y =>  C

.....
Prime Implicates

OBDD
…

Compiler

Knowledge CompilationKnowledge Compilation

EvaluatorQueries
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Knowledge CompilationKnowledge Compilation

Succinctness

Polytime Operations
Consistency (CO)
Validity (VA)
Clausal entailment (CE)
Sentential entailment (SE)
Implicant testing (IP)
Equivalence testing (EQ)
Model Counting (CT)
Model enumeration (ME)

Projection (existential quantification)
Conditioning
Conjoin, Disjoin, Negate

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or Decomposability
Determinism
Smoothness

Flatness
Decision
Ordering

Negation Normal Form

A. Darwiche

• Diagnosis
– Is this a normal behavior?
– What are the possible faults?

• Planning
– Can this goal be achieved?
– Generate a set of plans

• Probabilistic reasoning
– What is the probability of X given Y

• Non-monotonic reasoning (penalty logics)
– Does X follow preferentially from Y

• Formal verification / CAD:
– Is it possible that the design will exhibit behavior X?
– Are two designs equivalent?

ApplicationsApplications
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Negation Normal Form (NNF)Negation Normal Form (NNF)

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or

rooted DAG

A. Darwiche

Negation Normal FormNegation Normal Form

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or Decomposability
Determinism
Smoothness

Flatness
Decision

Ordering
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¬XX ¬YY ¬ZZ

and

or

and andand

FlatnessFlatness

Nested vs Flat languages

(X∧Y ∧Z)∨(Z∧¬X∧¬Y) ∨(Y∧Z∧¬X) ∨(¬X∧¬Y ∧¬Z)

A. Darwiche

DecomposabilityDecomposability

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or

A,B C,D
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DeterminismDeterminism

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or

A. Darwiche

SmoothnessSmoothness

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or

A,B
A,B
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NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

A. Darwiche

¬A B ¬ B A C ¬ D D ¬ C

and and and and and and and and

or or or or

and and

or

Given A, ¬ B

0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

1 2 0 1

2 0
2

CountingCounting
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¬XX ¬YY ¬ZZ

and

or

and andand

Simple ConjunctionSimple Conjunction

Implies decomposability

A. Darwiche

¬XX Y Z

or

and

oror

Simple DisjunctionSimple Disjunction
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NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

CNFDNF

A. Darwiche

NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

CNFDNF

IP PI
CO, CE, ME, VA, IP, SE, EQVA, IP, SE, EQ
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or

and and

X1 ¬ X1
or or

and and andand

X2 X2¬ X2 ¬ X2

and and andand

X3 X3¬ X3 ¬ X3

or or

true false

DecisionDecision

A. Darwiche

or

and and

X1 ¬ X1
or or

and and andand

X2 X2¬ X2 ¬ X2

and and andand

X3 X3¬ X3 ¬ X3

or or

true false

DecisionDecision

Decision implies determinism
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NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

CNFDNF

IP PI
CO, CE, ME, VA, IP, SE, EQVA, IP, SE, EQ

BDD

A. Darwiche

X ¬Xα β

and

or

and

α β

X

Decision NodesDecision Nodes
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(X2 ∧ X3) ∨ (X1 ∧ ¬X2 ∧ ¬ X3)

X1

X2 X2

X3X3

1 0

Binary Decision DiagramBinary Decision Diagram
or

and and
X1 ¬ X1

or or

and and andand

X2 X2¬ X2 ¬ X2

and and andand
X3 X3¬ X3 ¬ X3

or or

true false

A. Darwiche

NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

CNFDNF

IP PI
CO, CE, ME, VA, IP, SE, EQVA, IP, SE, EQ

BDD

FBDD EQ?
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X1

X2 X2

X3X3

1 0

Free Binary Decision DiagramFree Binary Decision Diagram

Test-once property

A. Darwiche

or

and and

X1 ¬ X1
or or

and and andand

X2 X2¬ X2 ¬ X2

and and andand

X3 X3¬ X3 ¬ X3

or or

true false

In the context of decision: Test-once = decomposability
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or

and and

X1 ¬ X1
or or

and and andand

X2 X2¬ X2 ¬ X2

and and andand

X3 X3¬ X3 ¬ X3

or or

true false

OrderingOrdering

A. Darwiche

or

and and

X1 ¬ X1
or or

and and andand

X2 X2¬ X2 ¬ X2

and and andand

X3 X3¬ X3 ¬ X3

or or

true false

OrderingOrdering
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NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

CNFDNF

IP PI
CO, CE, ME, VA, IP, SE, EQVA, IP, SE, EQ

BDD

FBDD EQ?

OBDD
SE, EQ

A. Darwiche

NNF

d-NNF s-NNF f-NNF

NNF SubsetsNNF Subsets

sd-DNNF

DNNF
CO, CE, ME

d-DNNF
VA, IP, CT

EQ?

CNFDNF

IP PI
CO, CE, ME, VA, IP, SE, EQVA, IP, SE, EQ

BDD

FBDD EQ?

OBDD
SE, EQ

MODS
SE, EQ
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Language SuccinctnessLanguage Succinctness

Size nSize p(n)

L1    <=   L2L1    <=   L2
L1 at least as succinct as L2

L1    <    L2L1    <    L2
L1 is more succinct than L2

A. Darwiche

NNF

DNNF
CNF

d-DNNF
DNF

PIFBDD

OBDD
IP

MODS

sd-DNNF

PI <= DNNF
DNNF <=? PI

DNF <= OBDD
OBDD <= DNF

=
*
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OBDD

FBDD

d-DNNF

DNNF

Space Efficiency

Tractable Operations
NNF

decomposability

determinism

decision

ordering

Tractability Tractability vsvs SuccinctnessSuccinctness

Diagnosis,
Non-mon

Probabilistic
reasoning

A. Darwiche

Propositional TransformationsPropositional Transformations

• Project (Forget)
• Condition
• Conjoin
• Disjoin
• Negate
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ProjectionProjection

A & ok(X) => ¬B
¬A & ok(X) =>  B

X YA CB

A & ok(X) => ¬B
¬A & ok(X) =>  B

B & ok(Y) => ¬C
¬B & ok(Y) =>  C

KB =

A. Darwiche

ProjectionProjection
or

and and

or or or or

A C¬A ¬C

¬okX ¬okY

B ¬B

X YA CB
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ProjectionProjection
or

and and

or or or or

A¬A true

¬okX

B ¬B

true

true

X YA CB A & ok(X) => ¬B
¬A & ok(X) =>  B

A. Darwiche

NNF

DNNF
CNF

d-DNNF
DNF

PIFBDD

OBDD
IP

MODS

sd-DNNF

PolytimePolytime TransformationsTransformations

FO

FO

FO

FO

=



77

A. Darwiche

NNF

DNNF
CNF

d-DNNF
DNF

PIFBDD

OBDD
IP

MODS

sd-DNNF

PolytimePolytime TransformationsTransformations

SFO

FO

FO

FO

FO

SFO

SFO

A. Darwiche

PolytimePolytime TransformationsTransformations
• Closure under conjunction: none!

Bounded conjunction: OBDD, DNF, IP, MODs

• Closure under disjunction: DNF, DNNF
Bounded disjunction: OBBD, PI

• Closure under negation: FBDD, OBDD

• Conditioning: all!
• Forgetting multiple variables: DNNF, DNF, PI, MODS

• Forgetting single variable: OBDD
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A Knowledge Compiler:A Knowledge Compiler:
DPLL with a TraceDPLL with a Trace

SAT

X=t X=f

SAT SATor

DPLL with fixed order and caching      OBDD compiler
DPLL with caching                                  FBDD compiler

or

comp( ∆  |X)

and

X comp( ∆  |~X)

and

~X

A. Darwiche

A Knowledge Compiler:A Knowledge Compiler:
DPLL with a TraceDPLL with a Trace

SAT

X=t X=f

SAT SATor

DPLL with fixed order and caching      OBDD compiler
DPLL with caching                                  FBDD compiler
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X=f        X=f

A Knowledge Compiler:A Knowledge Compiler:
DPLL with a TraceDPLL with a Trace

SAT

SAT SATor

DPLL with fixed order and caching      OBDD compiler
DPLL with caching                                  FBDD compiler
DPLL with caching and decomposition d-DNNF compiler*

X=t        X=t

?                                                              DNNF compiler

com( ∆  
l

|X) com( ∆  
r

|X)

and

or

X

com( ∆  
l

|~X) com( ∆  
r

|~X)

and

~X

A. Darwiche

Knowledge Compilation in Probability:Knowledge Compilation in Probability:
Arithmetic CircuitsArithmetic Circuits

**

* *

λ~b λ~aλbλa

+

+ +
* * * *

θa θab θa~b θ~ab θ~a~b θ~a

ADD (Algebraic Decision Diagrams) 
*BMD (Binary Moment Diagrams) 
PDGs (Probabilistic Decision Graphs)…
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ConclusionConclusion
• Knowledge compilation converts a 

representational factorization into a
computational factorization:
– Target language (succinctness, tractability)

• Knowledge compilers can be constructed by
keeping the trace of various search algorithms

• Another view of knowledge compilation is
based on deductive closure

A. Darwiche

Knowledge Compilation as Knowledge Compilation as 
Deductive Closure: Two ExamplesDeductive Closure: Two Examples

1. Eliminate all variables X1,…, Xn , while
keeping all intermediate CNFs

– The intermediate CNFs represent projections
of initial CNF on subsets X2,…, Xn,  X3,…, Xn, 
Xn-1Xn ,  Xn

– The result can be used to answer some hard 
queries in polytime

2. Add enough clauses to make CNF complete
under unit resolution
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Road Map: 

Search in Variable-Based Models

� Variable-based (Graphical) models
� Basic search and basic Inference 
� Constraint propagation: bounded inference
� Improving search by branching ahead

� Improving search by looking-back
� The alternative AND/OR search space
� Hybrid search and inference

August 2005 Ijcai-05 - Principles 2

Solution TechniquesSolution TechniquesSolution TechniquesSolution Techniques

Search: Conditioning

Inference: Elimination

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency

Tree Clustering
Dynamic Programming

Resolution

Local Consistency

Unit Resolution
mini-bucket(i)

Time: exp(w*)
Space:exp(w*)

Time: exp(n)
Space: linear

Hybrids:
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Solution TechniquesSolution TechniquesSolution TechniquesSolution Techniques

Search: Conditioning

Inference: Elimination
AND/OR Graph search

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency

Tree Clustering
Dynamic Programming

Resolution

Local Consistency

Unit Resolution
mini-bucket(i)

Time: exp(w*)
Space:exp(w*)

AND/OR tree search
Time: exp(w* log n)
Space: linear

Hybrids:

Time: exp(w*)
Space:exp(w*)
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Solution TechniquesSolution TechniquesSolution TechniquesSolution Techniques

Search: Conditioning

Inference: Elimination
AND/OR Graph search

Complete

Incomplete

Simulated Annealing

Gradient Descent

Complete

Incomplete

Adaptive Consistency

Tree Clustering
Dynamic Programming

Resolution

Local Consistency

Unit Resolution
mini-bucket(i)

Time: exp(w*)
Space:exp(w*)

AND/OR tree search
Time: exp(w* log n)
Space: linear

Hybrids:
AND-OR(i)

Space: exp(i)
Time: exp(m_i)
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Search Basic Step: Variable 

Branching by Conditioning

X1

X3

X5X4

X2

August 2005 Ijcai-05 - Principles 6

Search Basic Step: Variable 

Branching by conditioning

X1

X3

X5X4

X2
•Select a variable
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Search Basic Step: Variable 

Branching by Conditioning

X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1 ←←←← a
X1 ←←←← b

X1 ←←←← c
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Search Basic Step: Variable 

Branching by Conditioning

X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1 ←←←← a
X1 ←←←← b

X1 ←←←← c

General principle:
Condition until tractable
Then solve sub-problems
efficiently
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Search Basic Step: Variable 

Branching by Conditioning

X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1 ←←←← a
X1 ←←←← b

X1 ←←←← c

Example: solve subproblem
By  inference, BE(w=2).
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Eliminate First
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Eliminate First

August 2005 Ijcai-05 - Principles 12

Eliminate First

Solve the rest of the problem
By any means
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Two Hybrids

� Condition, condition, condition… and 
then only eliminate (i-cutset, cycle-
cutset)

� Interleave conditioning and 
elimination(elim-cond(i))

August 2005 Ijcai-05 - Principles 14

The  Cycle-Cutset Scheme: 

Condition Until Treeness

•Cycle-cutset
•i-cutset
•C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))
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AND/OR i-cutset

A

C

B K

G L

D F

H

M

J

E

AC

B K

G

L

D

F
H

M

J

E

A

C

B K

G L

D F

H

M

J

E

C

B K

G

L

D

F
H

M

J

E

3-cutset

A

C

B K

G L

D F

H

M

J

E

C

K

G

L

D

F
H

M

J

E

2-cutset

A

C

B K

G L

D F

H

M

J

E

L

D

F
H

M

J

E

1-cutset
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Time-Space Complexity

� Space: O(exp(i))
• i-cutset: a set that when removed the induced-

width is i. 
• c(i): size of i-cutset. 
• m(i): depth of AO i-cutset

� Time: O(exp(i+c(i))) on OR space
� Time: O(exp(i+m(i))) on AND/OR space and

m(i) <= c(i)
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Time-Space complexity

� Space: O(exp(i))
• i-cutset: a set that when removed the induced-

width is i. 
• c(i): size of i-cutset. 
• m(i): depth of AO i-cutset

� Time: O(exp(i+c(i))) on OR space
� Time: O(exp(i+m(i))) on AND/OR space and

m(i) <= c(i)

,)()(*
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Interleaving Cond and Elim
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Interleaving Cond and Elim
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Interleaving Cond and Elim
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Interleaving Cond and Elim
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Interleaving Cond and Elim
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Interleaving Cond and Elim

August 2005 Ijcai-05 - Principles 24

Interleaving Cond and Elim

...

...
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Time-space Tradeoffs

� AO(i): dfs searche of AO, caches i-context 
• i = max number of variables in a context

� AO i-cutset
� Elimination-conditioning( i)

i=0 i=w*

Space: O(n) 

Time: O(exp(w* log n))

Space: O(exp w*) 

Time: O(exp w*)
Space: O(exp(i) )

Time: O(exp(m(i)+i )

m(i) - AO depth of w-cutset

i
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Super-Bucket Elimination, SBE(k)

� Eliminate sets of variables such that:
• individual eliminations are too costly in space

(namely, each variable in the set has degree
larger than k)

• the join degree is lower than k
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SBE(2): example

.

.

.

.

.

.

x1

x2

x3

x4

x5

x6

x7
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SBE(2): example

.

.

.

.

.

.

x1

x2

x3

x4

x5

x6

x7

dg1=5

dg2=5

dg3=6

dg4=5

dg5=5
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SBE(2): example

.

.

.

.

.

.

x1

x2

x3

x4

x5

x6

x7

S
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SBE(2): example

.

.

.

.

.

.

x1

x2

x3

x4

x5

x6

x7

S

Ns

|Ns|=2
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SBE(2): example

.

.

.

.

.

.

x1

x2

x3

x4

x5

x6

x7

Super bucket: set of functions mentioning variables
in the set S

)(
sup

5,4,3,2,1 ∑
−∈ bucketerf

felim
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SBE(2): example

.

.

.

.

.

.

x6

x7
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Super-buckets and Super-Clusters

Larger super-buckets (cliques) =>more time but less space

Complexity:
1. Time: exponential in clique (super-bucket) size
2. Space: exponential in separator size

August 2005 Ijcai-05 - Principles 34

SBE(i)

� Complexity:
• space : O(exp( i))

• time : O(exp( wi*))

i-augmented induced width

Separator-width
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Time vs Space for w-cutset

• Random Graphs (50 nodes, 200 edges, average degree 8, w*≈≈≈≈23)

Branch and bound

Bucket 
elimination
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Time vs Space in SBE
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• Random Graphs (50 nodes, 200 edges, average degree 8, w*≈≈≈≈23)

Branch and bound

Bucket 
elimination
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Time-space Tradeoffs

� AO(i): dfs searche of AO, caches i-context 
• i = max number of variables in a context

� AO i-cutset
� Elimination-conditioning( i)

i=0 i=w*

Space: O(n) 

Time: O(exp(w* log n))

Space: O(exp w*) 

Time: O(exp w*)
Space: O(exp(i) )

Time: O(exp(m(i)+i )

m(i) - AO depth of w-cutset

i
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Time-space Tradeoffs

� AO(i): dfs searche of AO, caches i-context 
• i = max number of variables in a context

� AO i-cutset
� Elimination-conditioning( i)
� AO*(i) avoiding dead-end caches = SBE( i)
� i controls space

i=0 i=w*

Space: O(n) 

Time: O(exp(w* log n))

Space: O(exp w*) 

Time: O(exp w*)
Space: O(exp(i) )

Time: O(exp(m(i)+i )

m(i) - AO depth of w-cutset

i
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Hybrids in State Models

� Search = Best-first or Depth-first
� Inference = estimating v(n) for each node 

through h(n)
� Inference = search from goal to start in a 

relaxed model
� Reinforcement learning = improving heuristic 

during search 

� Transposition tables = caching goods.

August 2005 Ijcai-05 - Principles 40

Some Connections

Inference, Search and Compilation

� Minimal OR space = OBDD

� Minimal AND/OR space = Tree-OBDD
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Wrap-Up

� Models: State-models, graphical models
• Graphical models are more informed 

• Tasks: satisfaction, optimization, counting/belief

� Algorithms: Inference, Search, Hybrids
� Inference  requires space
� Search can trade space for time, naturally
� State-of-the art: anytime hybrid methods that 

trade space and time

August 2005 Ijcai-05 - Principles 42

Wrap-Up (continue)

� Algorithmic principles:
• DFS vs BFS or inference
• Constraint propagation, bounded inference, 

learning heuristics from relaxed models
• Backjumping, AND/OR search space
• no-good-caching, good-caching
• Good-caching and transposition tables
• Reinforcement learning = learning goods 

and no-goods during search while searching


