Advances in Combinatorial Optimization for Graphical Models

Rina Dechter

University of California, Irvine

Radu Marinescu

IBM Research - Ireland

Alexander Ihler

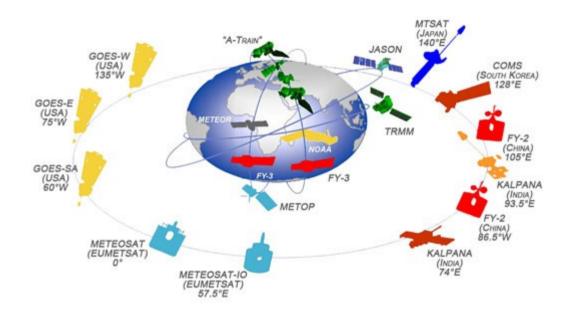
University of California, Irvine

Lars Otten

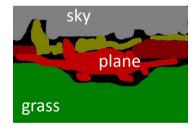
University of California, Irvine (now Google Inc.)

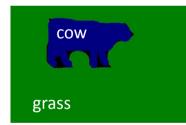
Combinatorial Optimization

Planning & Scheduling



Computer Vision



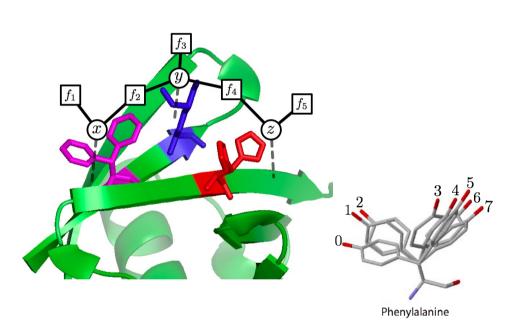


Find an optimal schedule for the satellite that maximizes the number of photographs taken, subject to on-board recording capacity Image classification: label pixels in an image by their associated object class

[He et al. 2004; Winn et al. 2005]

Combinatorial Optimization

Protein folding



Find the most likely (minimum energy) configuration of the amino acids in a protein

[Yanover & Weiss 2002]

Bioinformatics

Find a joint haplotype configuration for all members of the pedigree which maximizes the probability of data

[Lauritzen & Sheehan 2003]

Outline

Introduction

- Graphical models
- Optimization tasks for graphical models

Inference

Variable elimination, bucket elimination

Bounds and heuristics

- Basics of search
- Bounded variable elimination and iterative cost shifting

AND/OR search

- AND/OR search spaces
- Depth-first branch and bound, best-first search

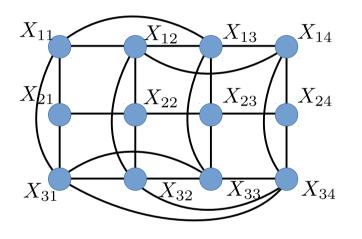
Exploiting parallelism

- Distributed and parallel search

Software

Constrained Optimization

Power plant scheduling



Unit #	Min Up Time	Min Down Time
1	3	2
2	2	1
3	4	1

Variables: X_1, X_2, \dots, X_n Domains: ON, OFF

Constraints: $X_1 \vee X_2$, $\neg X_3 \vee X_4$, min-uptime, min-downtime

Power demand: Power(X_i) \geq Demand

Objective: minimize TotalFuelConsumption (X_1, \ldots, X_n)

Constraint Optimization Problems

A *finite COP* is a triple $R = \langle X, D, F \rangle$ where:

$$X = \{x_1, \dots, x_n\}$$
 -- variables $D = \{D_1, \dots, D_n\}$ -- domains $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$ -- cost functions

Global Cost Function

$$F(X) = \sum_{\alpha} f_{\alpha}(x_{\alpha})$$

Primal graph:

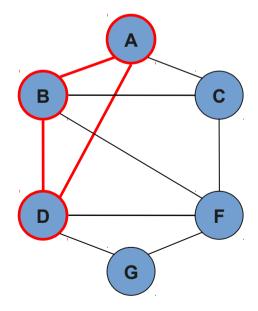
Variables - nodes

Functions - arcs / cliques

$$F(a, b, c, d, f, g) = f_1(a, b, d) + f_2(d, f, g) + f_3(b, c, f) + f_4(a, c)$$

f(A,B,D) has scope $\{A,B,D\}$

A	В	D	Cost
1	1	1	3
1	1	2	2
1	2	1	8
1	2	2	1
2	1	1	0
2	1	2	8
2 2	2	1	5
2	2	2	0



Constraint Networks

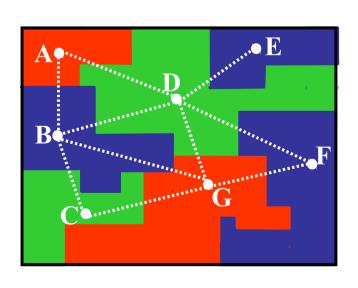
Map coloring

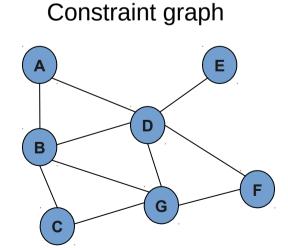
Variables: countries (A, B, C, etc.)

Values: colors (red, green, blue)

Constraints: $A \neq B$, $B \neq D$, $A \neq D$, etc.

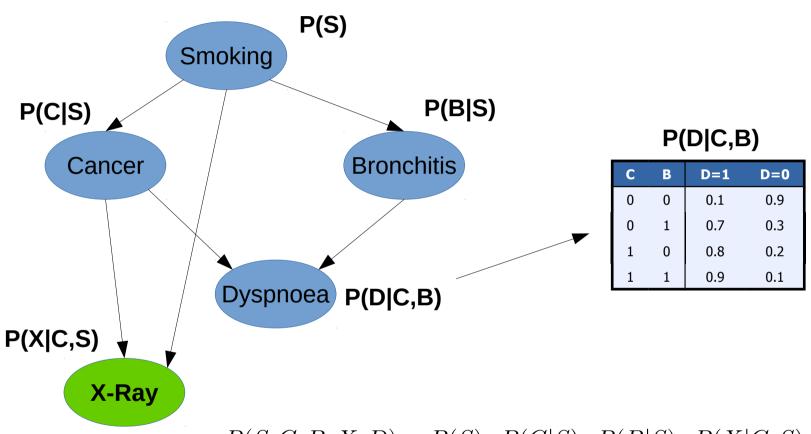
A B
red green
red blue
green red
green blue
blue red
blue green





IJCAI 2015

Probabilistic Networks



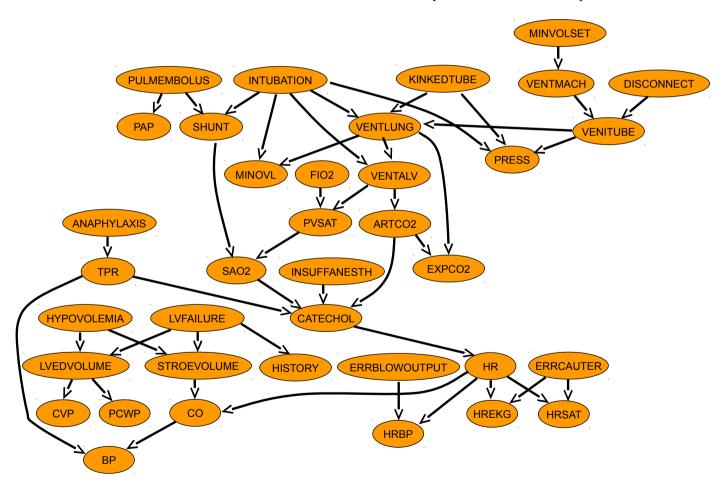
 $P(S, C, B, X, D) = P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C, S) \cdot P(D|C, B)$

MPE: Find a maximum probability assignment, given evidence

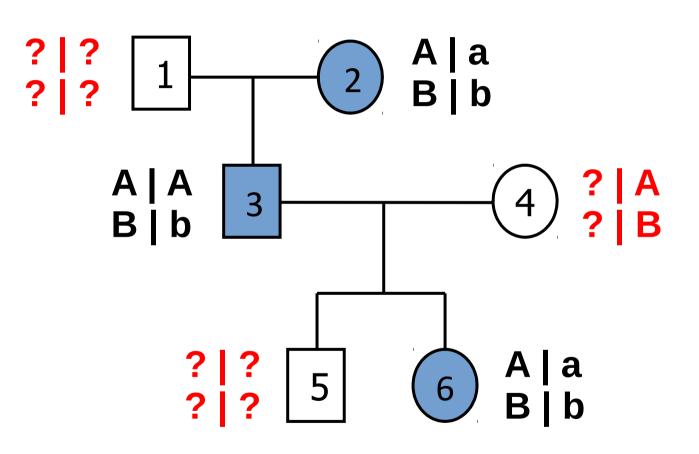
= Find $\arg \max P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)$

Monitoring Intensive-Care Patients

The "alarm" network – 37 variables, 509 parameters (instead of 2^{37})

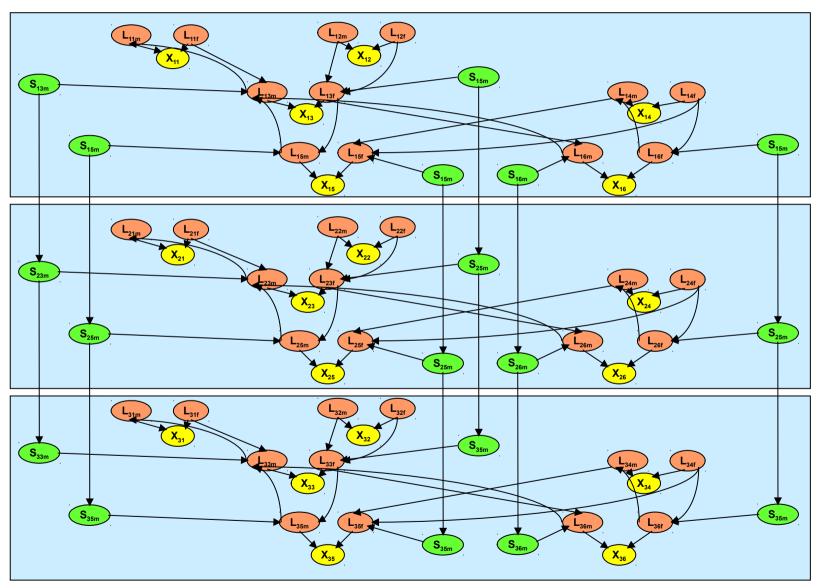


Genetic Linkage Analysis



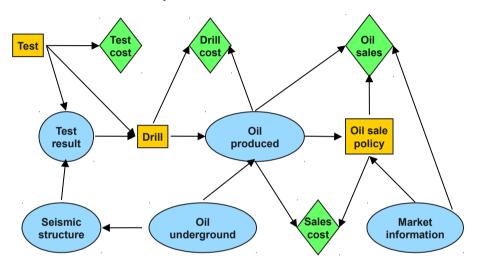
- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

Pedigree: 6 people, 3 markers



Influence Diagrams

The "oil wildcatter" problem:



Task: find optimal policy

$$E = \max_{\Delta = (\delta_1, \dots, \delta_m)} \sum_{x = (x_1, \dots, x_n)} \prod_i P_i(x) u(x)$$

Chance variables: $X = x_1, \dots, x_n$

Decision variables: $D = d_1, \dots d_m$

CPDs for chance variables: $P_i = P(x_i|x_{pa_i}), i = 1,...,n$

Reward components: $r = \{r_1, \dots, r_j\}$

Utility function: $u(X) = \sum_{i} r_i(X)$

Example Domains for Graphical Models

- Natural Language Processing
 - Information extraction, semantic parsing, translation, summarization, ...
- Computer Vision
 - Object recognition, scene analysis, segmentation, tracking, ...
- Computational Biology
 - Pedigree analysis, protein folding / binding / design, sequence matching, ...
- Networks
 - Webpage link analysis, social networks, communications, citations, ...
- Robotics
 - Planning & decision making, ...
- •

Graphical Models

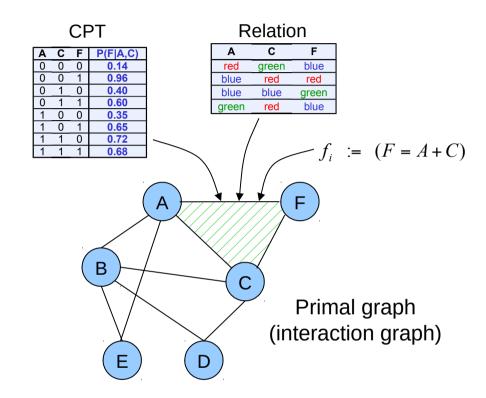
• A graphical model (X, D, F):

$$-X = \{x_1, \dots, x_n\}$$
 variables

-
$$D = \{D_1, \dots, D_n\}$$
 domains

-
$$F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$$
 functions

- (constraints, CPTs, CNFs, ...)
- Operators
 - Combination
 - Elimination (projection)
- Tasks
 - Belief updating: $\sum_{X\setminus Y}\prod_j P_j$
 - MPE/MAP: $\max_X \prod_i P_j$
 - Marginal MAP: $\max_{Y} \sum_{X \setminus Y} \prod_{j} P_{j}$
 - CSP: $\prod_{i} C_{j}(x)$
 - WCSP: $\min_{X} \sum_{j} f_{j}$
 - **MEU**: $\max_{\Delta} \sum_{x} P(x)u(x)$



- All these tasks are NP-hard
 - Exploit problem structure
 - Identify special cases
 - Approximate

Combinatorial Optimization Tasks

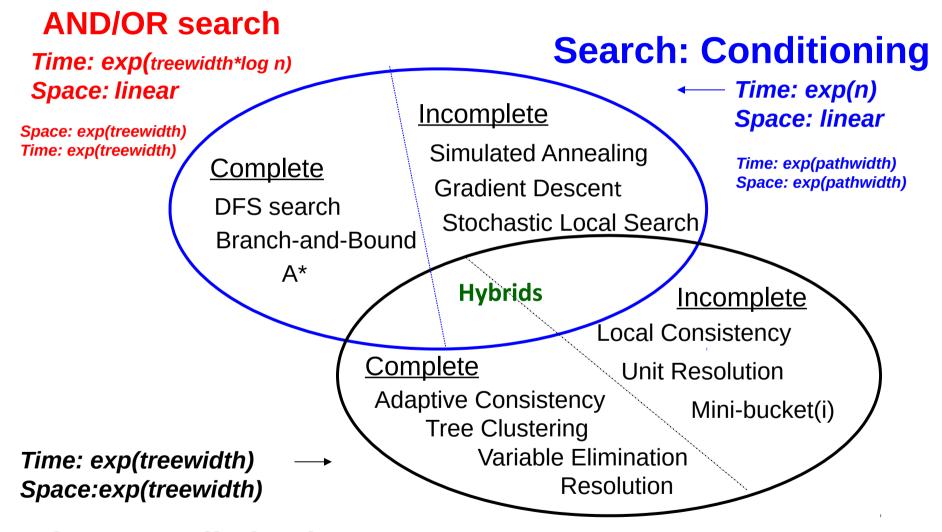
- Most Probable Explanation (MPE), or Maximum A Posteriori (MAP)
- M Best MPE/MAP
- Marginal MAP (MMAP)
- Weighted CSPs (WCSP), Max-CSPs, Max-SAT
- Integer Linear Programs
- Maximum Expected Utility (MEU)

Outline

Introduction

- Graphical models
- Optimization tasks for graphical models
- Solving optimization problems by inference and search
- Inference
- Bounds and heuristics
- AND/OR search
- Exploiting parallelism
- Software

Solution Techniques



Inference: Elimination

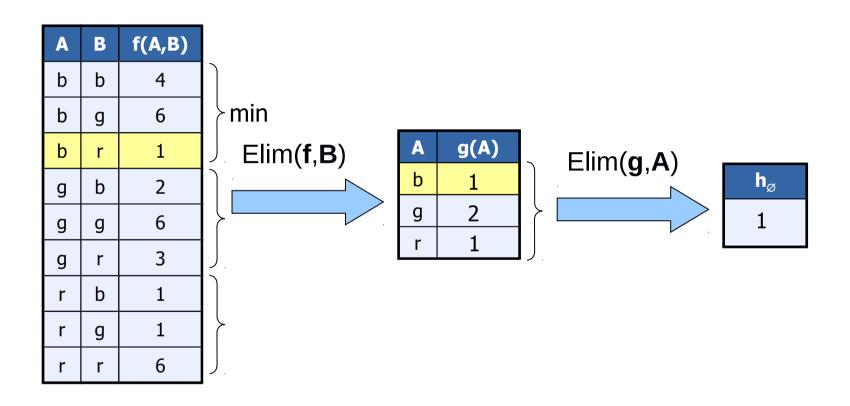
Combination of Cost Functions

A	В	f(A,B)
b	b	6
b	g	0
g	b	0
g	g	6

A	В	С	f(A,B,C)
b	b	b	12
b	b	g	6
b	g	b	0
b	g	g	6
g	b	b	6
g	b	g	0
g	g	b	6
g	g	g	12

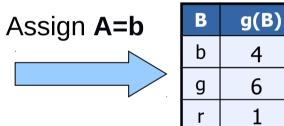
В	С	f(B,C)
b	b	6
b	g	0
g	b	0
g	g	6

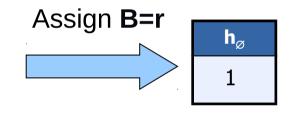
Elimination in a Cost Function



Conditioning in a Cost Function

A	В	f(A,B)
b	b	4
b	g	6
b	r	1
g	b	2
g	g	6
g	r	3
r	b	1
r	g	1
r	r	6

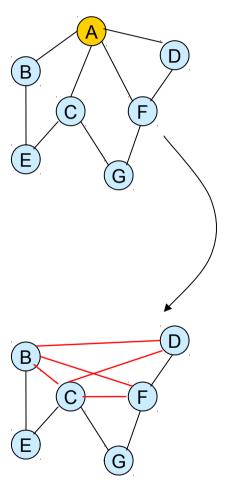




Conditioning vs. Elimination

Conditioning (search) В A=kA=1В k "sparser" problems

Elimination (inference)

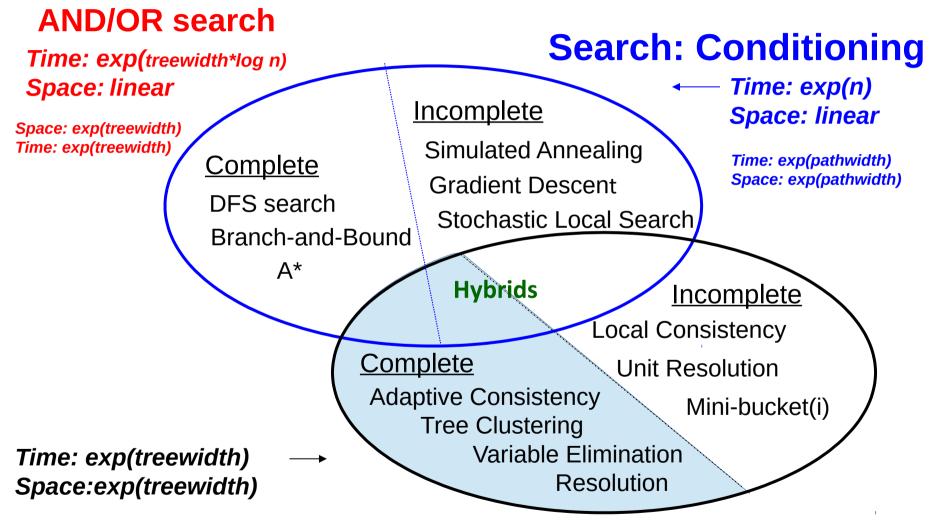


1 "denser" problem

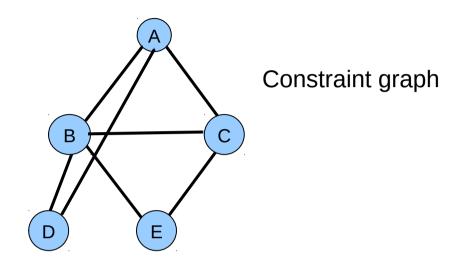
Outline

- Introduction
- Inference
 - Variable Elimination, Bucket Elimination
- Bounds and heuristics
- AND/OR Search
- Exploiting parallelism
- Software

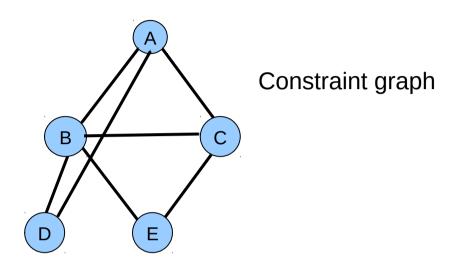
Solution Techniques



Inference: Elimination

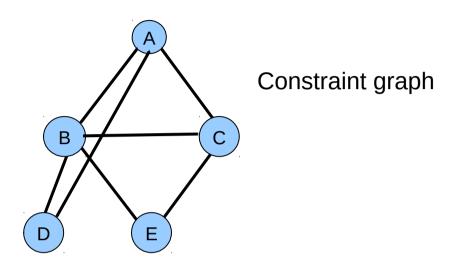


$$\mathbf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,\frac{b}{b}) + f(a,c) + f(a,d) + f(\frac{b}{b},c) + f(\frac{b}{b},d) + f(\frac{b}{b},e) + f(c,e)$$



$$\mathbf{OPT} = \min_{a,e,d,c,b} f(a) + \underbrace{f(a,b)}_{a,e,d,c,b} + f(a,c) + f(a,d) + \underbrace{f(b,c)}_{a,e,d,c,b} + f(b,d) + f(b,$$

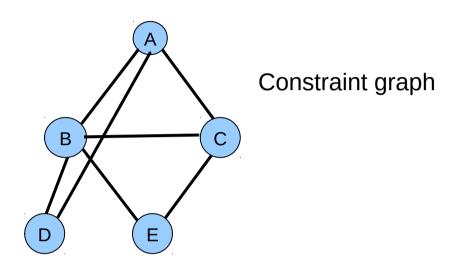
$$\min_{\mathbf{b}} f(a, \mathbf{b}) + f(\mathbf{b}, c) + f(\mathbf{b}, d) + f(\mathbf{b}, e)$$



$$\mathbf{OPT} = \min_{a,e,d,c,b} f(a) + \underline{f(a,b)} + f(a,c) + f(a,d) + \underline{f(b,c)} + f(b,d) + f(b,e) + f(c,e)$$

$$\mathbf{Combination}$$

$$\lambda_B(a,d,c,e)$$



OPT =
$$\min_{a,e,d,c,b} f(a) + \underbrace{f(a,b)}_{} + f(a,c) + f(a,d) + \underbrace{f(b,c)}_{} + f(b,d) + f(b,e) + f(c,e)$$

Combination

$$\min_{a} f(a) + \min_{e,d} f(a,d) + \min_{c} f(a,c) + f(c,e) + \min_{b} f(a,b) + f(b,c) + f(b,d) + f(b,e)$$

 $\lambda_B(a,d,c,e)$

Variable Elimination

Algorithm **elim-opt** [Dechter, 1996]

Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

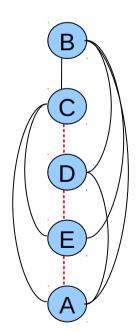
$$\min_b \sum$$
 — Elimination/Combination operators

bucket B: f(a,b) f(b,c) f(b,d) f(b,e)

bucket C: f(c, a) f(c, e)

bucket D: f(a, d)

bucket E:



Algorithm elim-opt [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\min_b \sum$$
 — Elimination/Combination operators

bucket B: f(a,b) $\underbrace{f(b,c)}_{f(b,d)} \underbrace{f(b,d)}_{f(b,e)}$ bucket C: f(c,a) $\underbrace{f(c,e)}_{\lambda_{B\to C}} \underbrace{\lambda_{B\to C}(a,d,c,e)}$

bucket D: f(a,d)

bucket E:



Algorithm elim-opt [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

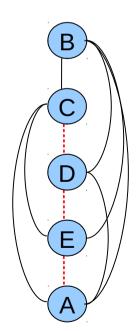
$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\min_{b} \sum$$
 — Elimination/Combination operators

bucket B: f(a,b) f(b,c) f(b,d) f(b,e) bucket C: f(c,a) f(c,e) $\lambda_{B\to C}(a,d,c,e)$

bucket D: f(a,d) $\lambda_{C\to D}(a,d,e)$

bucket E:



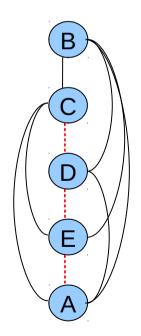
Algorithm elim-opt [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\min_b \sum$$
 — Elimination/Combination operators

bucket B: f(a,b) $\underline{f(b,c)}$ f(b,d) f(b,e)bucket C: f(c,a) $\underline{f(c,e)}$ $\lambda_{B\to C}(a,d,c,e)$

bucket D: f(a,d) $\lambda_{C \to D}(a,d,e)$ bucket E: $\lambda_{D \to E}(a,e)$



Algorithm elim-opt [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\min_b \sum$$
 — Elimination/Combination operators

bucket B:
$$f(a,b)$$
 $f(b,c)$ $f(b,d)$ $f(b,e)$

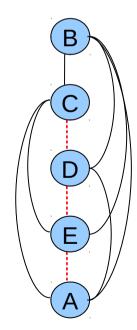
bucket B:
$$f(a,b)$$
 $f(b,c)$ $f(b,d)$ $f(b,e)$
bucket C: $f(c,a)$ $f(c,e)$ $\lambda_{B\to C}(a,d,c,e)$

bucket D:
$$f(a,d)$$
 $\lambda_{C\to D}(a,d,e)$

bucket B:
$$\int (a,a) \rightarrow \lambda_{C \to D}(a,a,c)$$

bucket E: $\lambda_{D \to E}(a,e)$
bucket A: $f(a) \rightarrow \lambda_{E \to A}(a)$

bucket A:
$$f(a)$$
 $\lambda_{E\to A}(a)$



Algorithm elim-opt [Dechter, 1996] Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\min_b \sum$$
 — Elimination/Combination operators

bucket B: f(a,b) $\underline{f(b,c)}$ f(b,d) f(b,e)

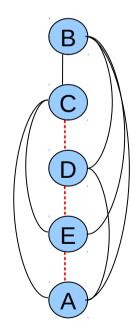
bucket C: f(c,a) f(c,e) $\lambda_{B\to C}(a,d,c,e)$

OPT

bucket D: f(a,d) $\lambda_{C\to D}(a,d,e)$

bucket A: f(a) $\lambda_{E \to A}(a)$

IJCAI 2015



Generating the Optimal Assignment

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$
C: $f(c,a) \ f(c,e) \ \lambda_{B\to C}(a,d,c,e)$
D: $f(a,d) \ \lambda_{C\to D}(a,d,e)$
E: $\lambda_{D\to E}(a,e)$
A: $f(a) \ \lambda_{E\to A}(a)$

D:
$$f(a,d)$$
 $\lambda_{C\to D}(a,d,e)$

$$oldsymbol{E}: \lambda_{D o E}(a,e)$$

A:
$$f(a)$$
 $\lambda_{E\to A}(a)$

Return:
$$(a^*, b^*, c^*, d^*, e^*)$$

Generating the Optimal Assignment

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$
C: $f(c,a) \ f(c,e) \ \lambda_{B\to C}(a,d,c,e)$
D: $f(a,d) \ \lambda_{C\to D}(a,d,e)$
E: $\lambda_{D\to E}(a,e)$
A: $f(a) \ \lambda_{E\to A}(a)$

D:
$$f(a,d)$$
 $\lambda_{C\to D}(a,d,e)$

$$oldsymbol{E}: \lambda_{D o E}(a,e)$$

A:
$$f(a)$$
 $\lambda_{E\to A}(a)$

$$\mathbf{a}^* = \arg\min_{\mathbf{a}} f(a) + \lambda_{E \to A}(a)$$

Return: $(a^*, b^*, c^*, d^*, e^*)$

Generating the Optimal Assignment

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$
C: $f(c,a) \ f(c,e) \quad \lambda_{B\to C}(a,d,c,e)$
D: $f(a,d) \quad \lambda_{C\to D}(a,d,e)$
E: $\lambda_{D\to E}(a,e)$
A: $f(a) \quad \lambda_{E\to A}(a)$

D:
$$f(a,d) \quad \lambda_{C \to D}(a,d,e)$$

$$oldsymbol{E}: \lambda_{D o E}(a,e)$$

A:
$$f(a)$$
 $\lambda_{E\to A}(a)$

$$\mathbf{e}^* = \arg\min_{\mathbf{e}} \ \lambda_{D \to E}(a^*, e)$$
$$\mathbf{a}^* = \arg\min_{\mathbf{a}} \ f(a) + \lambda_{E \to A}(a)$$

Return: $(a^*, b^*, c^*, d^*, e^*)$

Generating the Optimal Assignment

$$\mathbf{b}^* = \arg\min_{\mathbf{b}} f(a^*, b) + f(b, c^*)$$

$$+ f(b, d^*) + f(b, e^*)$$

$$\mathbf{c}^* = \arg\min_{\mathbf{c}} f(c, a^*) + f(c, e^*)$$

$$+ \lambda_{B \to C}(a^*, d^*, c, e^*)$$

$$\mathbf{d}^* = \arg\min_{\mathbf{d}} f(a^*, d) + \lambda_{C \to D}(a^*, d, e^*)$$

$$\mathbf{e}^* = \arg\min_{\mathbf{e}} \lambda_{D \to E}(a^*, e)$$

$$\mathbf{a}^* = \arg\min_{\mathbf{a}} f(a) + \lambda_{E \to A}(a)$$

B:
$$f(a,b) \ f(b,c) \ f(b,d) \ f(b,e)$$
C: $f(c,a) \ f(c,e) \ \lambda_{B\to C}(a,d,c,e)$
D: $f(a,d) \ \lambda_{C\to D}(a,d,e)$
E: $\lambda_{D\to E}(a,e)$

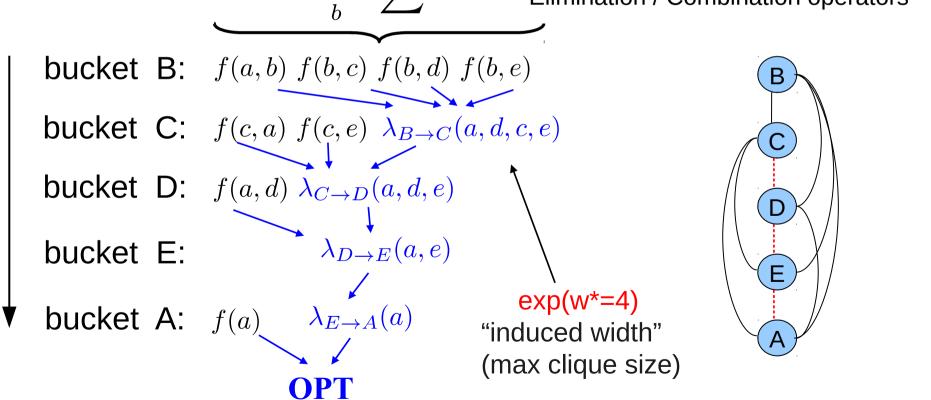
Return: $(a^*, b^*, c^*, d^*, e^*)$

Algorithm **elim-opt** [Dechter, 1996]

Non-serial Dynamic Programming [Bertele & Briochi, 1973]

$$\mathsf{OPT} = \min_{a,e,d,c,b} f(a) + f(a,b) + f(a,c) + f(a,d) + f(b,c) + f(b,d) + f(b,e) + f(c,e)$$

$$\min_{b}$$
 Elimination / Combination operators

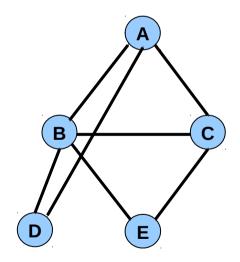


Bucket Elimination is time and space

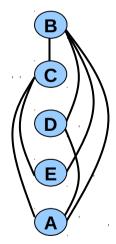
$$O(r \exp(w^*(d)))$$

 $w^*(d)$: the induced width of the primal graph along ordering d

r = number of functions



constraint graph



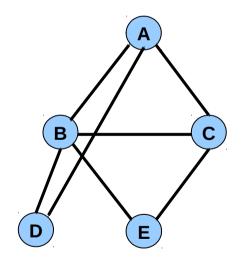
$$w^*(d_1) = 4$$

Bucket Elimination is time and space

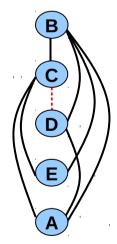
$$O(r \exp(w^*(d)))$$

 $w^*(d)$: the induced width of the primal graph along ordering d

r = number of functions



constraint graph



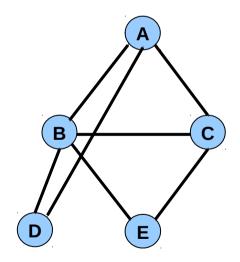
$$w^*(d_1) = 4$$

Bucket Elimination is time and space

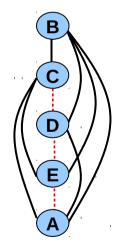
$$O(r \exp(w^*(d)))$$

 $w^*(d)$: the induced width of the primal graph along ordering d

r = number of functions



constraint graph



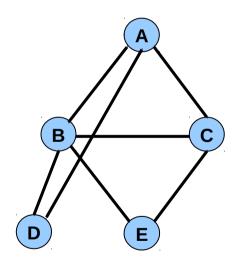
$$w^*(d_1) = 4$$

Bucket Elimination is time and space

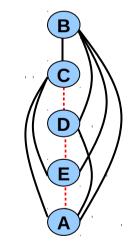
$$O(r \exp(w^*(d)))$$

 $w^*(d)$: the induced width of the primal graph along ordering d

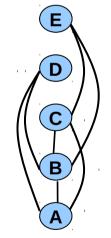
r = number of functions



constraint graph



$$w^*(d_1) = 4$$



$$w^*(d_2) = 2$$

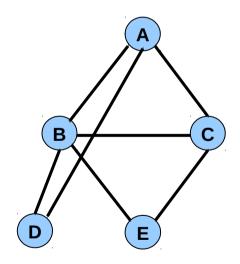
Bucket Elimination is time and space

$$O(r \exp(w^*(d)))$$

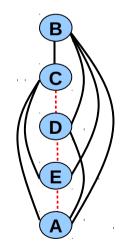
 $w^*(d)$: the induced width of the primal graph along ordering d

r = number of functions

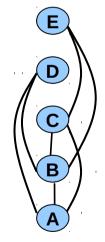
The effect of the ordering:



constraint graph



$$w^*(d_1) = 4$$



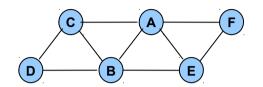
$$w^*(d_1) = 4$$
 $w^*(d_2) = 2$

Finding the smallest induced width is hard!

Outline

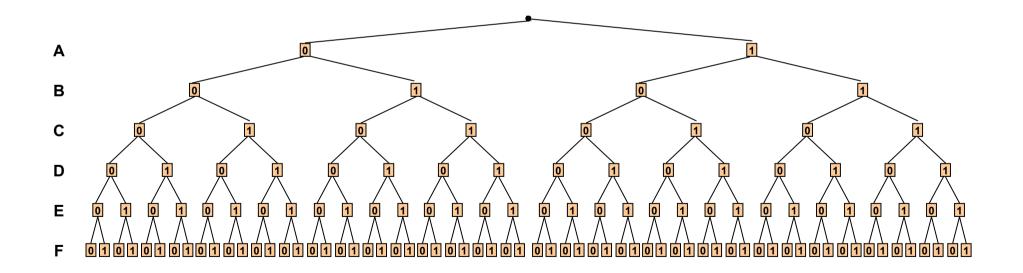
- Introduction
- Inference
- Bounds and heuristics
 - Basics of search: DFS versus BFS
 - Mini-bucket elimination
 - Weighted mini-buckets and iterative cost-shifting
 - Generating heuristics using mini-bucket elimination
- AND/OR search
- Exploiting parallelism
- Software

OR Search Spaces

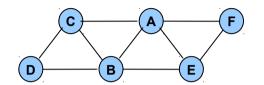


Α	В	f_1	Α	С	f_2	Α	Ε	f_3	Α	F	f_4	В	С	f_5	В	D	f_6	В	Ε	f ₇	С	D	f ₈	Ε	F	f_9
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

Objective function:
$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x_{\alpha})$$

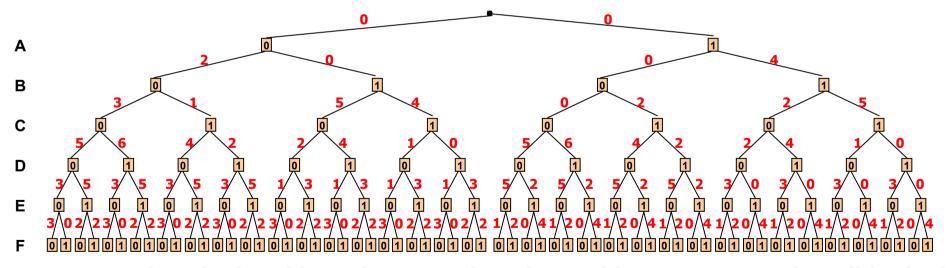


OR Search Spaces



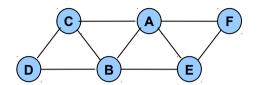
Α	В	f_1	Α	С	f_2	Α	Ε	f_3	Α	F	f_4	В	С	f_5	В	D	f_6	В	Е	f ₇	С	D	f ₈	Е	F	f_9
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

Objective function:
$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x_{\alpha})$$



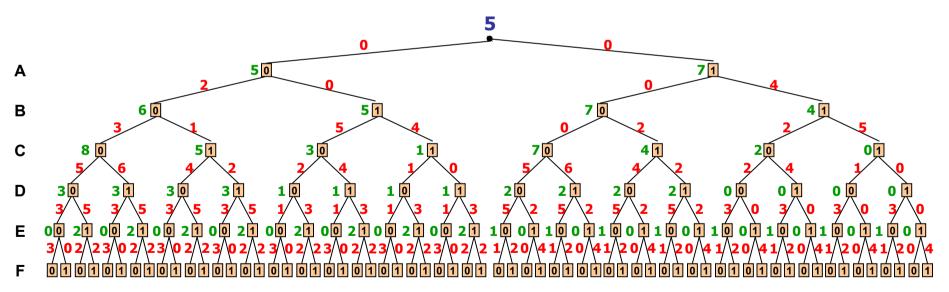
Arc-cost is calculated based on cost functions with empty scope (conditioning)

The Value Function



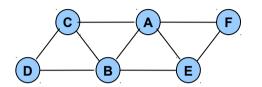
Α	В	f_1		Α	С	f_2	Α	Е	f_3	Α	F	f_4	В	С	f_5	В	D	f_6	В	Е	f_7	С	D	f ₈	Е	F	f_9
0	0	2	Ī	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	Ī	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	Ī	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4		1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

Objective function:
$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x_{\alpha})$$



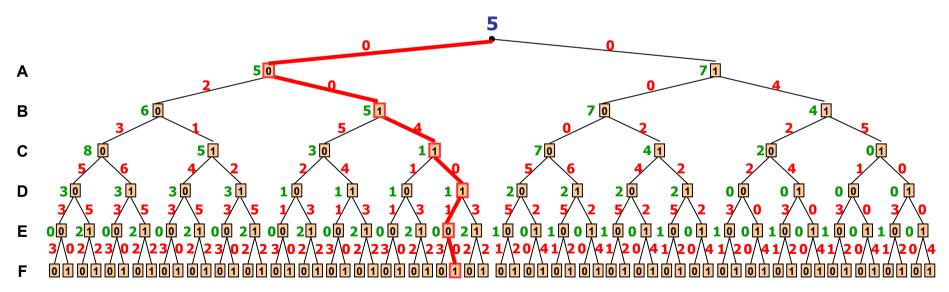
Value of node = minimal cost solution below it

The Optimal Solution



Α	В	f_1	Α	С	f_2	Α	Ε	f_3	Α	F	f_4	В	С	f_5	В	D	f_6	В	Е	f ₇	С	D	f ₈	Е	F	f_9
0	0	2	0	0	3	0	0	0	0	0	2	0	0	0	0	0	4	0	0	3	0	0	1	0	0	1
0	1	0	0	1	0	0	1	3	0	1	0	0	1	1	0	1	2	0	1	2	0	1	4	0	1	0
1	0	1	1	0	0	1	0	2	1	0	0	1	0	2	1	0	1	1	0	1	1	0	0	1	0	0
1	1	4	1	1	1	1	1	0	1	1	2	1	1	4	1	1	0	1	1	0	1	1	0	1	1	2

Objective function:
$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x_{\alpha})$$



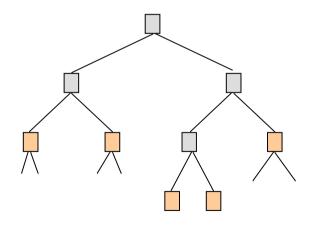
Value of node = minimal cost solution below it

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}(\hat{x}_p)$ computes a lower bound on the best extension of partial configuration \hat{x}_p and can be used to guide heuristic search. We focus on:

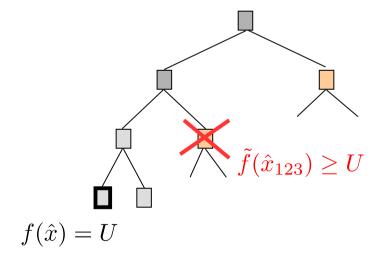
1. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}(\hat{x}_p)$ Needs lots of memory

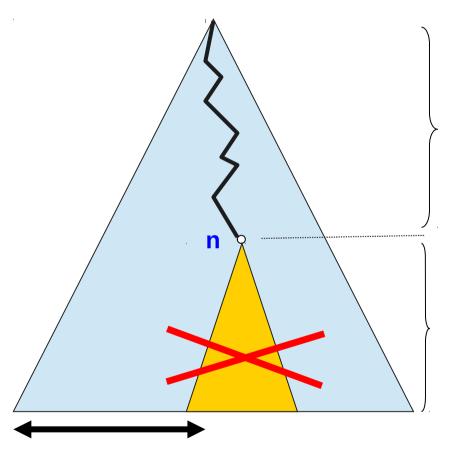


2. Branch-and-Bound

Use heuristic function $f(\hat{x}_p)$ to prune the depth-first search tree Linear space



Classic Depth-First Branch and Bound



(UB) Upper Bound = best solution so far

Each node is a COP subproblem (defined by current conditioning)

g(n): cost of the path from root to n

$$\tilde{f}(n) = g(n) + \tilde{h}(n)$$

(lower bound)

Prune if
$$\tilde{f}(n) \geq UB$$

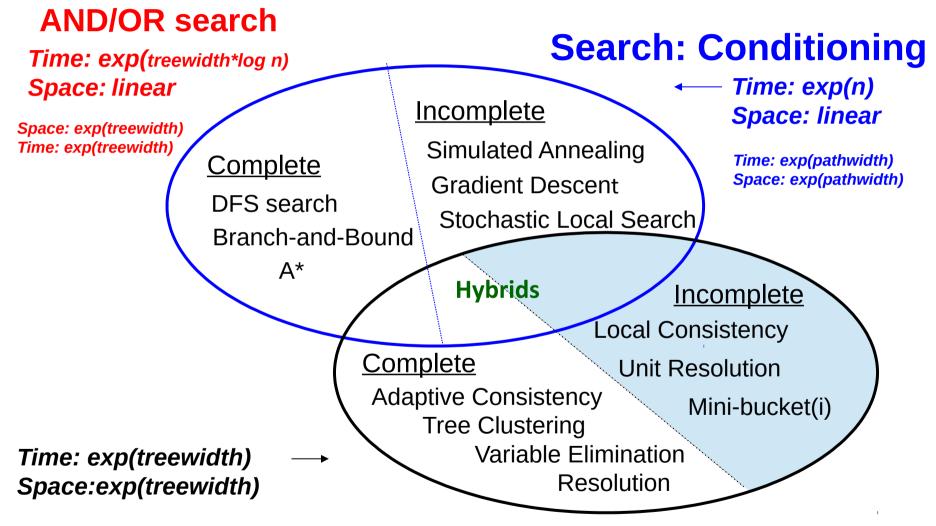
 $ilde{h}(n)$: under-estimates optimal cost below n

- Memory efficient
- If optimal solution found early, expands the same as best-first search (on a tree)

How to Generate Heuristics

- The principle of relaxed models
 - Mini-Bucket Elimination
 - Bounded directional consistency ideas
 - Linear relaxations for integer programs

Solution Techniques



Inference: Elimination

Outline

- Introduction
- Inference
- Bounds and heuristics
 - Basics of search: DFS versus BFS
 - Mini-bucket elimination
 - Weighted mini-buckets and iterative cost-shifting
 - Generating heuristics using mini-bucket elimination
- AND/OR search
- Exploiting parallelism
- Software

Split a bucket into mini-buckets => bound complexity

bucket (X) =
$$\{f_1, \dots, f_r, f_{r+1}, \dots, f_n\}$$

$$\lambda_X(\cdot) = \min_x \sum_{i=1}^n f_i(x, \dots)$$

Split a bucket into mini-buckets => bound complexity

bucket (X) =
$$\{f_1, \dots, f_r, f_{r+1}, \dots, f_n\}$$

$$\lambda_X(\cdot) = \min_x \sum_{i=1}^n f_i(x, \dots)$$

$$\{f_1, \dots, f_r\}$$

$$\{f_{r+1}, \dots, f_n\}$$

Split a bucket into mini-buckets => bound complexity

bucket (X) =
$$\{f_1, \dots, f_r, f_{r+1}, \dots, f_n\}$$

$$\lambda_X(\cdot) = \min_x \sum_{i=1}^n f_i(x, \dots)$$

$$\{f_1, \dots, f_r\}$$

$$\{f_{r+1}, \dots, f_n\}$$

$$\lambda_X'(\cdot) = \left(\min_x \sum_{i=1}^r f_i(\cdot)\right) + \left(\min_x \sum_{i=r+1}^n f_i(\cdot)\right)$$

$$\lambda_X'(\cdot) \le \lambda_X(\cdot)$$

Split a bucket into mini-buckets => bound complexity

bucket (X) =
$$\{f_1, \dots, f_r, f_{r+1}, \dots, f_n\}$$

$$\lambda_X(\cdot) = \min_x \sum_{i=1}^n f_i(x, \dots)$$

$$\{f_1, \dots, f_r\}$$

$$\{f_{r+1}, \dots, f_n\}$$

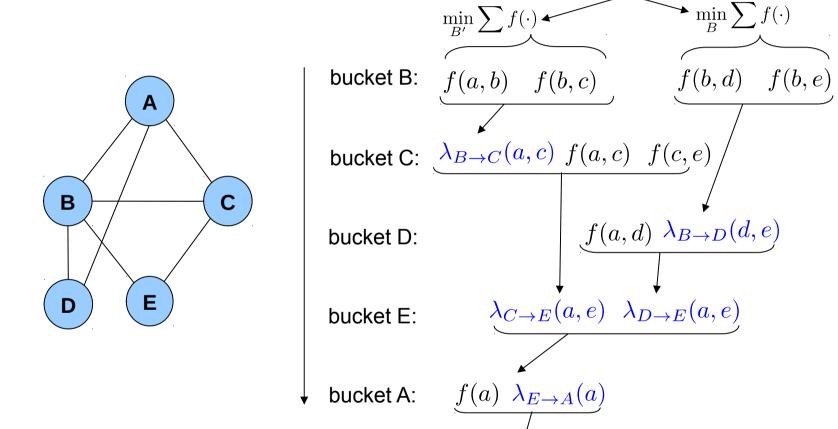
$$\lambda_X'(\cdot) = \left(\min_x \sum_{i=1}^r f_i(\cdot)\right) + \left(\min_x \sum_{i=r+1}^n f_i(\cdot)\right)$$

$$\lambda_X'(\cdot) \le \lambda_X(\cdot)$$

Exponential complexity decrease: $O(e^n) \rightarrow O(e^r) + O(e^{n-r})$

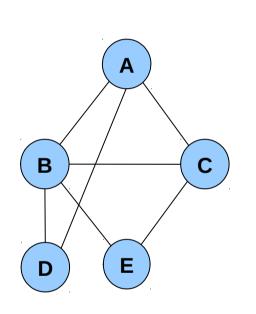
Mini-Bucket Elimination

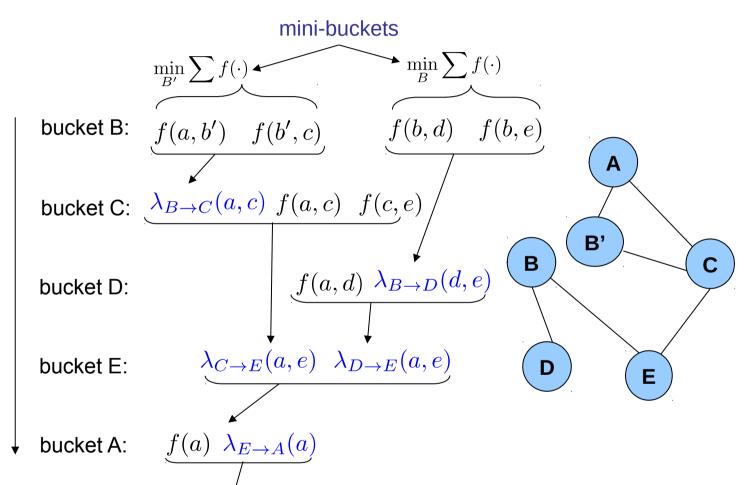
mini-buckets



L = lower bound

Mini-Bucket Elimination Semantics





L = lower bound

IJCAI 2015

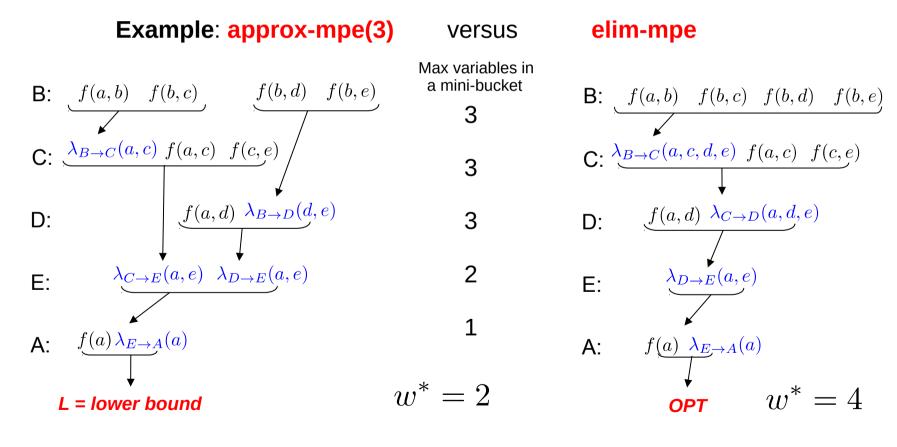
Model relaxation:

[Kask *et al.*, 2001] [Geffner *et al.*, 2007] [Choi *et al.*, 2007] [Johnson et al. 2007]

[Dechter and Rish, 1997; 2003]

MBE-MPE(i): Algorithm Approx-MPE

- Input: i max number of variables allowed in a mini-bucket
- Output: [lower bound (P of a suboptimal solution), upper bound]



Mini-Bucket Decoding

$$\hat{\mathbf{b}} = \arg\min_{\mathbf{b}} f(\hat{a}, b) + f(b, \hat{c}) + f(b, \hat{d}) + f(b, \hat{e})$$

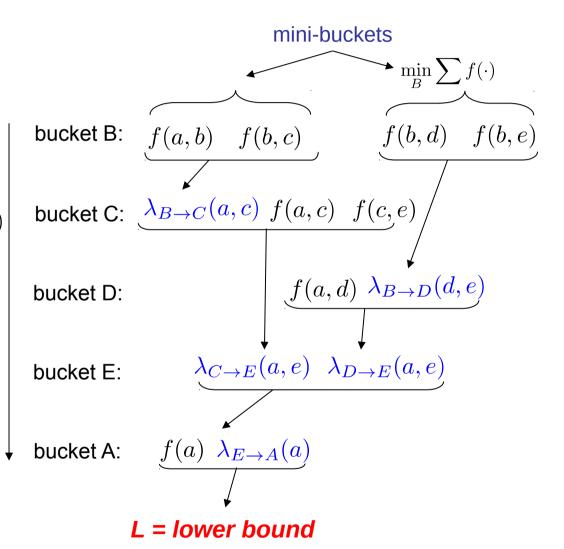
$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c}} \ \lambda_{B \to C}(\hat{a}, c) + f(c, \hat{a}) + f(c, \hat{e})$$

$$\hat{\mathbf{d}} = \arg\min_{\mathbf{d}} f(\hat{a}, d) + \lambda_{B \to D}(d, \hat{e})$$

$$\hat{\mathbf{e}} = \arg\min_{\mathbf{e}} \lambda_{C \to E}(\hat{a}, e) + \lambda_{D \to E}(\hat{a}, e)$$

$$\hat{\mathbf{a}} = \arg\min_{\mathbf{a}} f(a) + \lambda_{E \to A}(a)$$

Greedy configuration = upper bound



IJCAI 2015

Properties of MBE(i)

- Complexity: $O(n \exp(i))$ time and $O(\exp(i))$ space
- Yields a lower bound and an upper bound
- Accuracy estimatable by the upper/lower (U/L) bounds
- Possible use of mini-bucket approximations:
 - As anytime algorithms
 - As heuristics in search
- Other tasks (similar mini-bucket approximations):
 - Belief updating, Marginal MAP, MEU, WCSP, MaxCSP

[Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]

Outline

- Introduction
- Inference
- Bounds and heuristics
 - Basics of search: DFS versus BFS
 - Mini-bucket elimination
 - Weighted mini-buckets and iterative cost-shifting
 - Generating heuristics using mini-bucket elimination
- AND/OR search
- Exploiting parallelism
- Software

Cost-Shifting

(Reparameterization)

 $+\lambda(\mathbf{B})$

f(A,B)

6 + 3

0 - 1

0 + 3

6 - 1

A	В	U	f(A,B,C)
b	b	b	12
b	b	g	6
b	g	b	0
b	g	g	6
g	b	b	6
g	b	g	0
g	g	b	6
g	g	g	12

В	С	f(B,C)
b	b	6 - 3
b	g	0 - 3
g	b	0 + 1
g	g	6 + 1

= 0 + 6

Modify the individual functions

 $-\lambda(\mathbf{B})$

- but -

keep the sum of functions unchanged

b

b

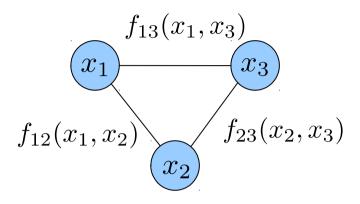
g

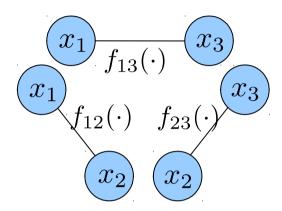
g

b

b

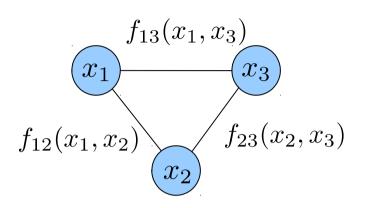
g

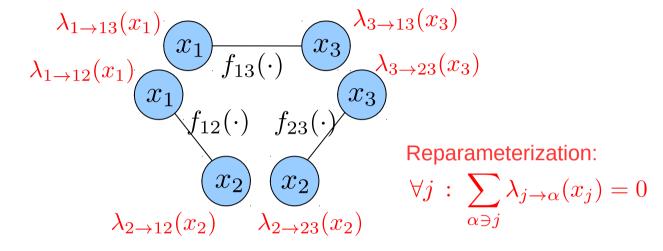




$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \geq \sum_{\alpha} \min_{x} f_{\alpha}(x)$$

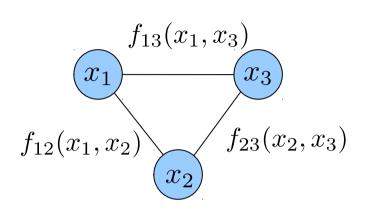
- Bound solution using decomposed optimization
- Solve independently: optimistic bound

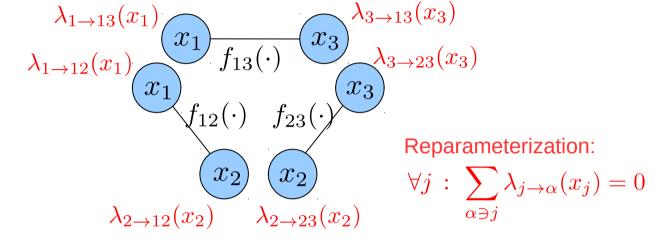




$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \qquad \geq \max_{\lambda_{i \to \alpha}} \sum_{\alpha} \min_{x} \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right]$$

- Bound solution using decomposed optimization
- Solve independently: optimistic bound
- Tighten the bound by reparameterization
 - Enforce lost equality constraints via Lagrange multipliers





$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \qquad \geq \max_{\lambda_{i \to \alpha}} \sum_{\alpha} \min_{x} \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right]$$

Many names for the same class of bounds:

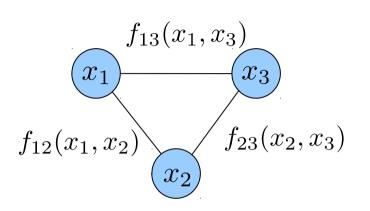
Dual decomposition [Komodakis et al. 2007]

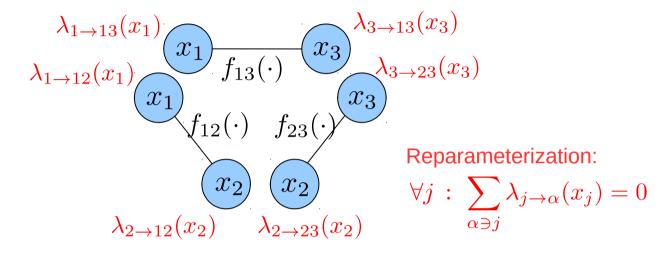
TRW, MPLP [Wainwright et al. 2005, Globerson & Jaakkola 2007]

- Soft arc consistency [Cooper & Schiex 2004]

Max-sum diffusion [Warner 2007]

(Convex dual: linear programming relaxation)

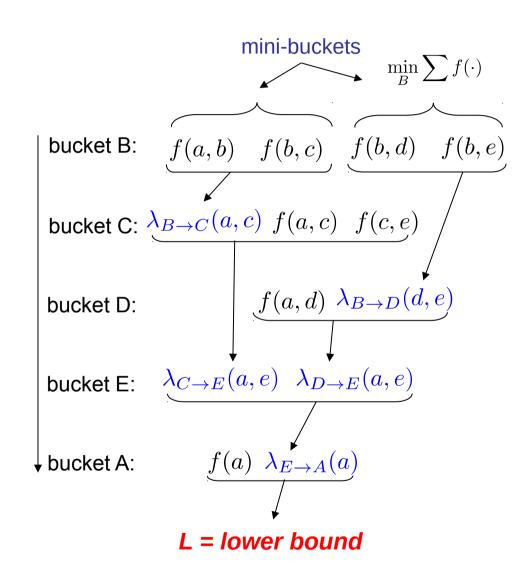




$$F^* = \min_{x} \sum_{\alpha} f_{\alpha}(x) \qquad \geq \max_{\lambda_{i \to \alpha}} \sum_{\alpha} \min_{x} \left[f_{\alpha}(x) + \sum_{i \in \alpha} \lambda_{i \to \alpha}(x_i) \right]$$

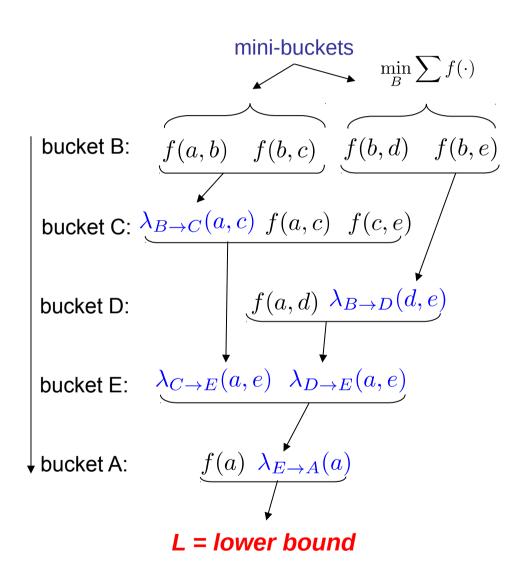
Many ways to optimize the bound:

- Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]
- Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag et al. 2009; Ihler et al. 2012]
- Proximal optimization [Ravikumar et al. 2010]
- ADMM [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]



$$\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$$

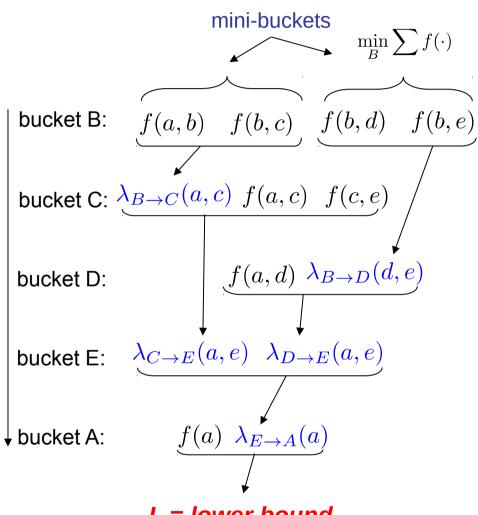
$$\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$$



$$\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$$

$$\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$$

$$\min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) - \lambda_{C \to E}(a,e) \right] = 0$$



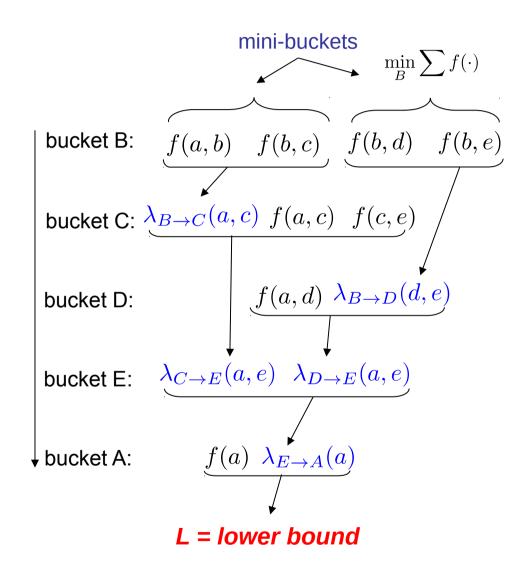
L = lower bound

$$\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$$

$$\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$$

$$\min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) - \lambda_{C \to E}(a,e) \right] = 0$$

$$\min_{a,d} \left[f(a,d) + \lambda_{B \to D}(d,e) - \lambda_{D \to E}(a,e) \right] = 0$$



Mini-Bucket as Dual Decomposition

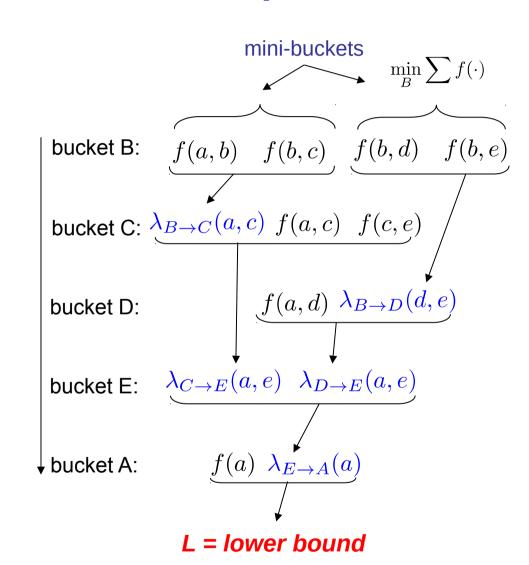
$$\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$$

$$\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$$

$$\min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) - \lambda_{C \to E}(a,e) \right] = 0$$

$$\min_{a,d} \left[f(a,d) + \lambda_{B \to D}(d,e) - \lambda_{D \to E}(a,e) \right] = 0$$

$$\min_{a,e} \left[\lambda_{C \to E}(a,e) + \lambda_{D \to E}(a,e) - \lambda_{E \to A}(a) \right] = 0$$



Mini-Bucket as Dual Decomposition

$$\min_{a,c,b} \left[f(a,b) + f(b,c) - \lambda_{B \to C}(a,c) \right] = 0$$

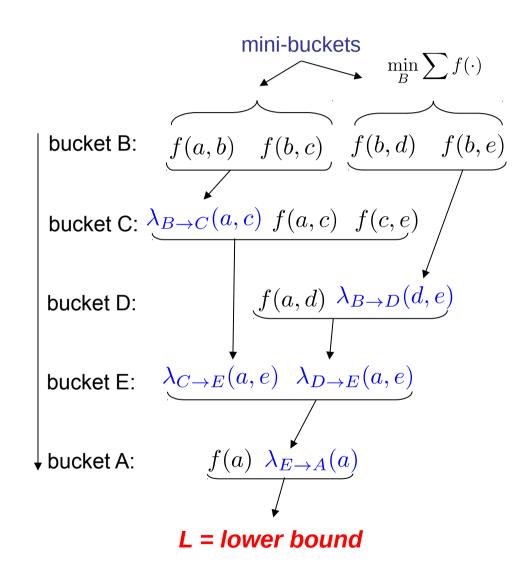
$$\min_{d,e,b} \left[f(b,d) + f(b,e) - \lambda_{B \to D}(d,e) \right] = 0$$

$$\min_{a,e,c} \left[\lambda_{B \to C}(a,c) + f(a,c) + f(c,e) - \lambda_{C \to E}(a,e) \right] = 0$$

$$\min_{a,d} \left[f(a,d) + \lambda_{B \to D}(d,e) - \lambda_{D \to E}(a,e) \right] = 0$$

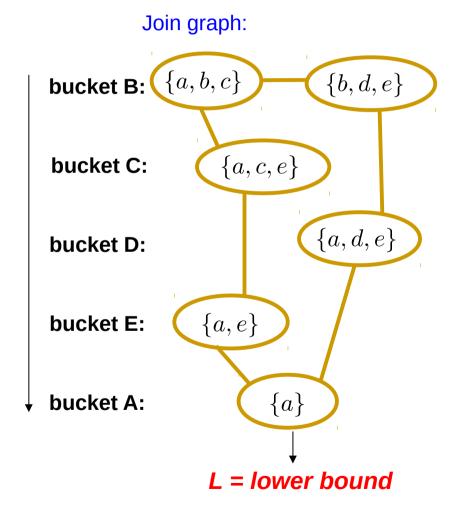
$$\min_{a,e} \left[\lambda_{C \to E}(a,e) + \lambda_{D \to E}(a,e) - \lambda_{E \to A}(a) \right] = 0$$

$$\min_{a} \left[f(a) + \lambda_{E \to A}(a) \right] = L$$

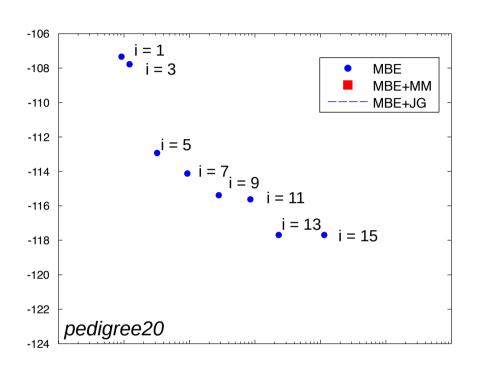


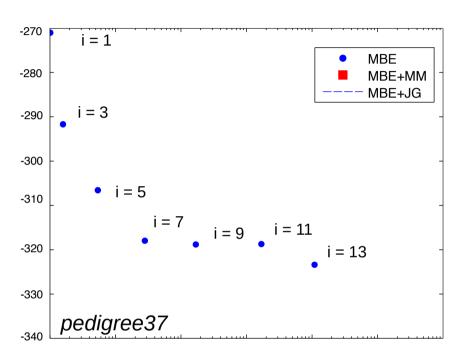
Mini-Bucket as Dual Decomposition

- Downward pass as cost-shifting
- Can also do cost-shifting within mini-buckets
- "Join graph" message passing
- "Moment matching" version: one message update within each bucket during downward sweep.



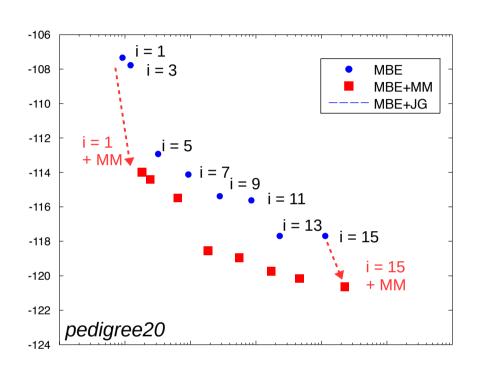
Anytime Approximation

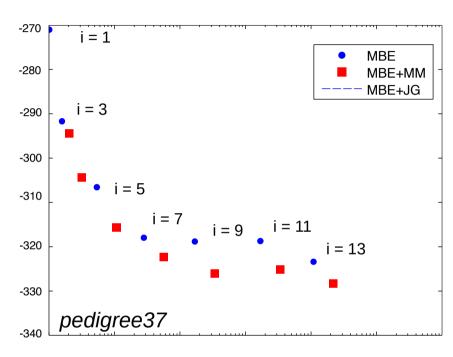




- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

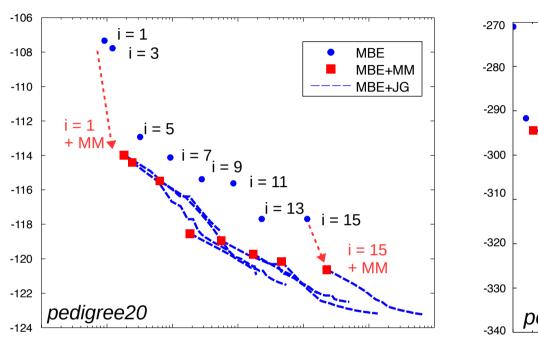
Anytime Approximation

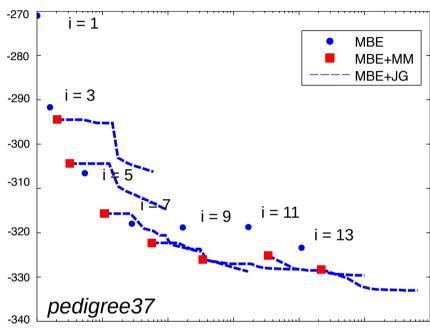




- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

Anytime Approximation



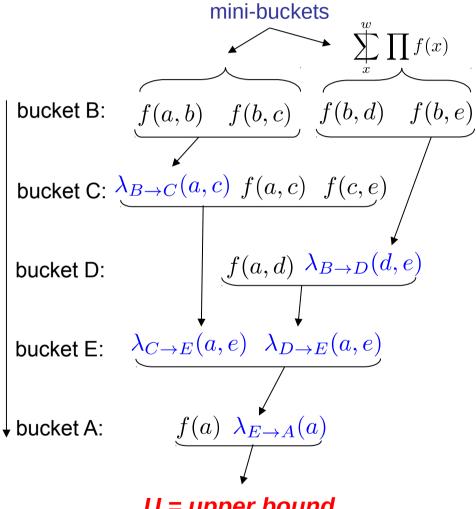


- Can tighten the bound in various ways
 - Cost-shifting (improve consistency between cliques)
 - Increase i-bound (higher order consistency)
- Simple moment-matching step improves bound significantly

(for summation bounds)

Exact bucket elimination:

$$\lambda_B(a, c, d, e) = \sum_b \left[f(a, b) \cdot f(b, c) \cdot f(b, d) \cdot f(b, e) \right]$$



U = upper bound

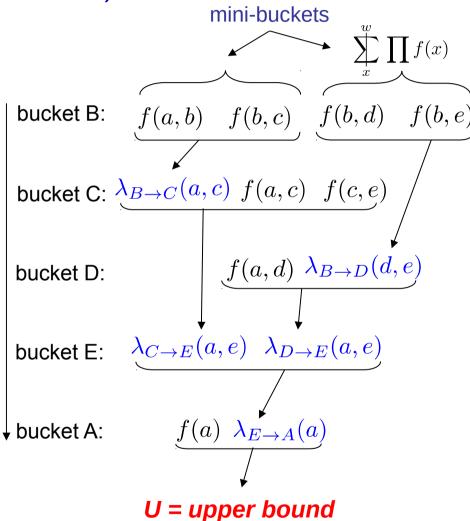
(for summation bounds)

Exact bucket elimination:

$$\begin{split} \lambda_B(a,c,d,e) &= \sum_b \left[f(a,b) \cdot f(b,c) \cdot f(b,d) \cdot f(b,e) \right] \\ &\leq \left[\sum_b^{w_1} f(a,b) f(b,c) \right] \cdot \left[\sum_b^{w_2} f(b,d) f(b,e) \right] \\ &= \lambda_{B \to C}(a,c) \qquad \cdot \lambda_{B \to D}(d,e) \\ & \text{ (mini-buckets)} \end{split}$$

where $\sum_{x}^{w} f(x) = \left[\sum_{x} f(x)^{1/w}\right]^{w}$

is the weighted or "power" sum operator



IJCAI 2015

(for summation bounds)

Exact bucket elimination:

$$\begin{split} \lambda_B(a,c,d,e) &= \sum_b \left[\, f(a,b) \cdot f(b,c) \cdot f(b,d) \cdot f(b,e) \, \right] \\ &\leq \left[\sum_b^{w_1} f(a,b) f(b,c) \right] \, \cdot \left[\sum_b^{w_2} f(b,d) f(b,e) \right] \\ &= \lambda_{B \to C}(a,c) \qquad \cdot \lambda_{B \to D}(d,e) \end{split} \tag{mini-buckets}$$

where $\sum_{x}^{w} f(x) = \left[\sum_{x} f(x)^{1/w}\right]^{w}$

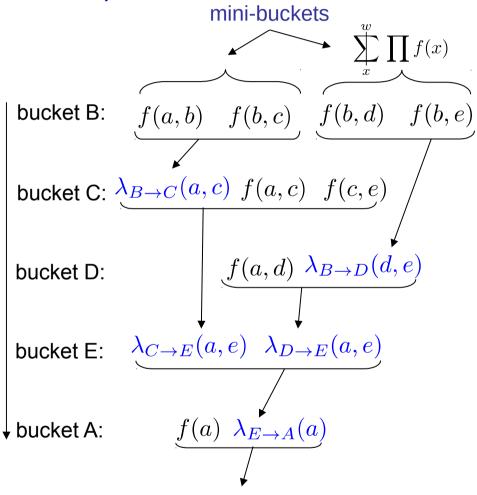
is the weighted or "power" sum operator

By Holder's inequality,

$$\sum_{x}^{w} f_1(x) f_2(x) \le \left[\sum_{x}^{w_1} f_1(x) \right] \left[\sum_{x}^{w_2} f_2(x) \right]$$

where $w_1 + w_2 = w$ and $w_1 > 0$, $w_2 > 0$

(lower bound if $w_1 > 0, \ w_2 < 0$)



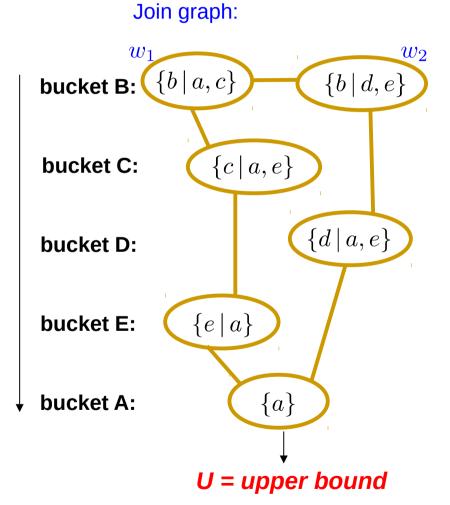
U = upper bound

IJCAI 2015

[Liu & Ihler 2011]

(for summation bounds)

- Related to conditional entropy decomposition [Globerson & Jaakkola 2008] but, with an efficient, "primal" bound form
- We can optimize the bound over:
 - Cost-shifting
 - Weights
- Again, involves message passing on JG
- Similar, one-pass "moment matching" variant



IJCAI 2015

[Liu & Ihler 2011]

WMB for Marginal MAP

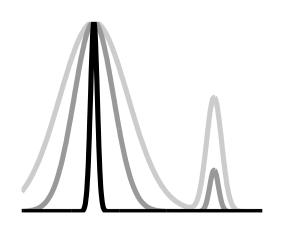
Weighted mini-bucket is applicable more generally, since

$$\sum_{x}^{w} f(x) = \left[\sum_{x} f(x)^{1/w}\right]^{w} \Longrightarrow \begin{cases} \lim_{w \to 0^{+}} \sum_{x}^{w} f(x) = \max_{x} f(x) & (f(x) \ge 0) \\ \lim_{w \to 0^{-}} \sum_{x}^{w} f(x) = \min_{x} f(x) & (w = \text{"temperature"}) \end{cases}$$

So, when w=0+, WMB reduces to max-inference.

For marginal MAP problems, just use different w's:

$$\max_{x_B} \sum_{x_A} \prod_{j} f_j(x) = \sum_{x_B}^{0^+} \sum_{x_A}^{1} \prod_{j} f_j(x)$$



WMB for Marginal MAP

$$\lambda_{B\to C}(a,c) = \sum_{b}^{w_1} f(a,b)f(b,c)$$

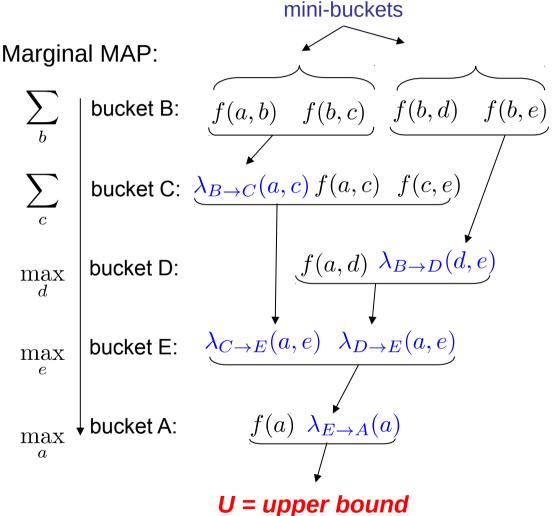
$$\lambda_{B\to D}(d,e) = \sum_{b}^{w_2} f(b,d)f(b,e)$$

$$(w_1 + w_2 = 1)$$

$$\vdots$$

$$\lambda_{E\to A}(a) = \max_{e} \lambda_{C\to E}(a,e)\lambda_{D\to E}(a,e)$$

$$U = \max_{a} f(a)\lambda_{E\to A}(a)$$



Can optimize over cost-shifting and weights (single-pass "MM" or with iterative message passing)

IJCAI 2015

- Introduction
- Inference
- Bounds and heuristics
 - Basics of search: DFS versus BFS
 - Mini-bucket elimination
 - Weighted mini-buckets and iterative cost-shifting
 - Generating heuristics using mini-bucket elimination
- AND/OR search
- Exploiting parallelism
- Software

Generating Heuristics for Graphical Models

Given a cost function:

$$f(a, \dots, e) = f(a) + f(a, b) + f(a, c) + f(a, d) + f(b, c) + f(b, d) + f(b, e) + f(c, e)$$

define an evaluation function over a partial assignment as the cost of its best extension:

$$f^*(\hat{a}, \hat{e}, D) = \min_{b,c} F(\hat{a}, b, c, D, \hat{e})$$

$$= f(\hat{a}) + \min_{b,c} f(\hat{a}, b) + f(\hat{a}, c) + \dots$$

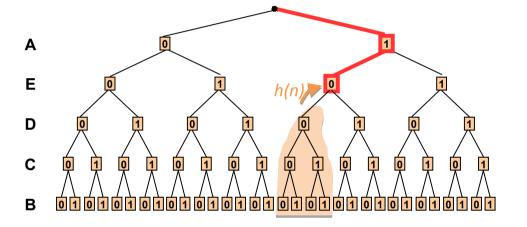
$$= g(\hat{a}, \hat{e}, D) + h^*(\hat{a}, \hat{e}, D)$$

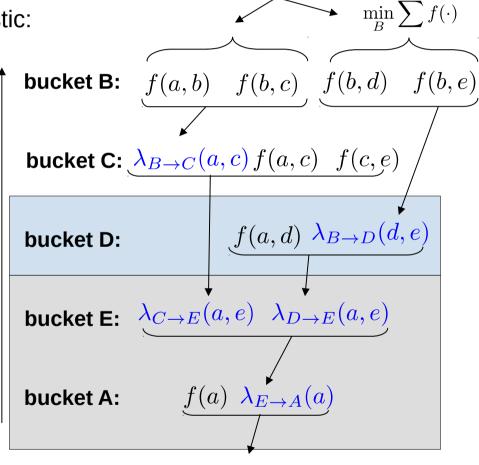
$$\begin{bmatrix} \hat{a} = 1, \hat{e} = 0 \end{bmatrix}$$

$$\begin{bmatrix} \hat{a} = 1, \hat{e} = 0 \end{bmatrix}$$

Static Mini-Bucket Heuristics

Given a partial assignment, $[\hat{a}=1,\hat{e}=0]$ (weighted) mini-bucket gives an admissible heuristic:



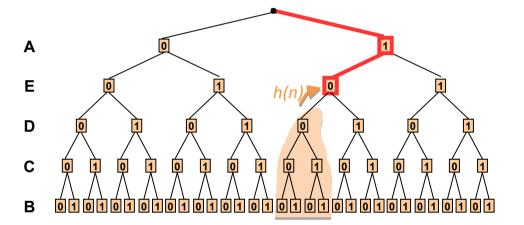


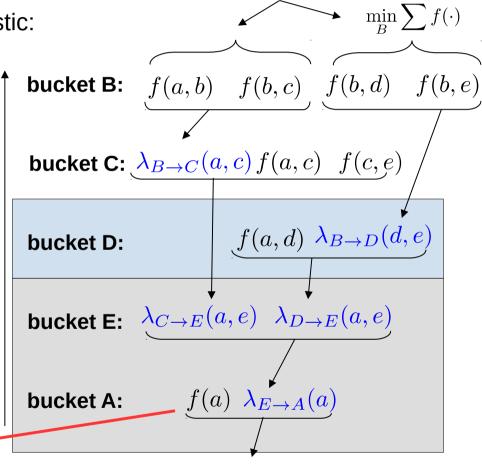
mini-buckets

L = lower bound

Static Mini-Bucket Heuristics

Given a partial assignment, $[\hat{a}=1,\hat{e}=0]$ (weighted) mini-bucket gives an admissible heuristic:





mini-buckets

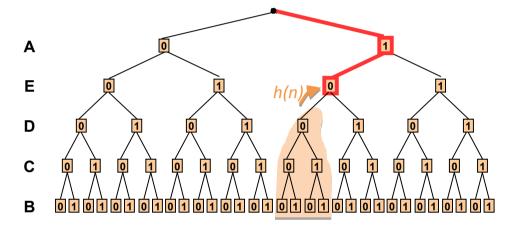
cost so far:

$$g(\hat{a}, \hat{e}) = f(A = \hat{a})$$

L = lower bound

Static Mini-Bucket Heuristics

Given a partial assignment, $[\hat{a}=1,\hat{e}=0]$ (weighted) mini-bucket gives an admissible heuristic:



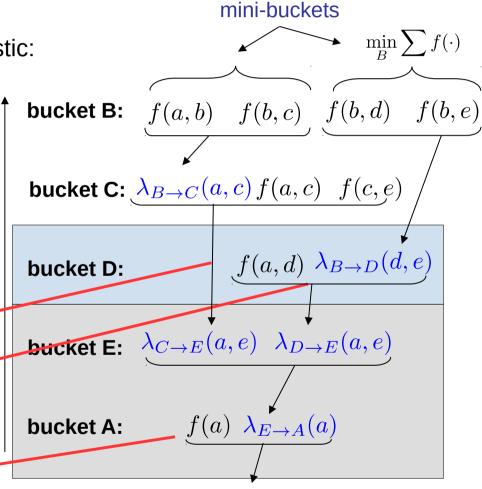
cost to go:

$$\tilde{h}(\hat{a}, \hat{e}, D) = \lambda_{C \to E}(\hat{a}, \hat{e}) + f(\hat{a}, D) + \lambda_{B \to D}(D, \hat{e})$$

(admissible: $\tilde{h}(\hat{a},\hat{e},D) \leq h^*(\hat{a},\hat{e},D)$)

cost so far:

$$g(\hat{a}, \hat{e}) = f(A = \hat{a})$$



L = lower bound

IJCAI 2015

Properties of the Heuristic

- MB heuristic is monotone, admissible
- Computed in linear time

IMPORTANT

- Heuristic strength can vary by MB(i) & message passing
- Higher i-bound → more pre-processing
 - → more accurate heuristic
 - → less search
- Allows controlled trade-off between pre-processing and search

Dynamic Mini-Bucket Heuristics

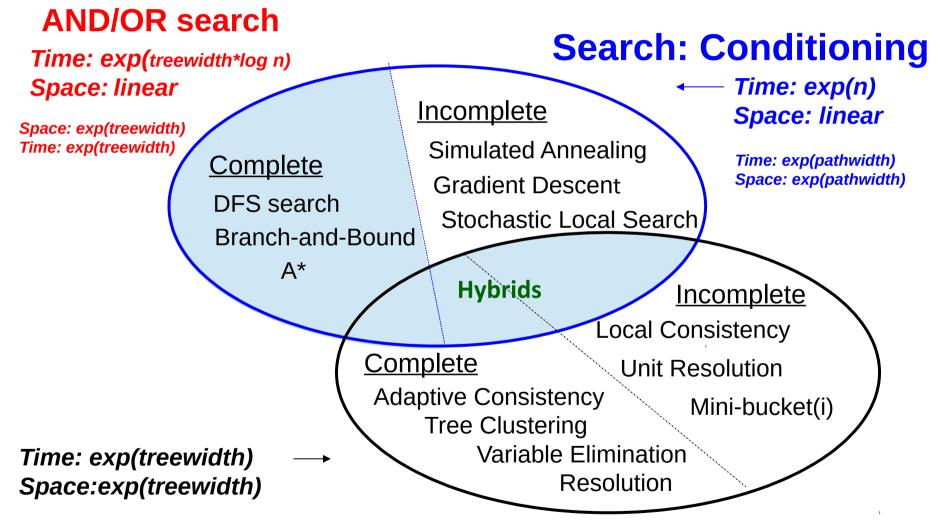
- Rather than pre-compile, compute heuristics dynamically, during search
- Conditioning on partial configuration simplifies the graph
 - Simpler graph means less relaxation required
 - Partial configuration "evidence" means relaxations may be much better
- Dynamic MB: use the Mini-Bucket algorithm to produce a bound for any node during search
- Dynamic MBTE: compute heuristics simultaneously for all uninstantiated variables using Mini-Bucket-Tree Elimination (MBTE)
- MBTE is an approximation scheme defined over cluster trees. It outputs multiple bounds for each variable and value extension at once

- Introduction
 - Graphical models; combinatorial optimization tasks
- Inference
 - Exact variable elimination; bucket elimination
- Bounds and heuristics
 - Mini-bucket & weighted mini-bucket; cost-shifting
 - Admissible heuristics: static & dynamic

- Introduction
 - Graphical models; combinatorial optimization tasks
- Inference
 - Exact variable elimination; bucket elimination
- Bounds and heuristics
 - Mini-bucket & weighted mini-bucket; cost-shifting
 - Admissible heuristics: static & dynamic
- Intermission: coffee
- AND/OR search
- Exploiting parallelism
- Software

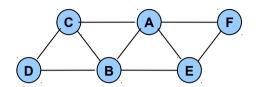
- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
 - AND/OR search spaces
 - Depth-first AND/OR branch and bound
 - Best-first AND/OR search
 - Advanced searches and tasks
- Exploiting parallelism
- Software

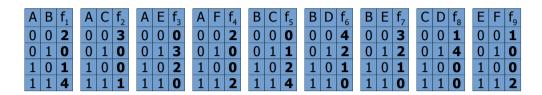
Solution Techniques



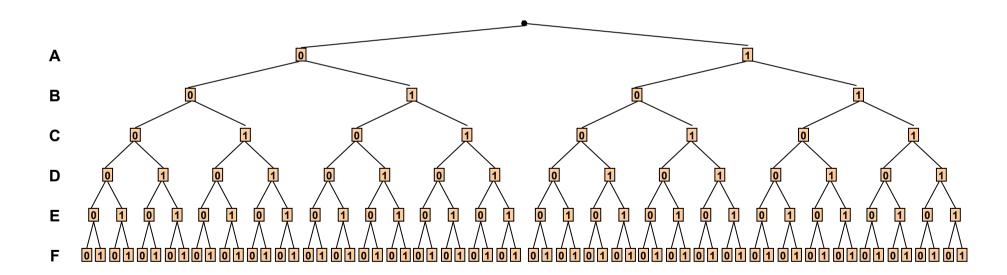
Inference: Elimination

Classic OR Search Space

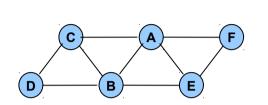


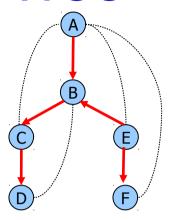


Objective function:
$$F^* = \min_X \sum_i f_i(X)$$

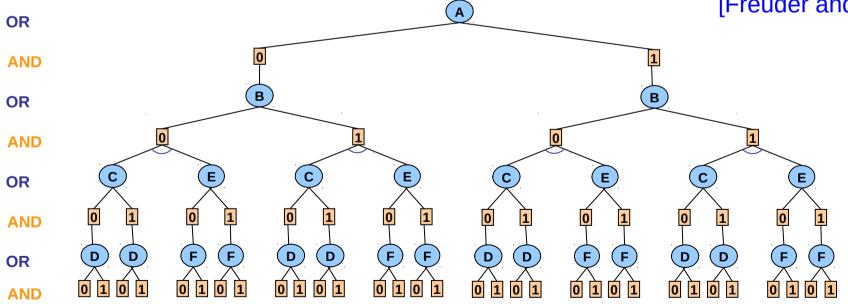


The AND/OR Search Tree

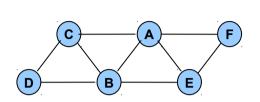


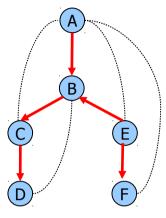


Pseudo tree [Freuder and Quinn, 1985]

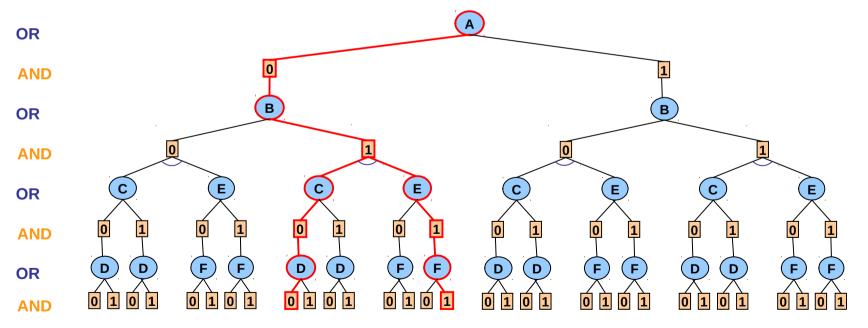


The AND/OR Search Tree





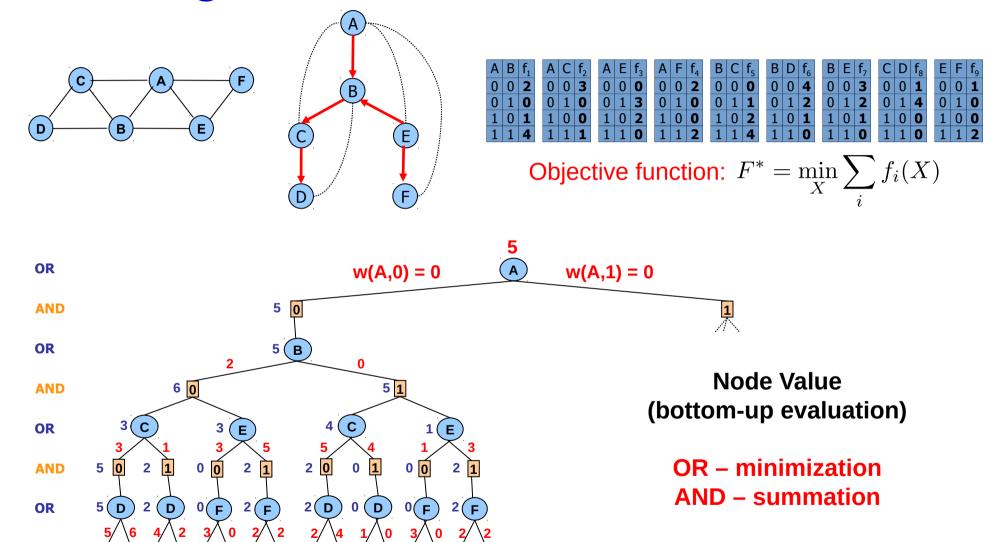
Pseudo tree



A solution subtree is (A=0, B=1, C=0, D=0, E=1, F=1)

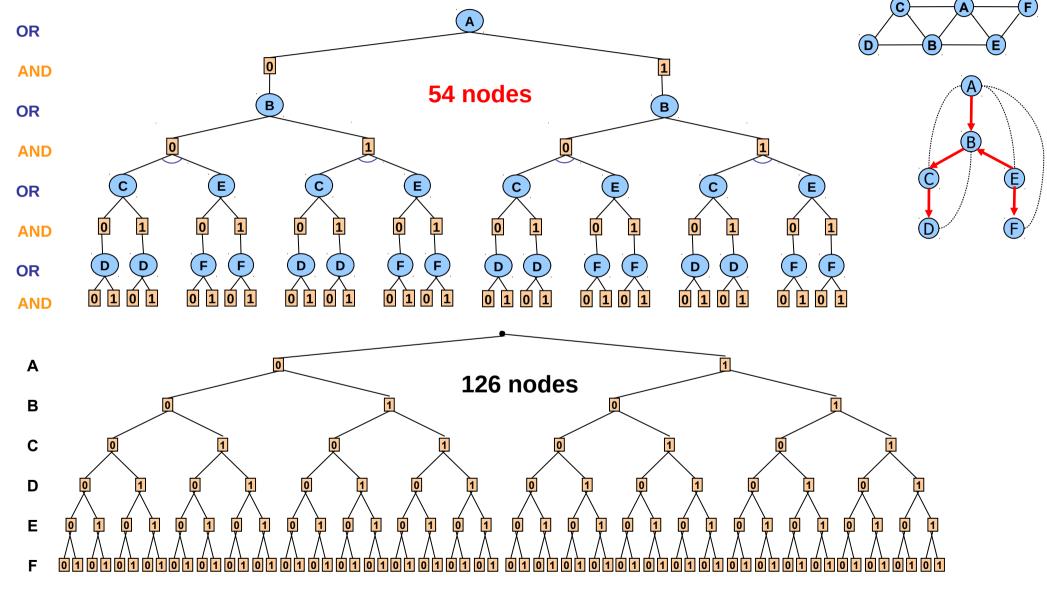
IJCAI 2015

Weighted AND/OR Search Tree



AND

AND/OR versus OR Spaces



AND/OR versus OR Spaces

width	depth	OR space		AND/OR space		
		Time (sec)	Nodes	Time (sec)	AND nodes	OR nodes
5	10	3.15	2,097,150	0.03	10,494	5,247
4	9	3.13	2,097,150	0.01	5,102	2,551
		0.20	_,~~,_~	0.02	5,252	_,
5	10	3.12	2,097,150	0.03	8,926	4,463
4	10	3.12	2,097,150	0.02	7,806	3,903
4	10	3.12	2,097,130	0.02	7,000	3,903
5	13	3.11	2,097,150	0.10	36,510	18,255

Random graphs with 20 nodes, 20 edges and 2 values per node

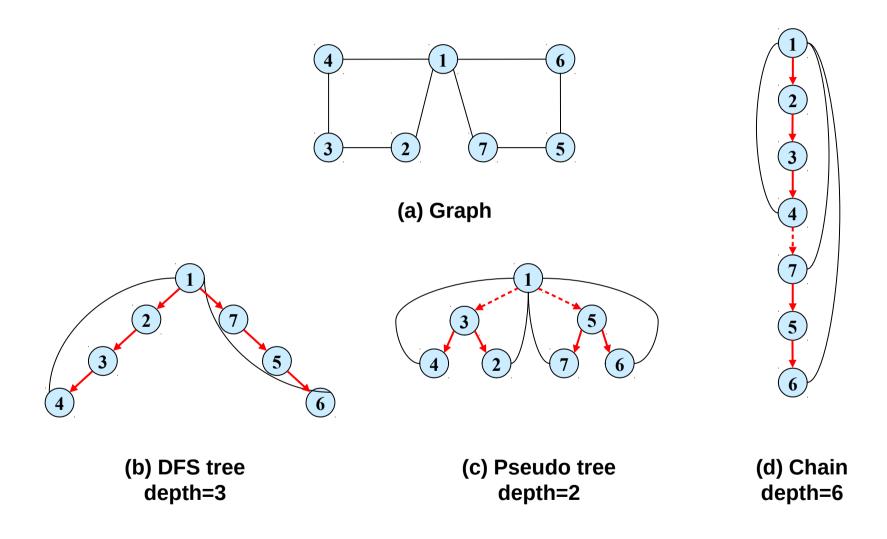
Complexity of AND/OR Tree Search

	AND/OR tree	OR tree
Space	O(n)	O(n)
Time	$O(nd^t)$	
	$O(nd^{(w^*\log n)})$ [Freuder & Quinn85], [Collin, Dechter & Katz91], [Bayardo & Miranker95], [Darwiche01]	$O(d^n)$

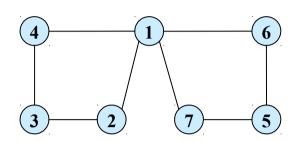
```
d = domain size n = number of variables

t = depth of pseudo tree w^* = induced width
```

Pseudo Trees

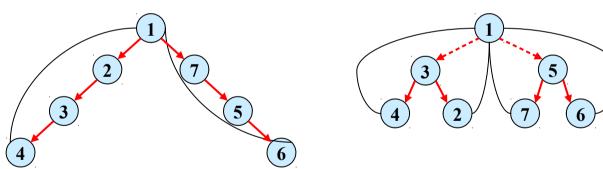


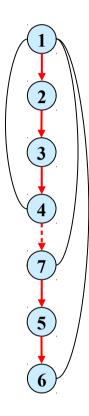
Pseudo Trees



m <= w* log n

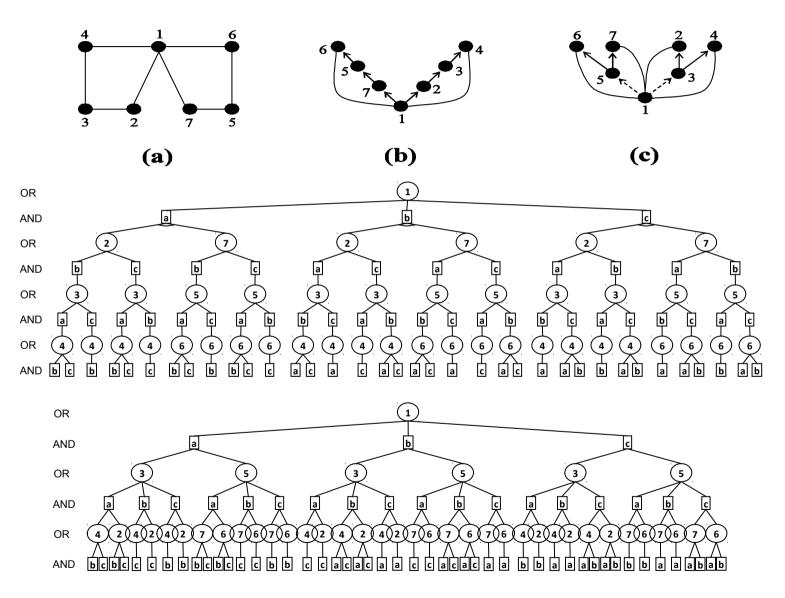
(a) Graph





(b) DFS tree depth=3 (c) Pseudo tree depth=2 (d) Chain depth=6

Pseudo Trees



Constructing Pseudo Trees

- AND/OR serch algorithms are influenced by the quality of the pseudo tree
- Finding minimal induced width / depth pseudo tree is NP-hard
- Heuristics
 - Min-Fill (min induced width)
 - Hypergraph partitioning (min depth)

Constructing Pseudo Trees

- Min-Fill [Kjaerulff, 1990]
 - Depth-first traversal of the induced graph obtained along the min-fill elimination order heuristic
 - Variables ordered according to smallest "fill-set"
- Hypergraph Partitioning [Karypis and Kumar, 2000]
 - Functions are vertices in the hypergraph and variables are hyperedges
 - Recursive decomposition of the hypergraph while minimizing the separator size at each step
 - Using state-of-the-art software package hMeTiS

Quality of the Pseudo Trees

Network	hypergraph		min-fill	
	W*	depth	W*	depth
barley	7	13	7	23
diabetes	7	16	4	77
link	21	40	15	53
mildew	5	9	4	13
munin1	12	17	12	29
munin2	9	16	9	32
munin3	9	15	9	30
munin4	9	18	9	30
water	11	16	10	15
pigs	11	20	11	26

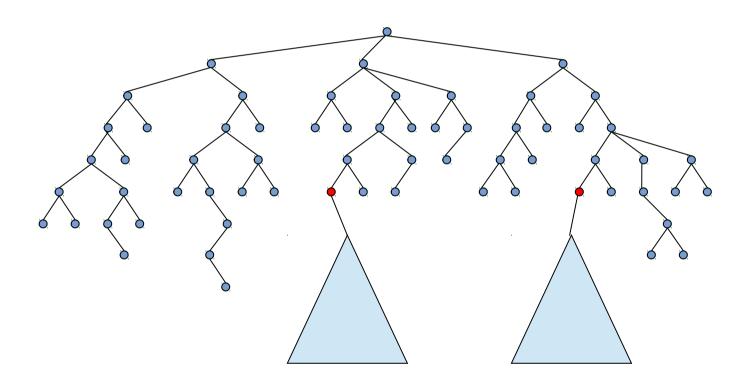
Network	hypergraph		min-fill	
	W*	depth	W*	depth
spot5	47	152	39	204
spot28	108	138	79	199
spot29	16	23	14	42
spot42	36	48	33	87
spot54	12	16	11	33
spot404	19	26	19	42
spot408	47	52	35	97
spot503	11	20	9	39
spot505	29	42	23	74
spot507	70	122	59	160

Bayesian Networks Repository

SPOT5 Benchmark

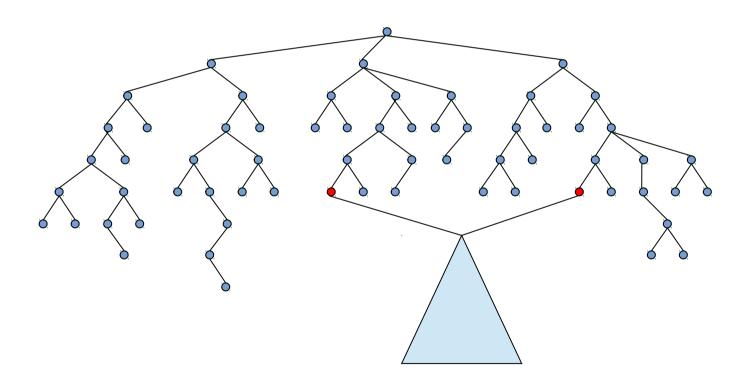
From Search Trees to Search Graphs

 Any two nodes that root identical subtrees or subgraphs can be merged



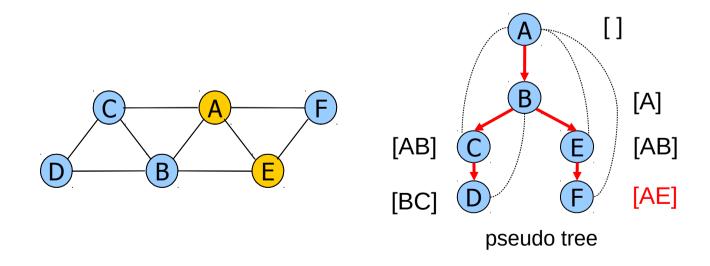
From Search Trees to Search Graphs

 Any two nodes that root identical subtrees or subgraphs can be merged

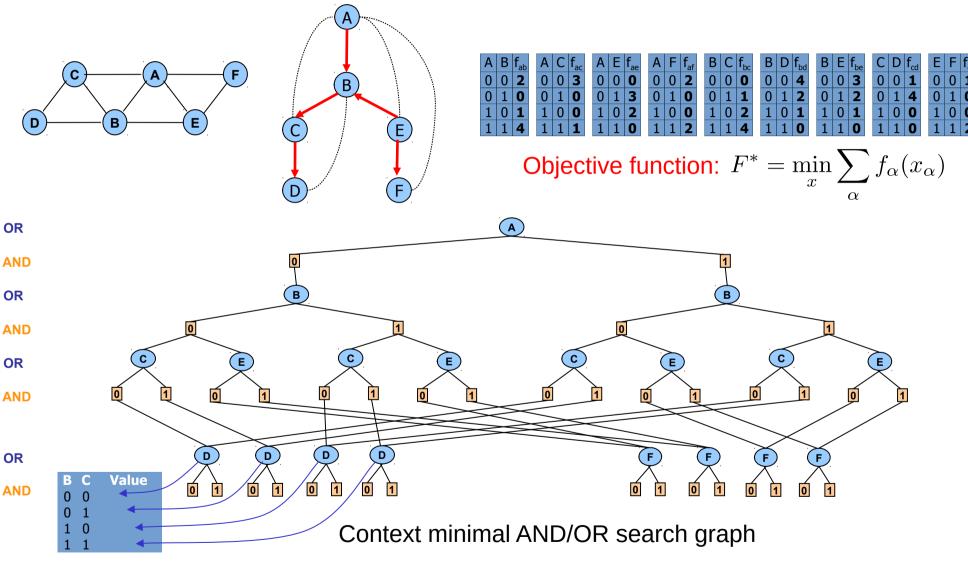


Merging Based on Contexts

- One way of recognizing nodes that can be merged (based on the graph structure)
 - context(X) = ancestors of X in the pseudo tree that are connected to X or to descendants of X



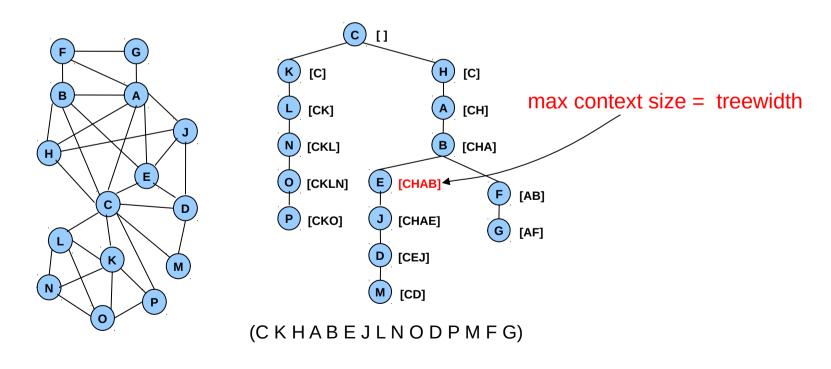
AND/OR Search Graph



Cache table for **D**

How Big Is The Context?

 Theorem: The maximum context size for a pseudo tree is equal to the treewidth of the graph along the pseudo tree.



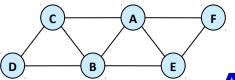
Complexity of AND/OR Graph Search

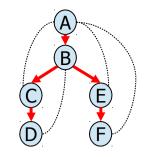
	AND/OR graph	OR graph
Space	$O(nd^{w^*})$	$O(nd^{pw^*})$
Time	$O(nd^{w^*})$	$O(nd^{pw^*})$

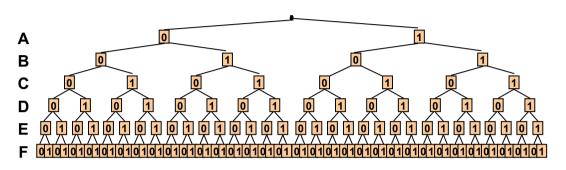
d = domain sizew* = induced width

n = number of variablespw* = pathwidth

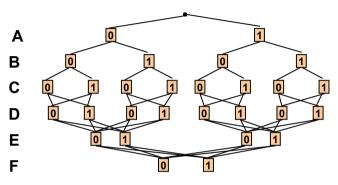
 $w^* \le pw^* \le w^* \log n$



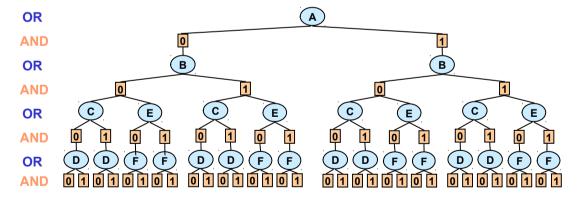




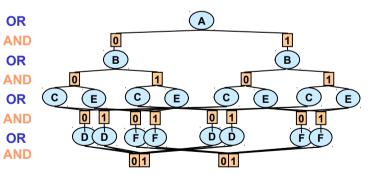
Full OR search tree
126 nodes



Context minimal OR search graph
28 nodes

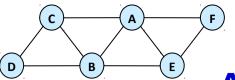


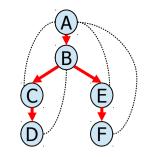
Full AND/OR search tree
54 AND nodes

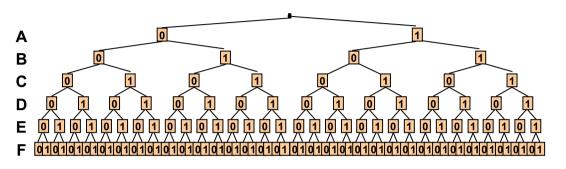


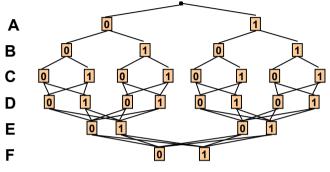
Context minimal AND/OR search graph

18 AND nodes







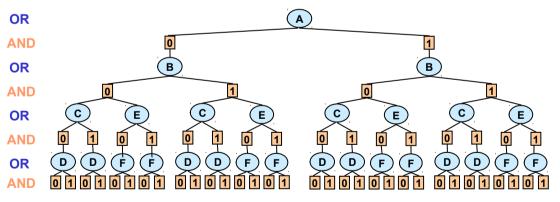


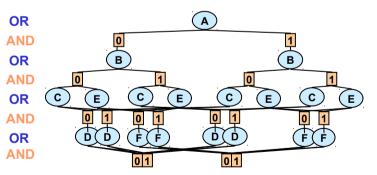
Full OR search tree

126 nodes

Context minimal OR search graph

28 nodes



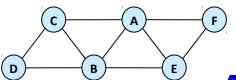


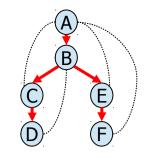
Full AND/OR search tree

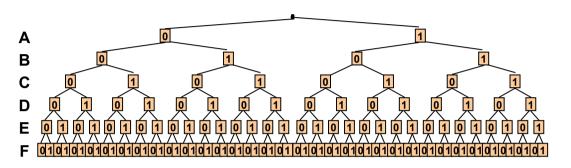
54 AND nodes

Context minimal AND/OR search graph

18 AND nodes







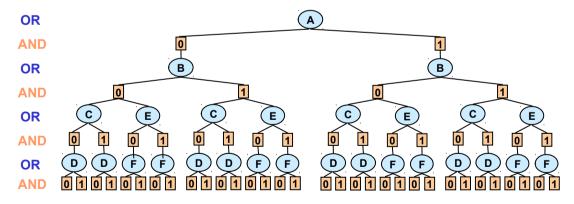
B 0 1 0 1 D 1 E 0 1

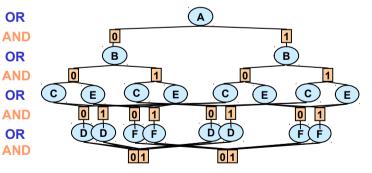
Full OR search tree

Context minimal OR search graph

28 nodes

126 nodes





Full AND/OR search tree

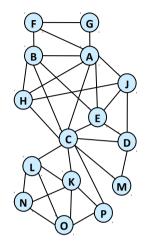
18 AND nodes

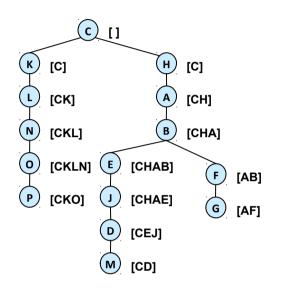
Context minimal AND/OR search graph

54 AND nodes

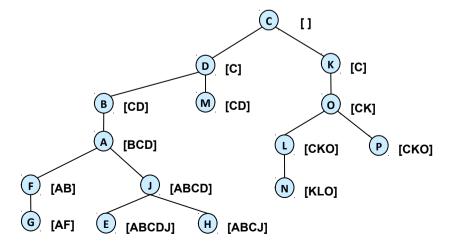
Any query is best computed over the c-minimal AO space

IJCAI 2015

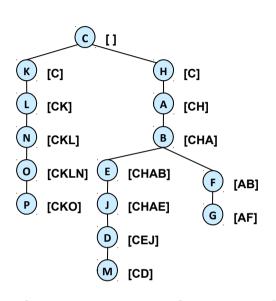


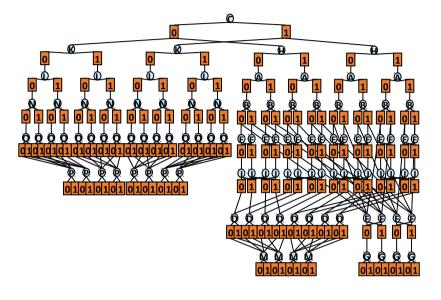


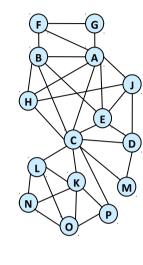
(CKHABEJLNODPMFG)



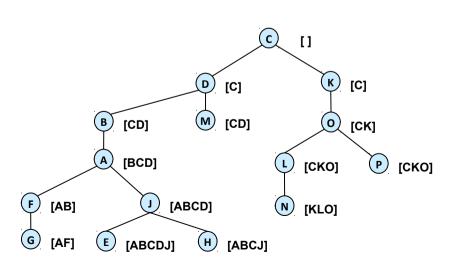
IJCAI 2015

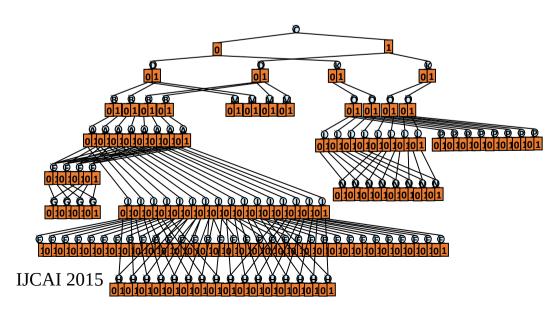


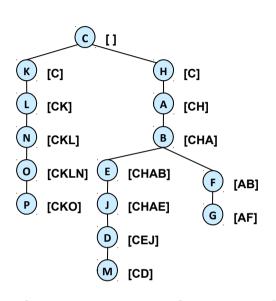


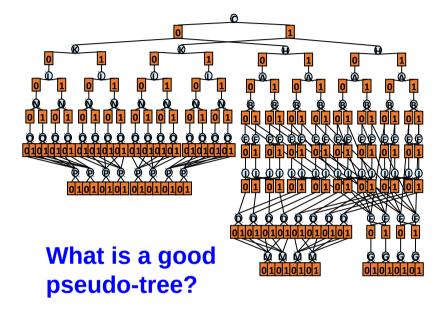


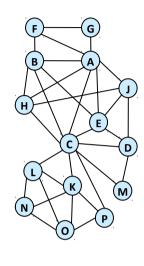
(CKHABEJLNODPMFG)



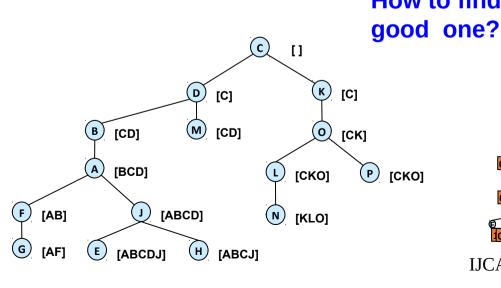


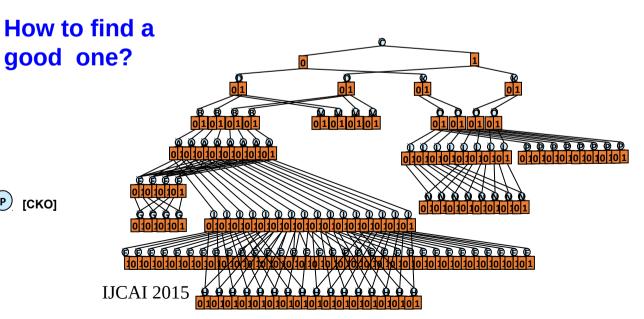


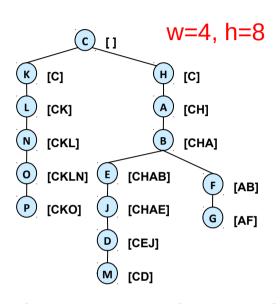


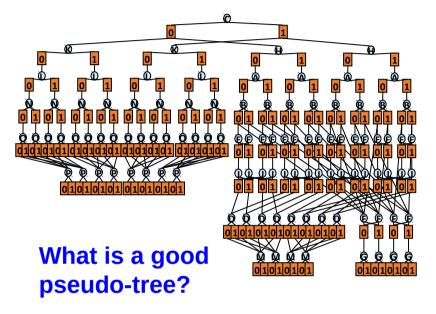


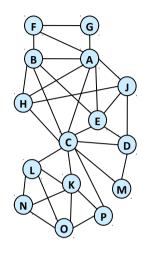
(CKHABEJLNODPMFG)



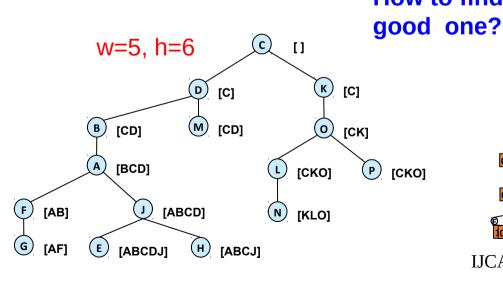


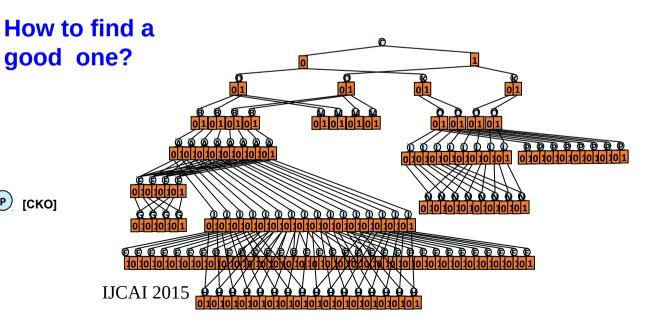


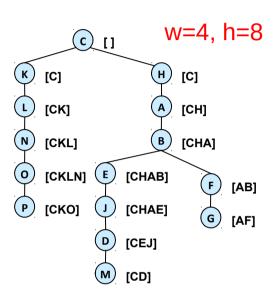


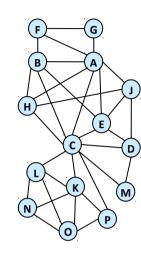


(CKHABEJLNODPMFG)

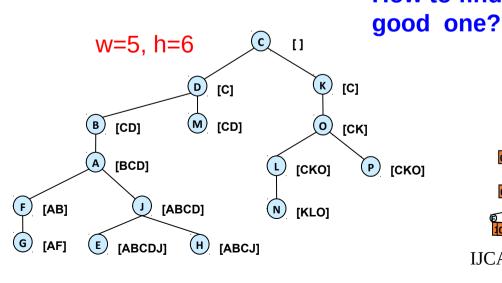


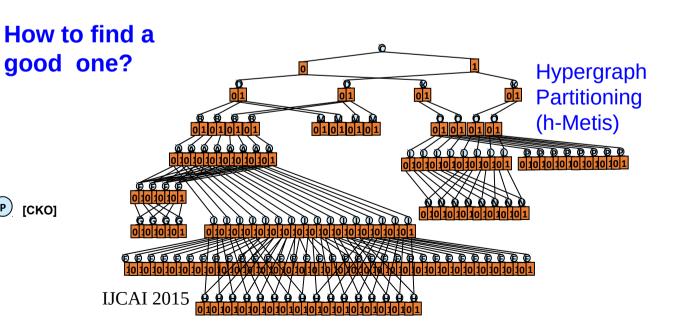


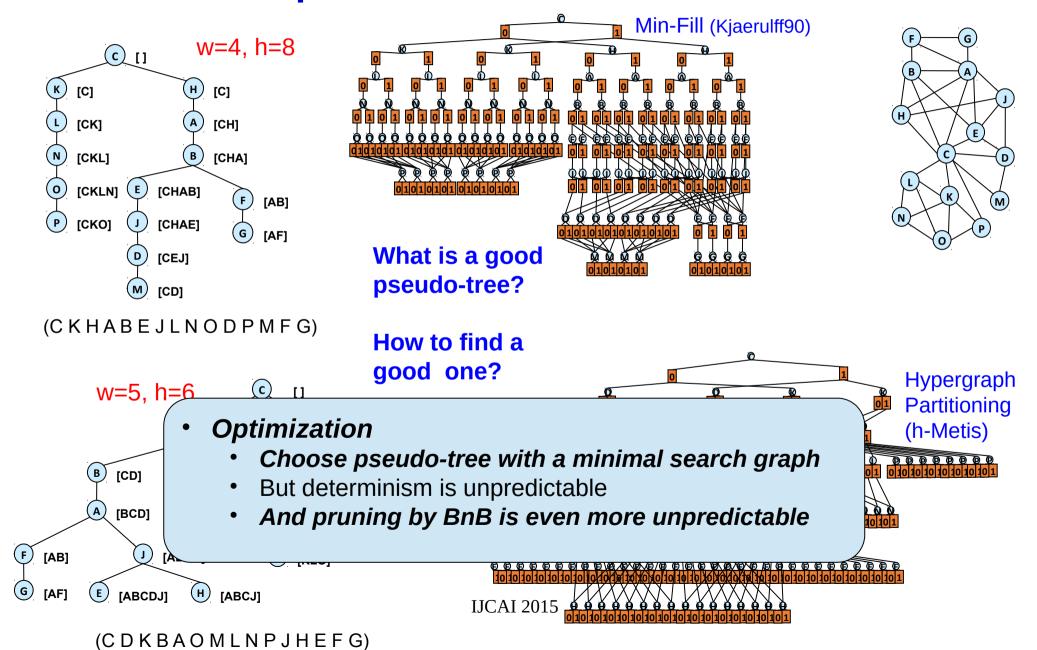


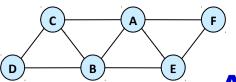


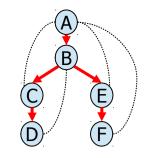
(CKHABEJLNODPMFG)

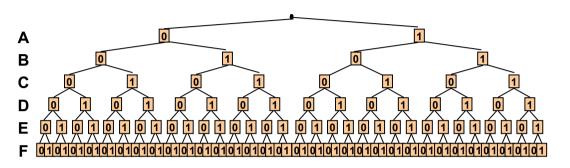




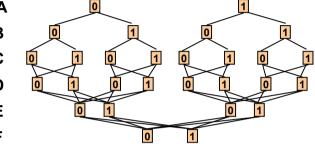








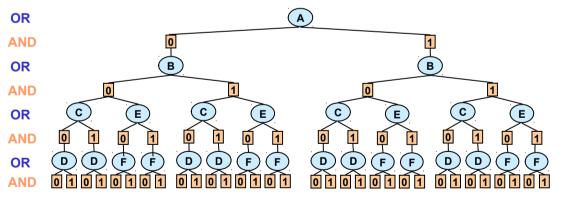
В C D Ε



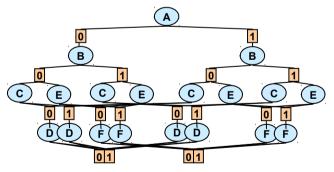
Full OR search tree

126 nodes

Context minimal OR search graph 28 nodes



OR AND OR AND OR AND OR **AND**



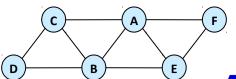
Full AND/OR search tree

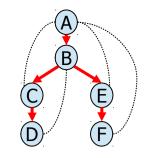
54 AND nodes

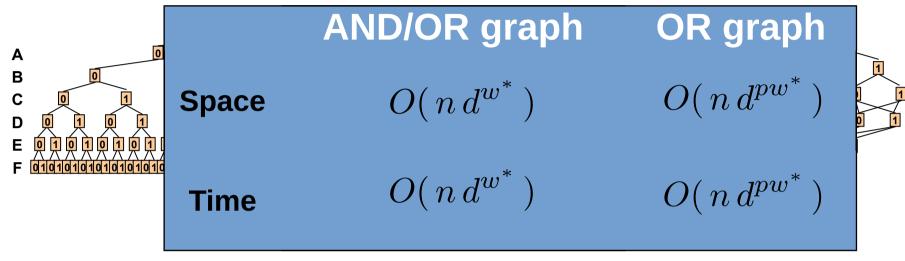
Context minimal AND/OR search graph **18 AND nodes**

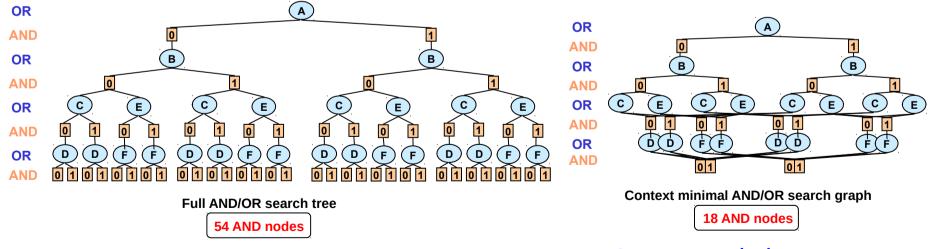
Any query is best computed over the c-minimal AO space

IJCAI 2015

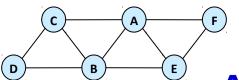


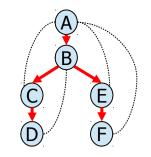


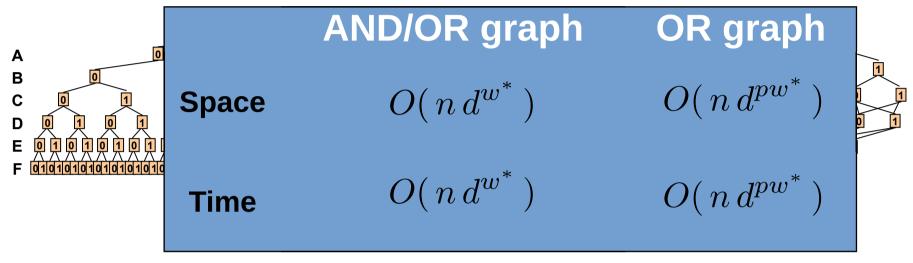


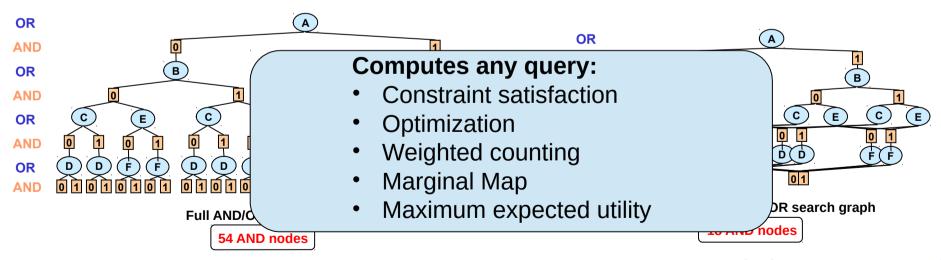


Any query is best computed over the c-minimal AO space







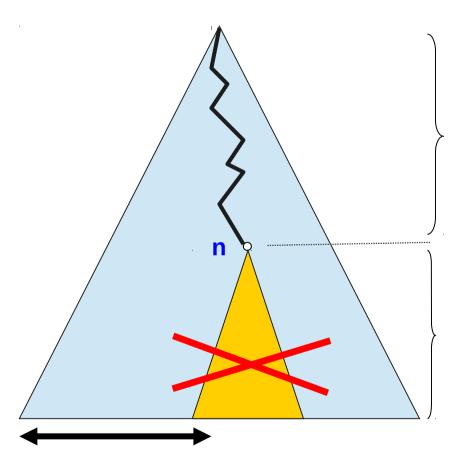


Any query is best computed over the c-minimal AO space

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
 - AND/OR search spaces
 - Depth-first AND/OR branch and bound
 - Best-first AND/OR search
 - Advanced searches and tasks
- Exploiting parallelism
- Software

Classic Depth-First Branch and Bound



Each node is a COP subproblem (defined by current conditioning)

g(n): cost of the path from root to n

$$\tilde{f}(n) = g(n) + \tilde{h}(n)$$

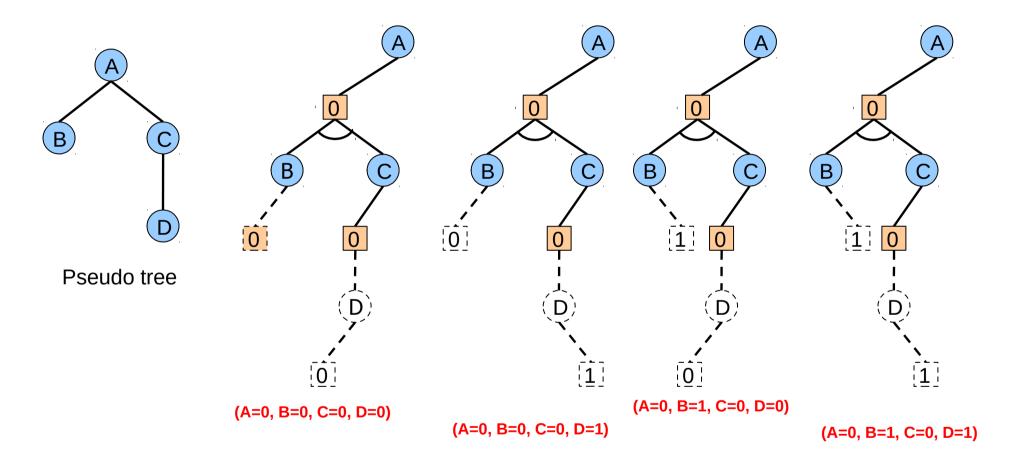
(lower bound)

Prune if
$$\tilde{f}(n) \geq UB$$

 $\tilde{h}(n)$: under-estimates optimal cost below n

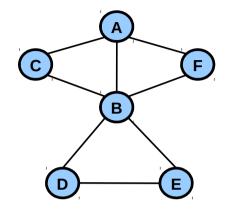
(UB) Upper Bound = best solution so far

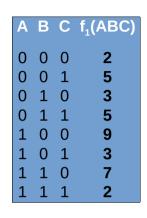
Partial Solution Tree



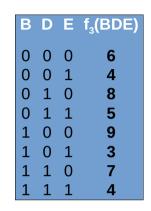
Extension(T') – solution trees that extend T'

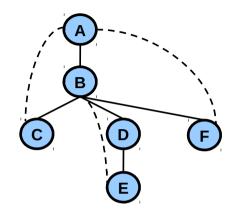
Exact Evaluation Function

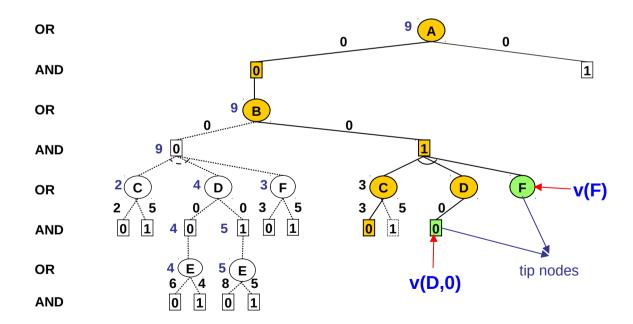




Α	В	F	f ₂ (ABF)
0	0	0	3
0	0	1	5
0	1	0	1
0	1	1	4
1	0	0	6
1	0	1	5
1	1	0	6
1	1	1	5



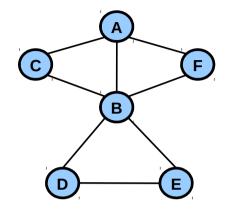


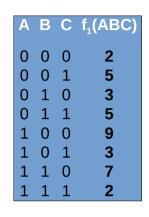


$$f*(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F)$$

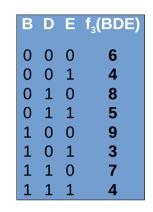
IJCAI 2015

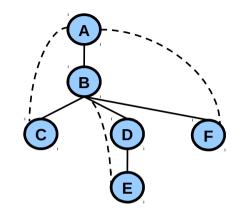
Heuristic Evaluation Function

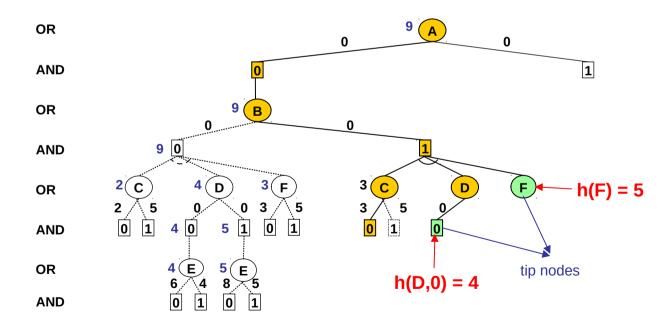




Α	В	F	f ₂ (ABF)
0	0	0	3
0	0	1	5
0	1	0	1
0	1	1	4
1	0	0	6
1	0	1	5
1	1	0	6
1	1	1	5



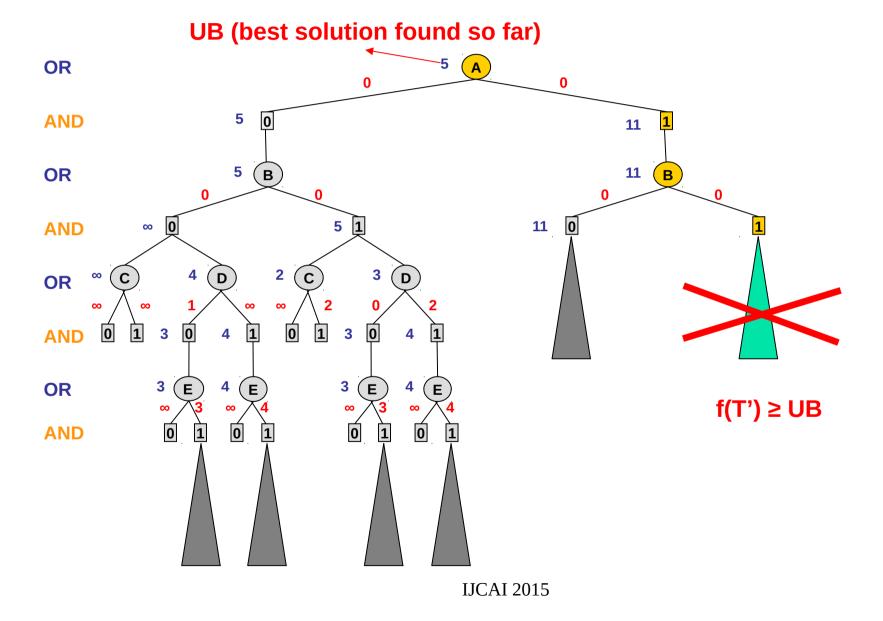




$$f(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) = 12 \le f*(T')$$

IJCAI 2015

AND/OR Branch and Bound Search



AND/OR Branch and Bound (AOBB)

- Associate each node n with a heuristic lower bound h(n) on v(n)
- EXPAND (top-down)
 - Evaluate f(T') and prune search if $f(T') \ge UB$
 - Generate successors of the tip node n
- UPDATE (bottom-up)
 - Update value of the parent p of n
 - OR nodes: minimization
 - AND nodes: summation

AND/OR Branch and Bound with Caching

- Associate each node n with a heuristic lower bound h(n) on v(n)
- EXPAND (top-down)
 - Evaluate f(T') and prune search if $f(T') \ge UB$
 - If not in cache, generate successors of the tip node n
- UPDATE (bottom-up)
 - Update value of the parent p of n
 - OR nodes: minimization
 - AND nodes: summation
 - Cache value of n based on context

• AND/OR decomposition vs. depth-first search:

- Compromises anytime property of AOBB.

processing

solved optimally

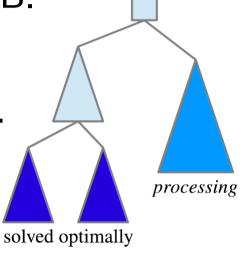
AND/OR decomposition vs. depth-first search:

- Compromises anytime property of AOBB.

Breadth-Rotating AOBB:

- Combined breadth/depth-first schedule.

- Maintains depth-first complexity.
- Superior experimental results.



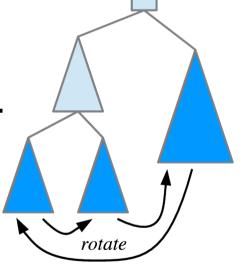
AND/OR decomposition vs. depth-first search:

Compromises anytime property of AOBB.

Breadth-Rotating AOBB:

- Combined breadth/depth-first schedule.

- Maintains depth-first complexity.
- Superior experimental results.



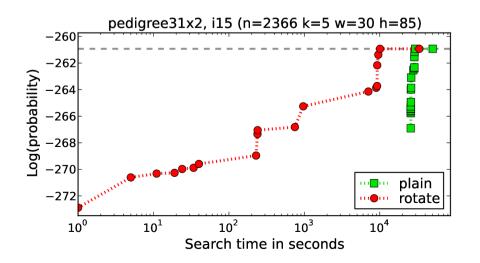
• AND/OR decomposition vs. depth-first search:

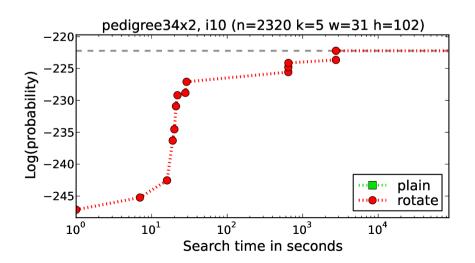
- Compromises anytime property of AOBB.

Breadth-Rotating AOBB:

Combined breadth/depth-first schedule.

- Maintains depth-first complexity.
- Superior experimental results.





rotate

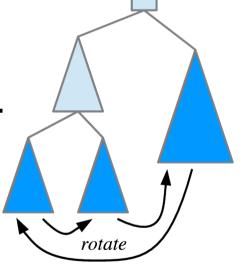
AND/OR decomposition vs. depth-first search:

Compromises anytime property of AOBB.

Breadth-Rotating AOBB:

- Combined breadth/depth-first schedule.

- Maintains depth-first complexity.
- Superior experimental results.



AND/OR decomposition vs. depth-first search:

- Compromises anytime property of AOBB.

Breadth-Rotating AOBB:

- Combined breadth/depth-first schedule.

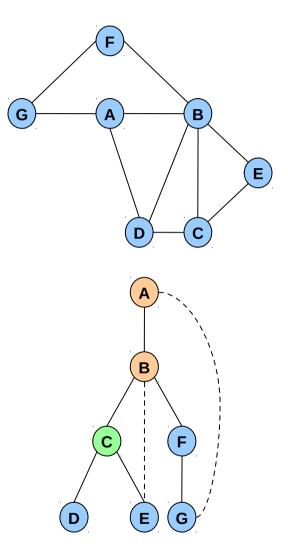
- Maintains depth-first complexity.
- Superior experimental results.

 Won PASCAL'11 Inference Challenge MPE track.

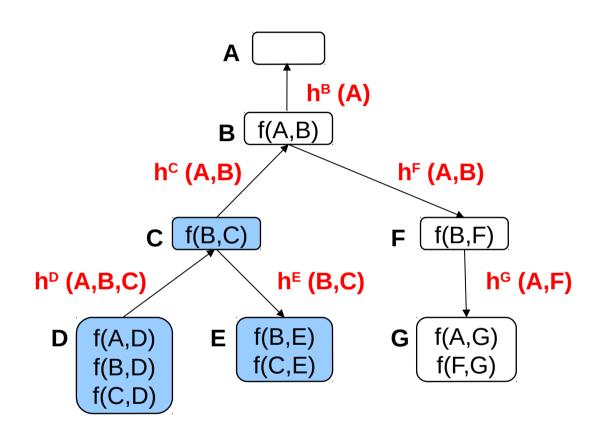
Mini-Bucket Heuristics for AND/OR Search

- The depth-first and best-first AND/OR search algorithms use h(n) that can be computed:
 - Static Mini-Bucket Heuristics
 - Pre-compiled
 - Reduced computational overhead
 - Less accurate
 - Static variable ordering
 - Dynamic Mini-Bucket Heuristics
 - Computed dynamically, during search
 - Higher computational overhead
 - High accuracy
 - Dynamic variable ordering

Bucket Elimination

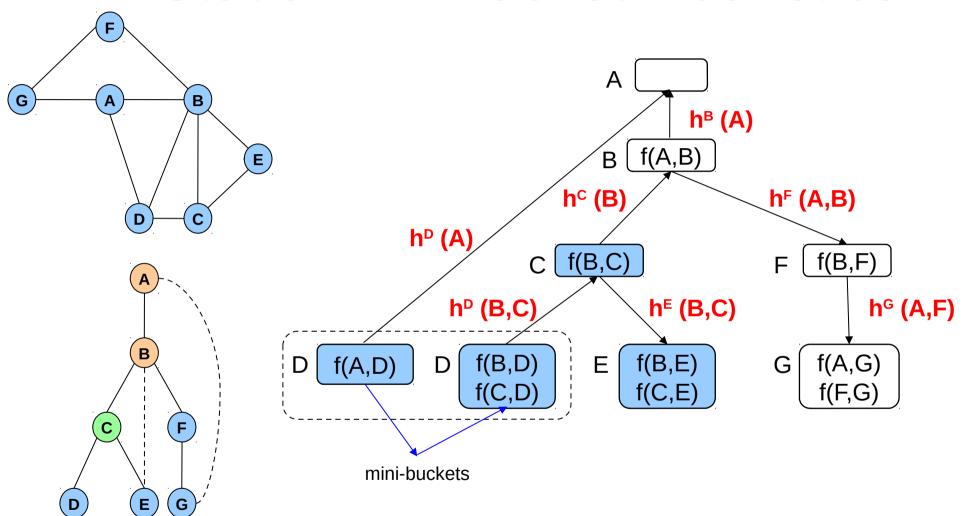


Ordering: (A, B, C, D, E, F, G)



Exact evaluation of (A=a, B=b) below C: $h^*(a, b, C) = h^D(a, b, C) + h^E(b, C)$

Static Mini-Bucket Heuristics

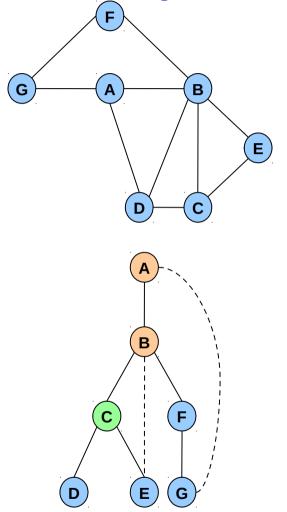


Ordering: (A, B, C, D, E, F, G)

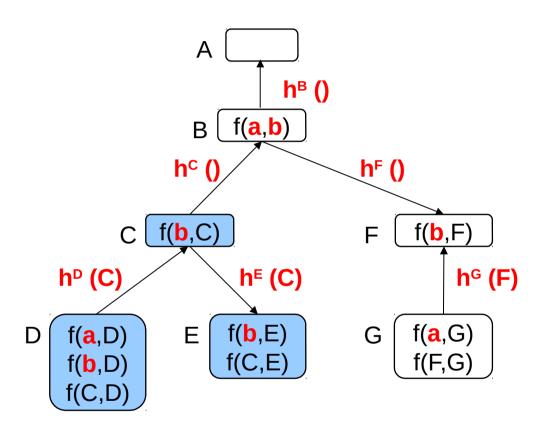
$$h(a, b, C) = h^{D}(a) + h^{D}(b, C) + h^{E}(b, C)$$

 $\leq h^{*}(a, b, C)$

Dynamic Mini-Bucket Heuristics



Ordering: (A, B, C, D, E, F, G)



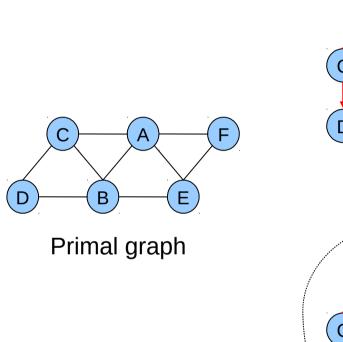
$$h(a, b, C) = h^{D}(C) + h^{E}(C)$$

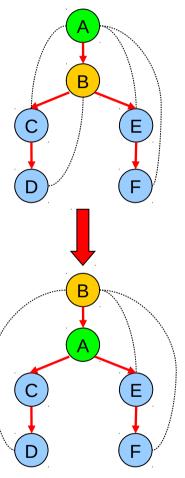
= $h^{*}(a, b, C)$

Dynamic Variable Orderings

- Variable ordering heuristics
 - Semantic-based
 - Aim at shrinking the size of the search space based on context and current value assignments
 - e.g., min-domain, min-dom/wdeg, min reduced cost
 - Graph-based
 - Aim at maximizing the problem decomposition
 - e.g., pseudo tree arrangement

Partial Variable Orderings (PVO)





Variable Groups/Chains:

- {A,B}
- {C,D}
- {E,F}

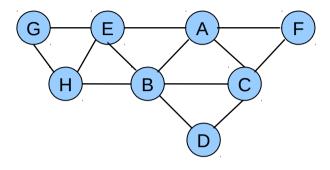
Instantiate {A,B} before {C,D} and {E,F}

*{A,B} is a separator/chain

Variables on chains in the pseudo tree can be instantiated dynamically, based on some semantic ordering heuristic

^{*} Similar idea is exploited by **BTD** (Backtracking with Tree Decomposition) [Jegou and Terrioux, 2004]

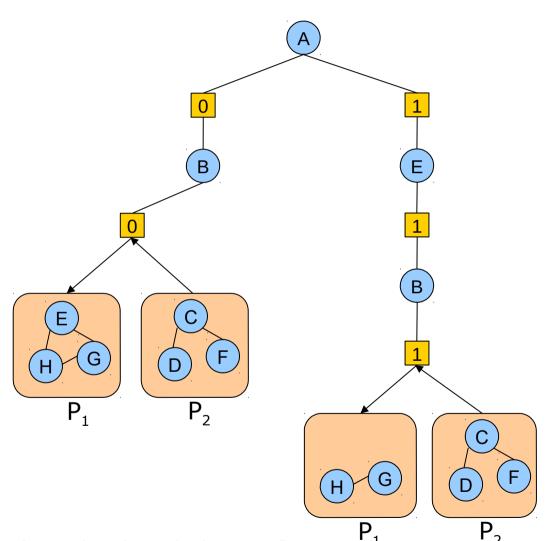
Full Dynamic Variable Ordering (DVO)



 $\begin{array}{ll} \textbf{Domains} & D_{A} = \{0,1\} & D_{B} = \{0,1,2\} \\ & D_{E} = \{0,1,2,3\} \\ & D_{C} = D_{D} = D_{F} = D_{G} = D_{H} = D_{E} \end{array}$

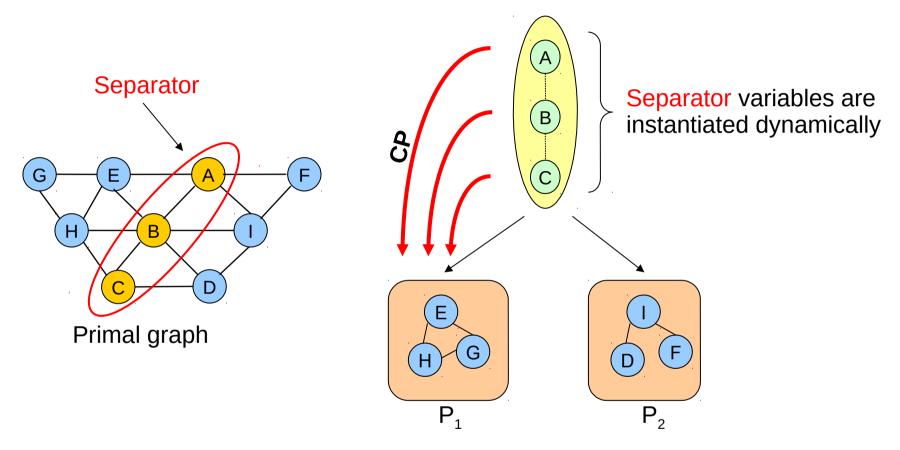
Cost functions

A B	f(AB)	Α	Е	f(AE)
0 0	3	0	0	0
0 1	8	0	1	5
0 2	8	0	2	1
1 0	4	0	3	4
1 1	0	1	0	8
1 2	6	1	1	8
	<u> </u>	1	2	0
		1	3	5



^{*} Similar idea exploited in #SAT [Bayardo and Pehoushek, 2000]

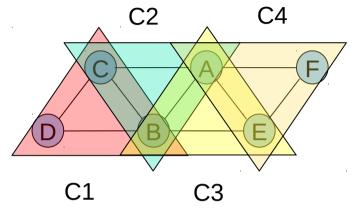
Dynamic Separator Ordering (DSO)

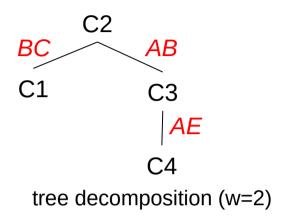


Constraint Propagation may create singleton variables in P1 and P2 (changing the problem's structure), which in turn may yield smaller separators

* Similar idea exploited in SAT [Li and val Beek, 2004]

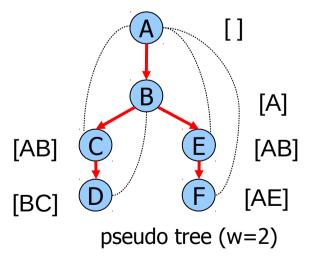
Backtrack with Tree Decomposition





BTD:

- AND/OR graph search (caching on separators)
- Partial variable ordering (dynamic inside clusters)
- Maintaining local consistency



Backtrack with Tree Decomposition

Before the search

- Merge clusters with a separator size > p
- Time O(k exp(w*)), Space O(exp(p))
- More freedom for variable ordering heuristics

Properties

- BTD(-1) is Depth-First Branch and Bound
- BTD(0) solves connected components independently
- BTD(1) exploits bi-connected components
- BTD(s) is Backtrack with Tree Decomposition
 (s: largest separator size)

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
 - AND/OR search spaces
 - Depth-first AND/OR branch and bound
 - Best-first AND/OR search
 - Advanced searches and tasks
- Exploiting parallelism
- Software

Outline

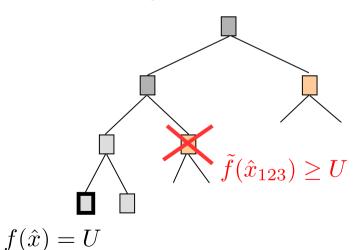
- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
 - AND/OR search spaces
 - Depth-first AND/OR branch and bound
 - Best-first AND/OR search
 - Advanced searches and tasks
- Exploiting parallelism
- Software

Basic Heuristic Search Schemes

Heuristic function $\tilde{f}(\hat{x}_p)$ computes a lower bound on the best extension of partial configuration \hat{x}_p and can be used to guide heuristic search. We focus on:

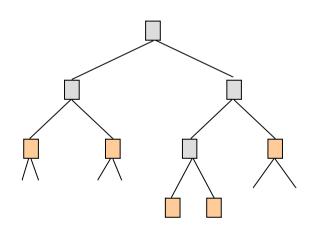
1. Branch-and-Bound

Use heuristic function $\hat{f}(\hat{x}_p)$ to prune the depth-first search tree Linear space



2. Best-First Search

Always expand the node with the lowest heuristic value $\tilde{f}(\hat{x}_p)$ Needs lots of memory



Best-First Principle

- Best-first search expands first the node with the best heuristic evaluation function among all nodes encountered so far
- Never expands nodes whose cost is beyond the optimal one, unlike depth-first algorithms [Dechter and Pearl, 1985]
- Superior among memory intensive algorithms employing the same heuristic evaluation function

Best-First AND/OR Search (AOBF)

- Maintains the explicated AND/OR search graph in memory
- Top-Down Step (EXPAND)
 - Trace down marked connectors from root
 - E.g., best partial solution tree
 - Expand a tip node n by generating its successors n'
 - Associate each successor with heuristic estimate h(n')
 - Initialize q(n) = h(n') (q-value q(n) is a lower bound on v(n)

Bottom-Up Step (UPDATE)

- Update node values q(n)
 - OR nodes: minimization
 - AND nodes: summation
- Mark the most promissing partial solution tree from the root
- Label the nodes as SOLVED:
 - OR node is SOLVED if marked child is SOLVED
 - AND node is SOLVED if all children are SOLVED
- Terminate when root node is SOLVED

AOBF versus AOBB

- AOBF with the same heuristic as AOBB is likely to expand the smallest search space
 - This translates into significant time savings
- AOBB can use far less memory by avoiding for example dead-caches, whereas AOBF keeps in memory the explicated search graph
- AOBB is anytime, whereas AOBF is not

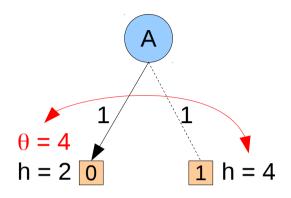
Recursive Best-First AND/OR Search

- AND/OR search algorithms (AOBB and AOBF)
 - AOBB (depth-first): memory efficient but may explore many suboptimal subspaces
 - AOBF (best-first): explores the smallest search space but may require huge memory
- Recursive best-first search for AND/OR graphs
 - Requires limited memory (even linear)
 - Nodes are explored in best-first order
 - Main issue: some nodes will be re-expanded (want to minimize this)

Recursive Best-First AND/OR Search

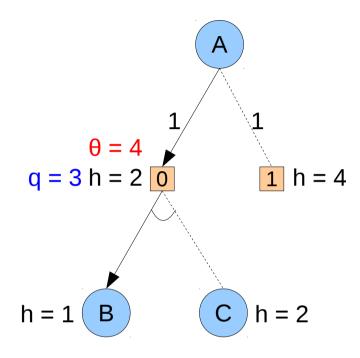
- Transform best-first search (AO* like) into depth-first search using a threshold controlling mechanism (explained next)
 - Based on Korf's classic RBFS
 - Adapted to the context minimal AND/OR graph
- Nodes are still expanded in best-first order
- Node values are updated in the usual manner based on the values of their successors
 - OR nodes by minimization
 - AND nodes by summation
- Some nodes will be re-expanded
 - Use caching (limited memory) based on contexts
 - Use overestimation of the threshold to minimize node re-expansions

RBFAOO – Example (1)



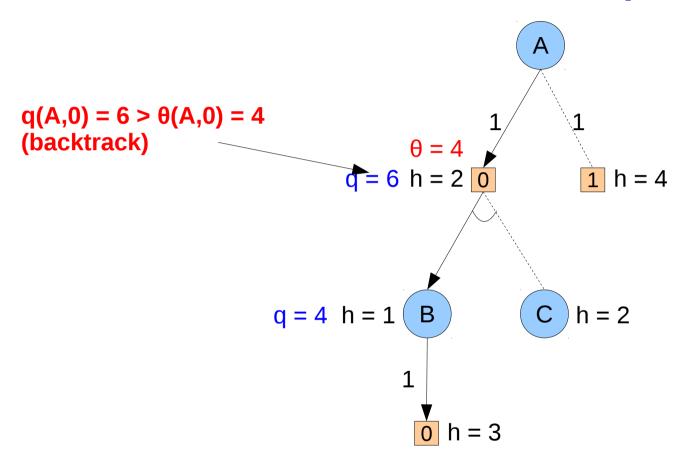
- Expand OR node A by generating its AND successors: (A,0) and (A,1)
- Best successor is (A,0)
- Set threshold $\theta(A,0) = 4$ indicates next best successor is (A,1)
 - We can backtrack to (A,1) if the updated cost of the subtree below (A,0) exceeds the threshold $\theta = 4$

RBFAOO – Example (2)



- Expand AND node (A,0) by generating its OR successors: B and C
- Update node value q(A,0) = h(B) + h(C) = 3 threshold OK

RBFAOO – Example (3)



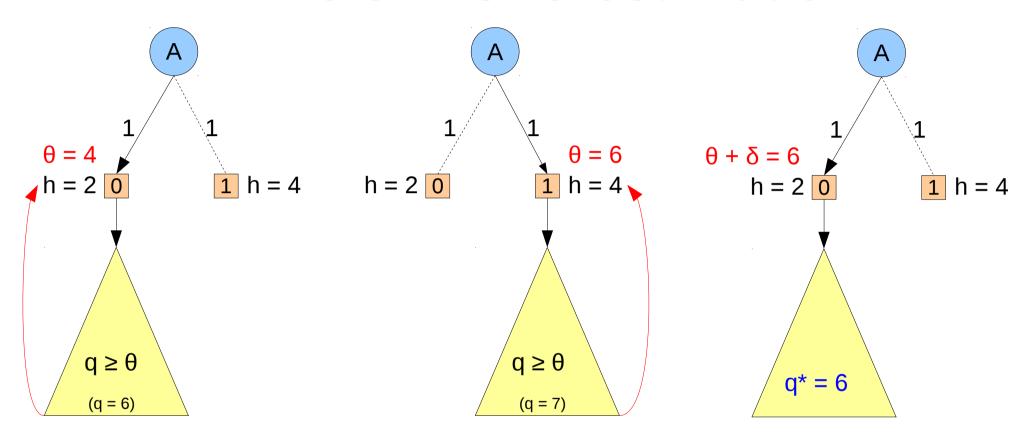
- Expand OR node B by generating its AND successor: (B,0)
- Update node values q(B) = 4 and q(A,0) = 6 -threshold NOT OK

RBFAOO – Example (4)



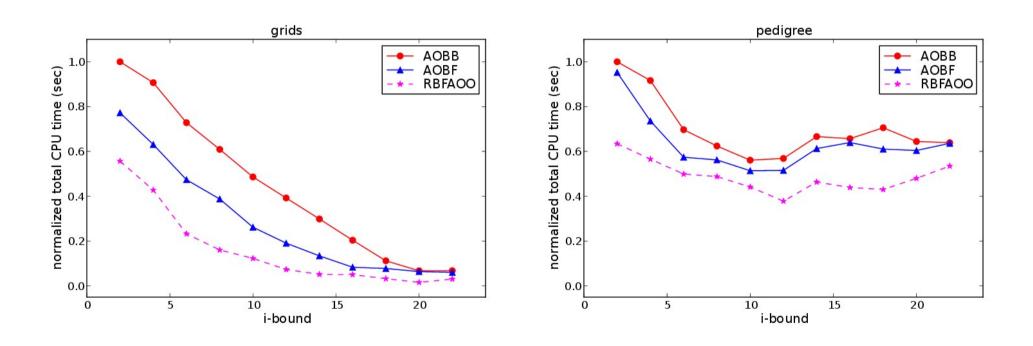
- Backtrack to (A,0) and select next best node (A,1)
- Set threshold $\theta(A,1) = 6$ (updated value of the left subtree)
- Cache (minimize re-expansion) or discard left subtree

RBFAOO – Overestimation



- Some of the nodes in the subtree below (A,0) may be re-expanded
- Simple overestimation scheme for minimizing the node re-expansions
- Inflate the threshold with some small δ : $\theta' = \theta + \delta$ ($\delta > 0$)
 - In practice, we determine δ experimentally (e.g., δ = 1 worked best)

Empirical Evaluation



Grid and Pedigree benchmarks; Time limit 1 hour.

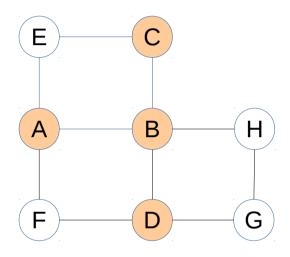
Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
 - AND/OR search spaces
 - Depth-first AND/OR branch and bound
 - Best-first AND/OR search
 - Advanced searches and tasks
- Exploiting parallelism
- Software

Marginal MAP

- Occurs in many applications involving hidden variables
- Seeks a partial configuration of variables with maximum marginal probability
- Complexity: NPPP-complete
- State-of-the-art is DFS BnB (over the MAP variables)
 - Guided by unconstrained join-tree based upper bounds
- Advances
 - AND/OR Branch and Bound and Best-First AND/OR Search algorithms
 - Heuristics based on Weighted Mini-Buckets
 - WMB-MM: single pass with cost-shifting by moment matching
 - WMB-JG: iterative updates by message passing along the join-graph

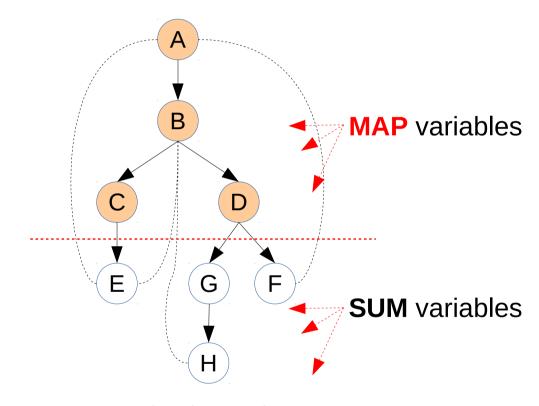
AND/OR Search Space for MMAP



primal graph

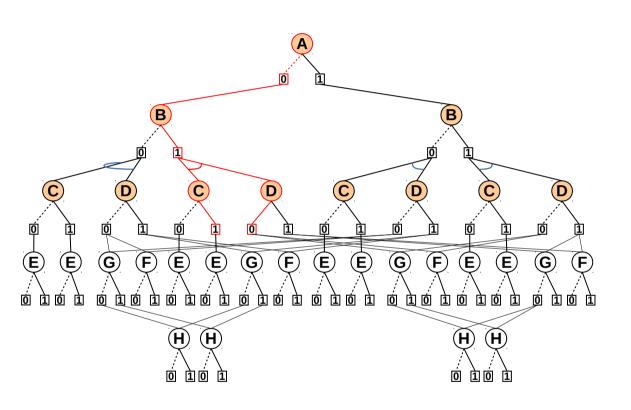
$$X_M = \{A, B, C, D\}$$

$$X_S = \{E, F, G, H\}$$



constrained pseudo tree

AND/OR Search Space for MMAP



- Node types
 - OR (MAP): max
 - OR (SUM): sum
 - AND: multiplication
- Arc weights
 - derived from input F
- Problem decomposition over MAP variables

AND/OR Search Algorithms

AOBB: Depth-First AND/OR Branch and Bound

- Depth-first traversal of the AND/OR search graph
- Prune only at OR nodes that correspond to MAP variables
- Cost of MAP assignment obtained by searching the SUM sub-problem

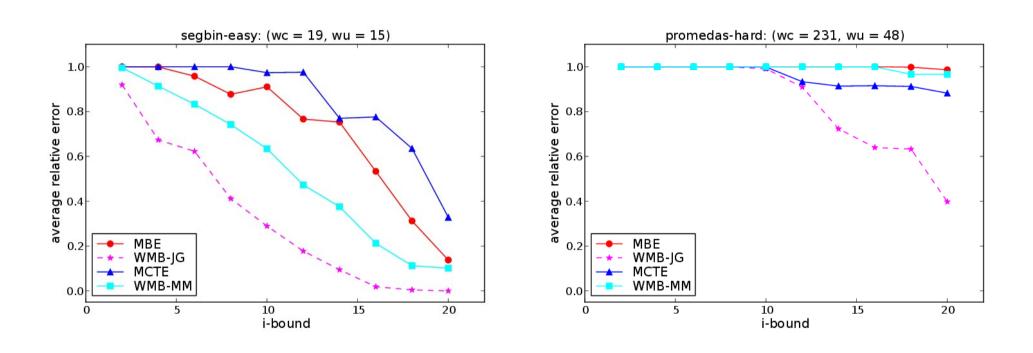
AOBF: Best First AND/OR Search

- Best-first (AO*) traversal of the AND/OR space corresponding to the MAP variables
- SUM subproblem solved exactly

RBFAOO: Recursive Best-First AND/OR Search

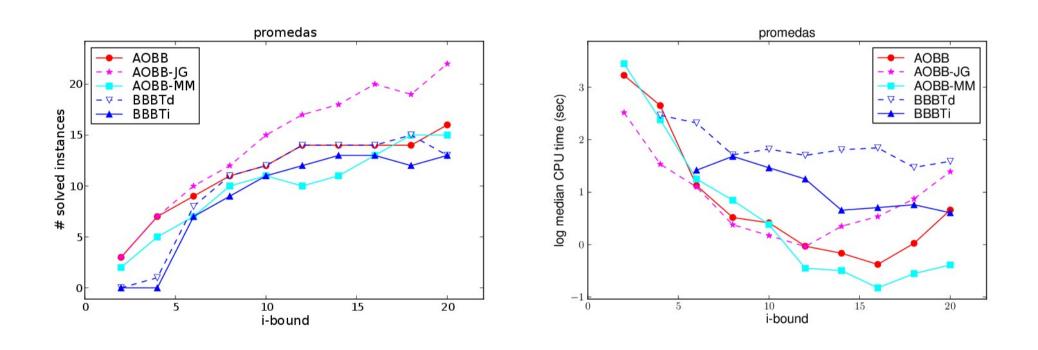
- Recursive best-first traversal of the AND/OR graph
- For SUM subproblems, the threshold is set to ∞ (equivalent to depthfirst search)

Quality of the Upper Bounds



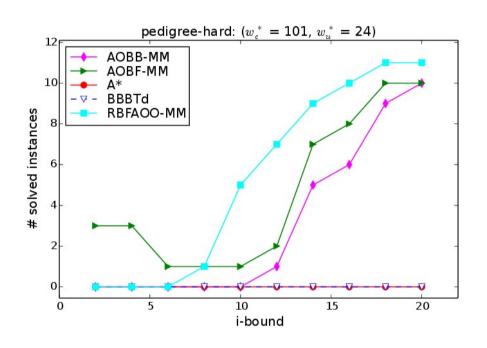
Average relative error wrt tightest upper bound. 10 iterations for WMB-JG(i).

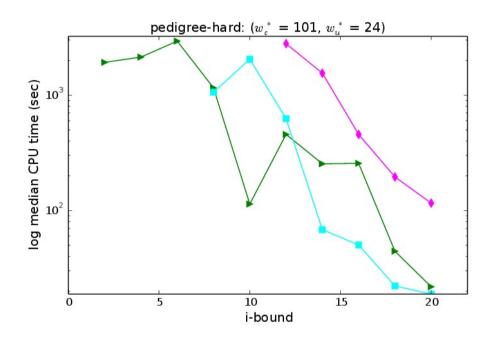
AOBB versus BB



Number of instances solved and median CPU time (sec). 10 iterations for WMB-JG(i).

AOBF/RBFAOO versus AOBB



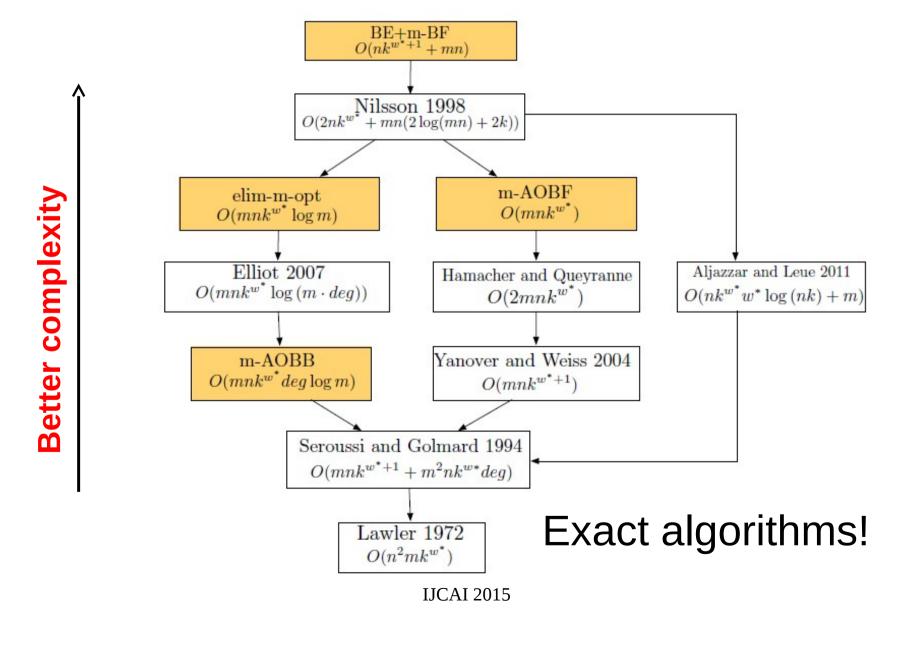


Number of instances solved and median CPU time (sec). Time limit 1 hour.

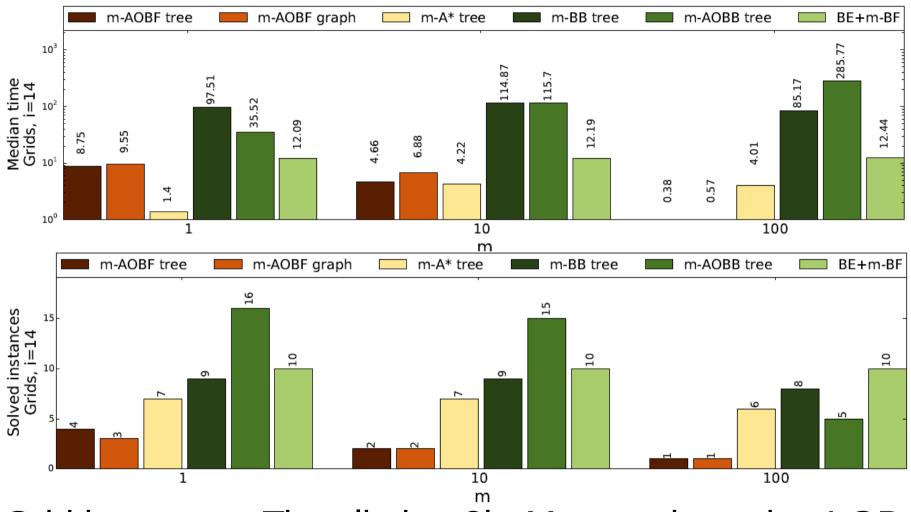
Searching for M Best Solutions

- New inference and search based algorithms for the task of finding the m best solutions
 - Search: m-A*, m-BB
 - Inference: elim-m-opt, BE+m-BF
- Extended m-A* and m-BB to AND/OR search spaces for graphical models, yielding m-AOBB and m-AOBF
- Competitive and often superior to alternative (approximate) approaches based on LP relaxations
 - e.g., [Fromer and Globerson, 2009], [Batra, 2012]

Searching for M Best Solutions



Empirical Evaluation



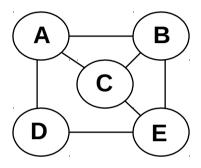
Grid instances; Time limit = 3h; Memory bound = 4 GB

Hybrid of Variable Elimination and Search

Tradeoff space and time

Search Basic Step: Conditioning

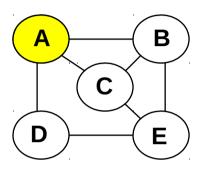
Variable Branching by Conditioning



Search Basic Step: Conditioning

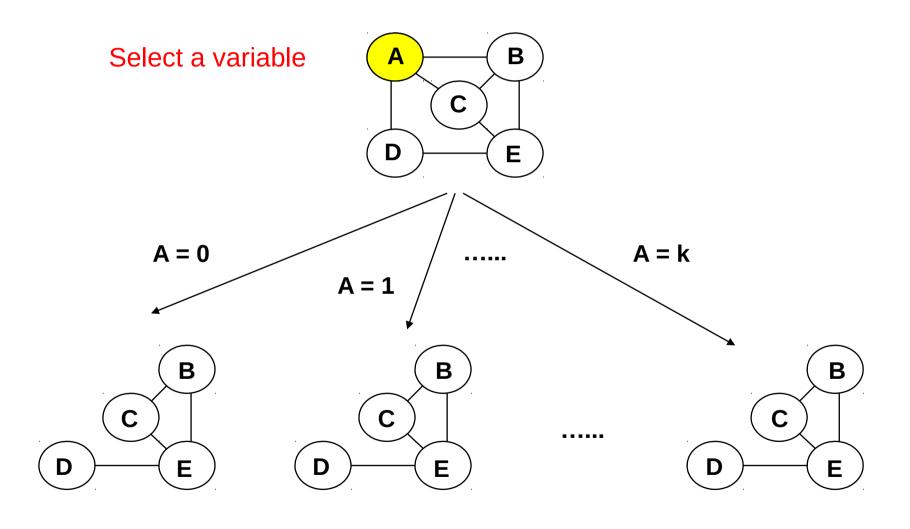
Variable Branching by Conditioning

Select a variable



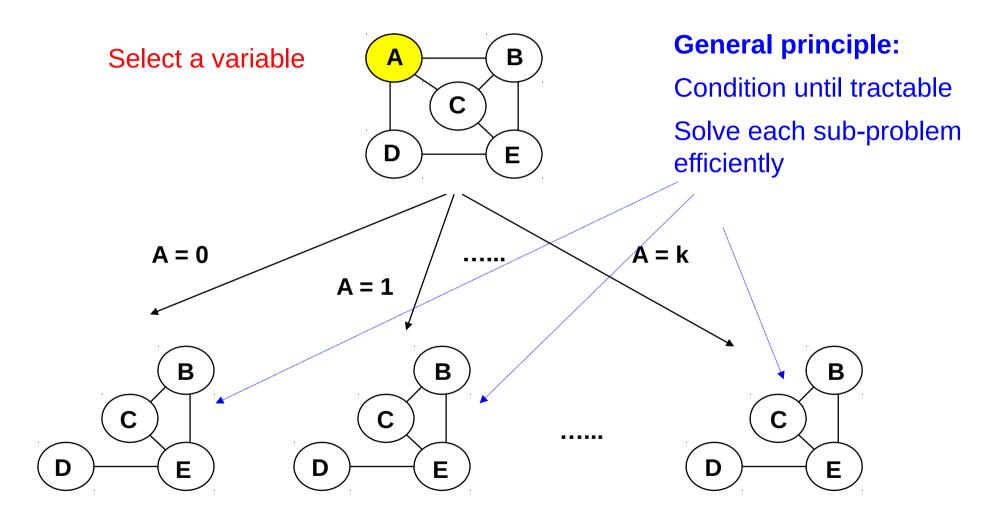
Search Basic Step: Conditioning

Variable Branching by Conditioning



Search Basic Step: Conditioning

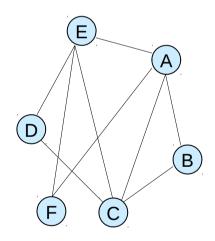
Variable Branching by Conditioning

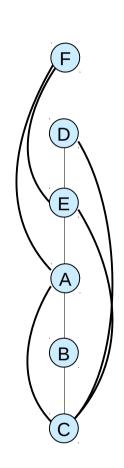


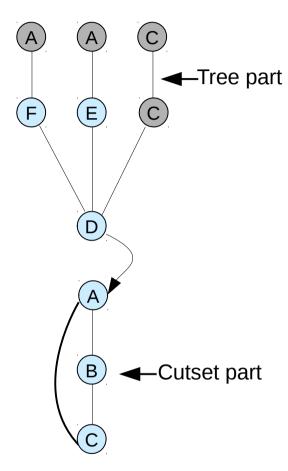
The Cycle-Cutset Scheme

Condition until Treeness

- Cycle-cutset
- i-cutset
- C(i)-size of i-cutset



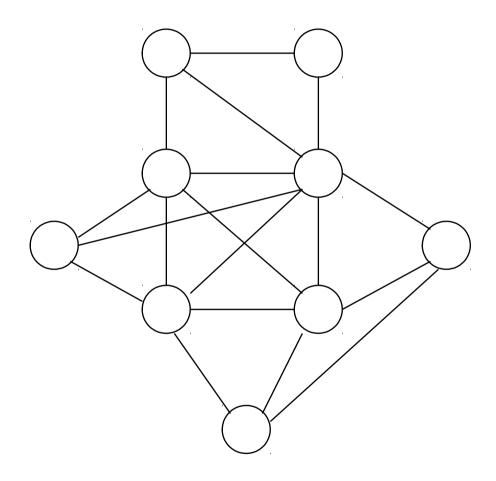




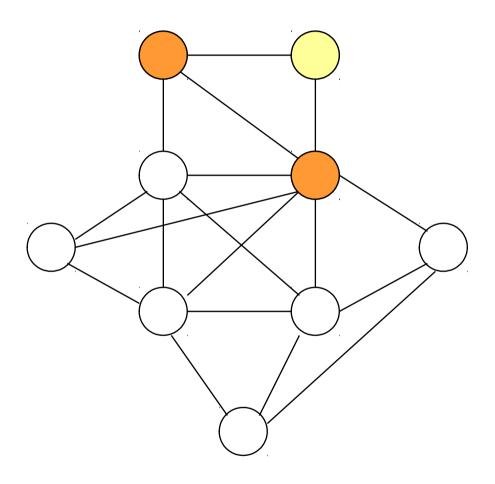
Space: exp(i), Time: O(exp(i+c(i))

IJCAI 2015

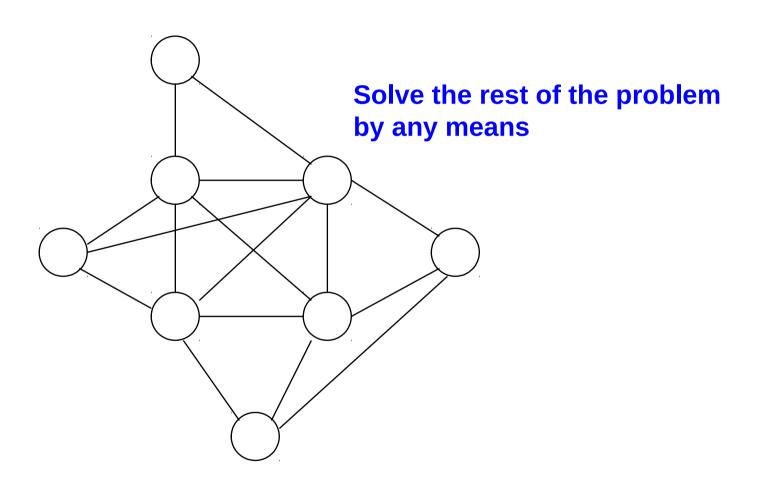
Eliminate First



Eliminate First

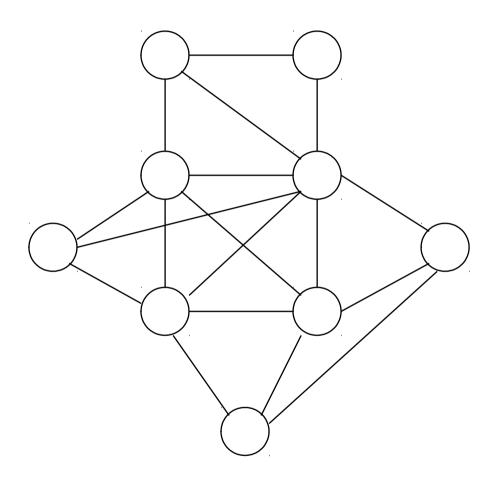


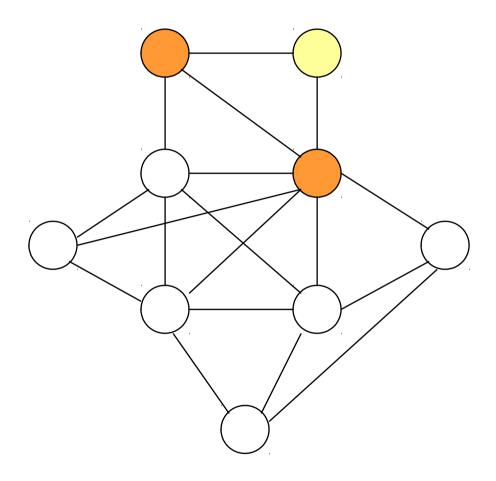
Eliminate First

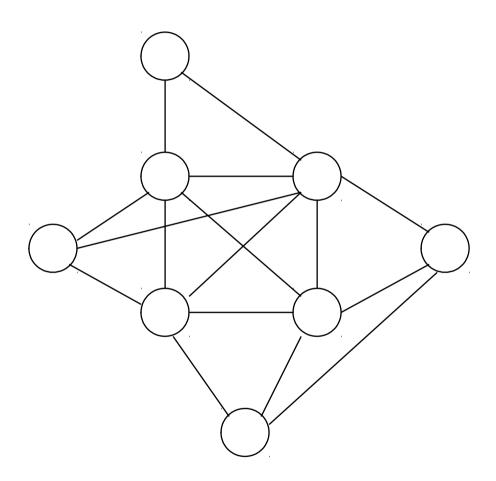


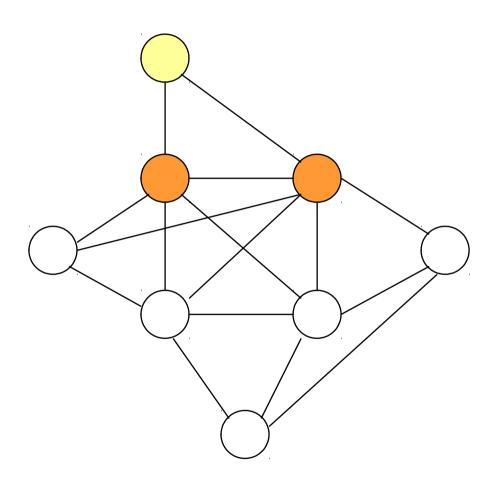
Hybrid Variants

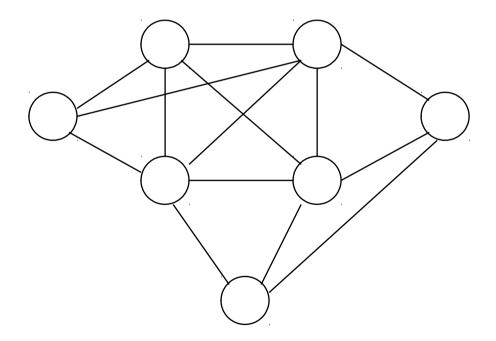
- Condition, condition, condition, ... and then only eliminate (w-cutset, cycle-cutset)
- Eliminate, eliminate, eliminate, ... and then only search
- Interleave conditioning and elimination steps (elim-cond(i), VE+C)

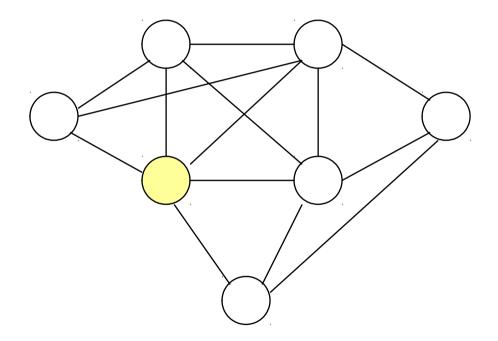


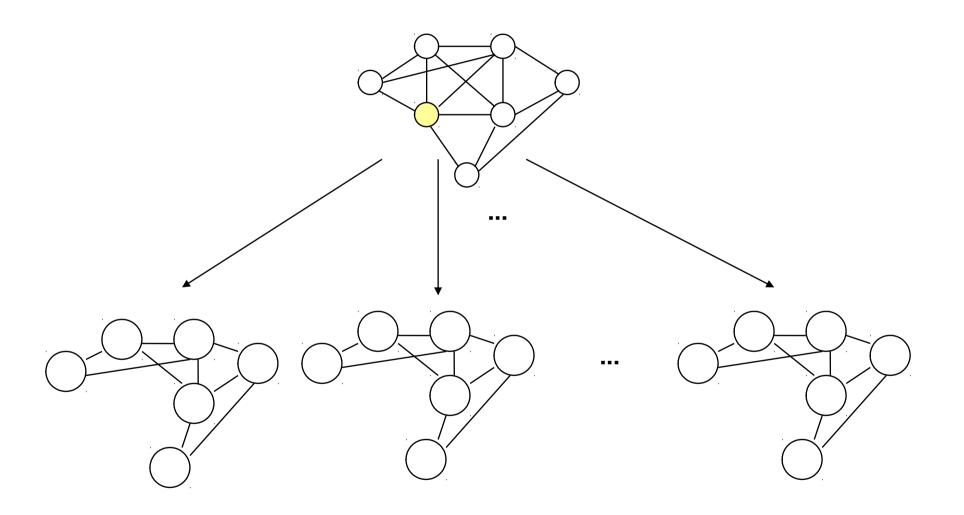








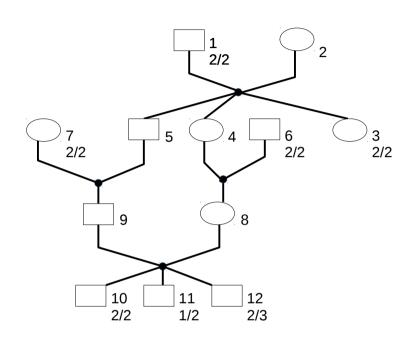




Boosting Search with Variable Elimination

- At each search node
 - Eliminate all unassigned variables with degree ≤ p
 - Select an assigned variable A
 - Branch on the values of A
- Properties
 - BB+VE(-1) is Depth-First Branch and Bound
 - BB+VE(w) is Variable Elimination
 - BB+VE(1) is similar to Cycle-Cutset
 - BB+VE(2) is well suited with soft local consistencies (add binary constraints only, independent of elimination order)

Mendelian Error Detection



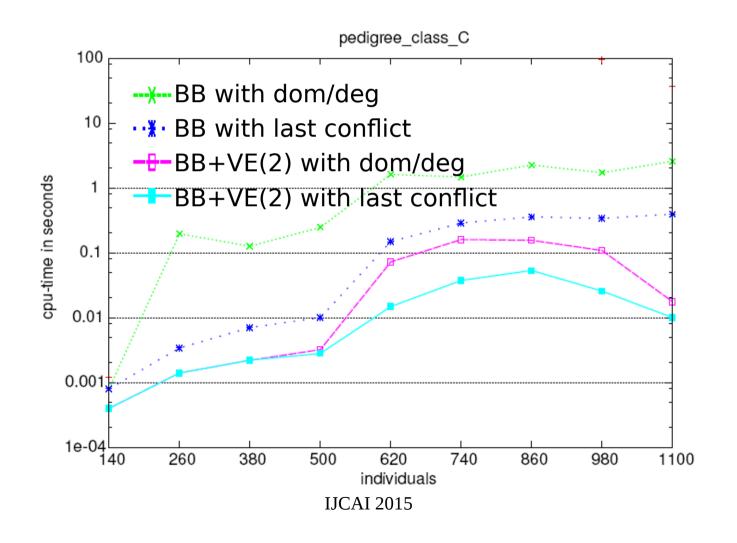
- Given a pedigree and partial observations (genotypings)
- Find the erroneous genotypings, such that their removal restores consistency

- Checking consistency is NP-complete [Aceto et al, 2004]
- Minimize the number of genotypings to be removed
- Maximize the joint probability of true genotypes (MPE/MAP)

Pedigree problem size: $n \le 20,000$; k = 3-66; $e(3) \le 30,000$

Pedigree

- toulbar2 v0.5 with EDAC and binary branching
- Minimize the number of genotypings to be removed
- CPU time to find and prove optimality on a 3 GHz computer with 16 GB



Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
- Exploiting parallelism
- Software

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
- Exploiting parallelism
 - Distributed and parallel search
- Software

Contributions

- Propose parallel AOBB, first of its kind.
 - Runs on computational grid.
 - Extends parallel tree search paradigm.
 - Two variants with different parallelization logic.
- Analysis of schemes' properties:
 - Performance considerations and trade-offs.
 - Granularity vs. overhead and redundancies.
- Large-scale experimental evaluation:
 - Good parallel performance in many cases.
 - Analysis of some potential performance pitfalls.

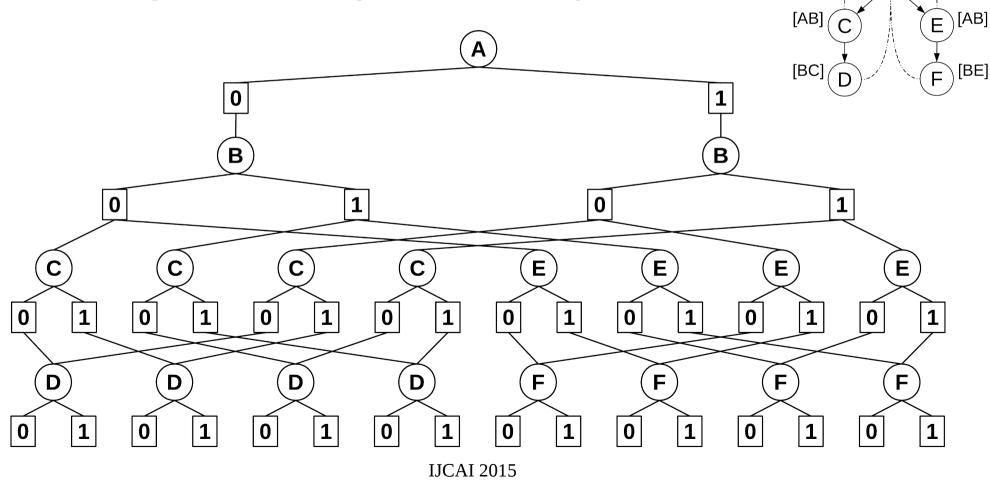
- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.
- Computational grid framework:
 - Independent hosts, limited or no communication.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.
- Computational grid framework:
 - Independent hosts, limited or no communication.
- Parallel tree search ("stack splitting"):
 - Typically uses shared memory for dynamic load balancing and cost bound updates for BaB.
 - Not feasible in grid setup.

- Task parallelism (vs. data parallelism):
 - Extensive computation on small input.
- Computational grid framework:
 - Independent hosts, limited or no communication.
- Parallel tree search ("stack splitting"):
 - Typically uses shared memory for dynamic load balancing and cost bound updates for BaB.
 - Not feasible in grid setup.
- Motivation: Superlink Online.
 - Distributed linkage (likelihood) computation.

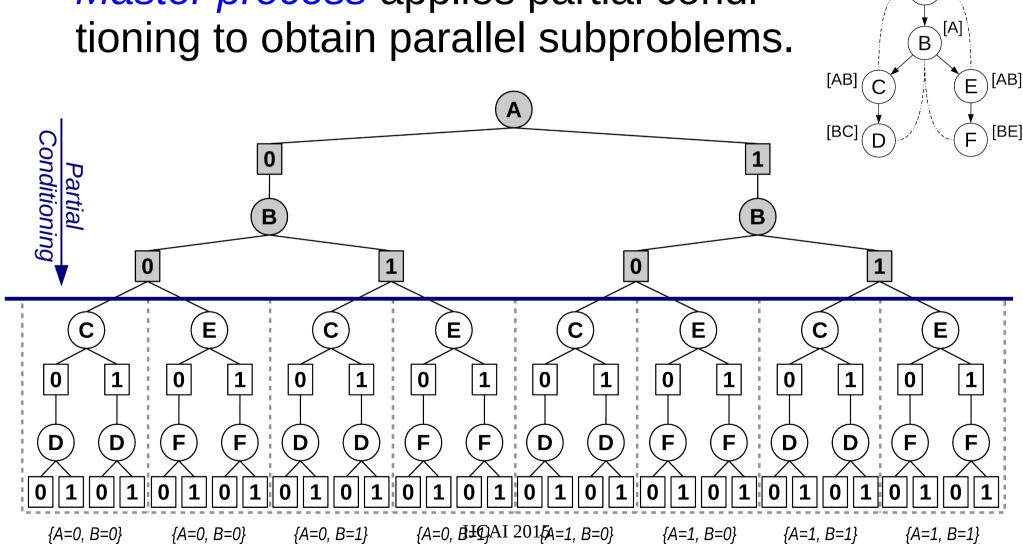
• *Master process* applies partial conditioning to obtain parallel subproblems.



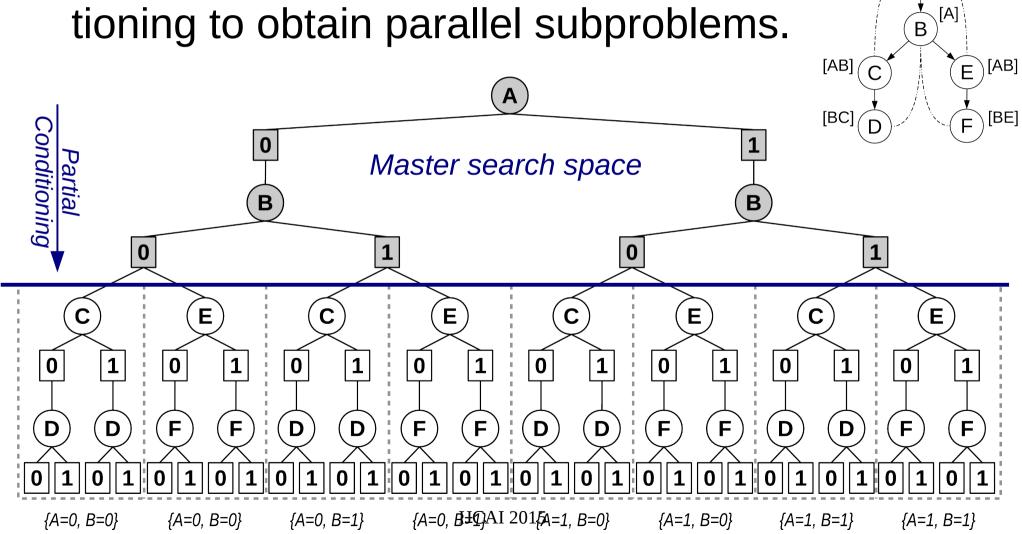
• Master process applies partial conditioning to obtain parallel subproblems. [AB] [AB] [BC] [BE] Conditioning В 0 1 0 Ε E Ε \mathbf{E} 0 0 1 0

0

• Master process applies partial condi-



• Master process applies partial condi-



• Master process applies partial conditioning to obtain parallel subproblems. [AB] [AB] [BC] [BE] Conditioning Master search space В Parallelization frontier E 0 0 0

{A=0, B±QAI 2015A=1, B=0}

{A=1, B=0}

 $\{A=1, B=1\}$

 $\{A=1, B=1\}$

 $\{A=0, B=0\}$

 $\{A=0, B=0\}$

 $\{A=0, B=1\}$

• Master process applies partial conditioning to obtain parallel subproblems. [AB] [AB] [BC] [BE] Conditioning Master search space В Parallelization frontier E 0 {A=0, **B±Q**AI 201**5**A=1, B=0} $\{A=0, B=0\}$ $\{A=0, B=0\}$ $\{A=0, B=1\}$ {A=1, B=0} {A=1, B=1} $\{A=1, B=1\}$

8 independent subproblem search spaces

• Master process applies partial conditioning to obtain parallel subproblems. [AB] [AB] [BC] [BE] Conditioning Master search space В Parallelization frontier E {A=0, **B±Q**AI 201**5**A=1, B=0} $\{A=0, B=0\}$ $\{A=0, B=0\}$ $\{A=0, B=1\}$ {A=1, B=0} {A=1, B=1} $\{A=1, B=1\}$

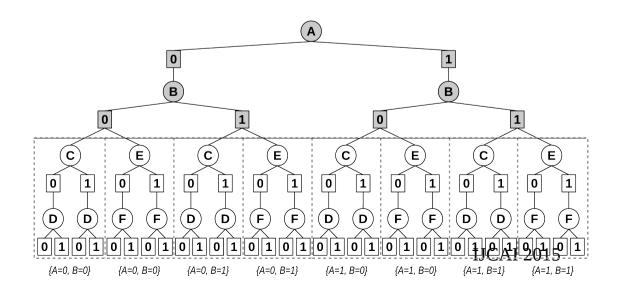
8 independent subproblem search spaces

• Master process applies partial conditioning to obtain parallel subproblems. [AB] [AB] [BC] [BE] Conditioning Master search space В Parallelization frontier E Loss of caching across subproblems! {A=0, B±QAI 2015A=1, B=0} $\{A=0, B=0\}$ $\{A=0, B=0\}$ {A=0, B=1} {*A*=1, *B*=0} {A=1, B=1} $\{A=1, B=1\}$

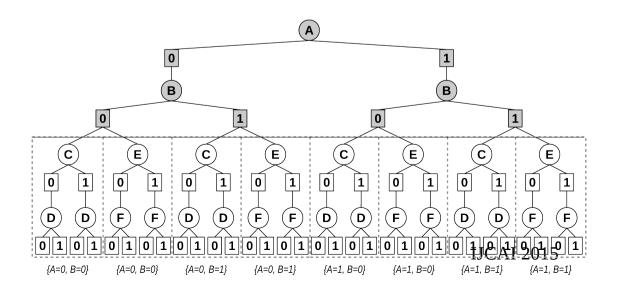
8 independent subproblem search spaces

- Algorithm receives cutoff depth d as input:
 - Expand nodes centrally until depth *d*.
 - At depth d, submit to grid job queue.

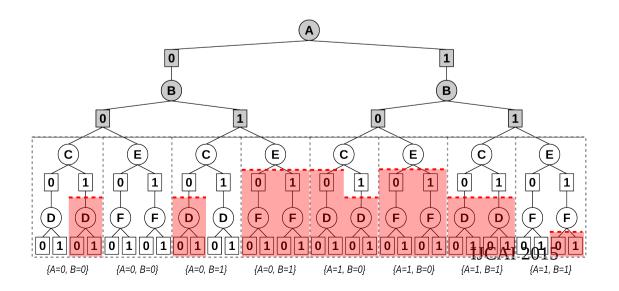
- Algorithm receives cutoff depth d as input:
 - Expand nodes centrally until depth d.
 - At depth d, submit to grid job queue.



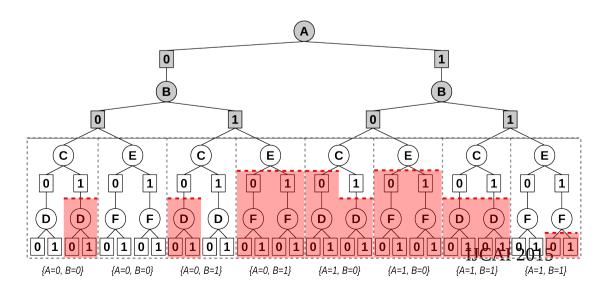
- Algorithm receives cutoff depth d as input:
 - Expand nodes centrally until depth d.
 - At depth d, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

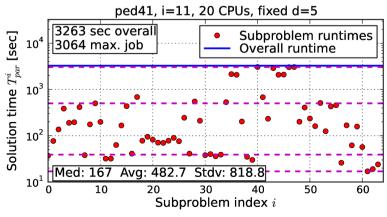


- Algorithm receives cutoff depth d as input:
 - Expand nodes centrally until depth d.
 - At depth d, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.



- Algorithm receives cutoff depth d as input:
 - Expand nodes centrally until depth *d*.
 - At depth d, submit to grid job queue.
- Explored subproblem search spaces potentially very unbalanced.

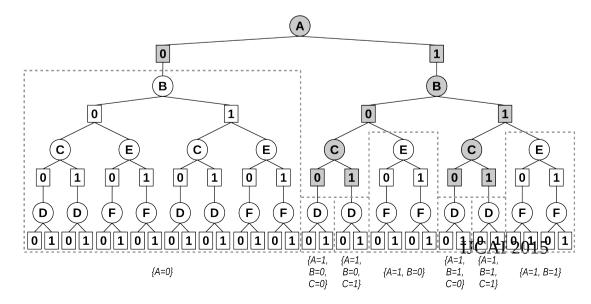




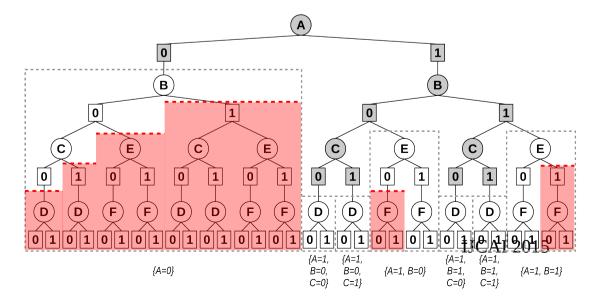
- Given subproblem count p and estimator N:
 - Iteratively deepen frontier until size p reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.

- Given subproblem count p and estimator N:
 - Iteratively deepen frontier until size p reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

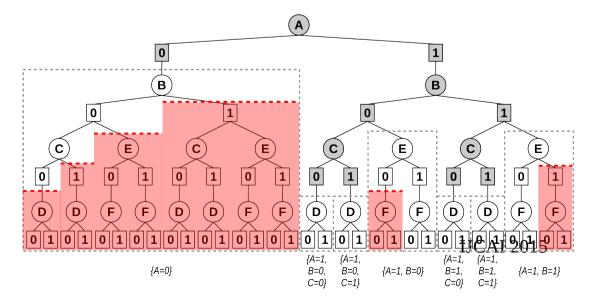
- Given subproblem count p and estimator N:
 - Iteratively deepen frontier until size p reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.

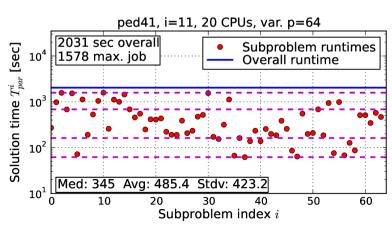


- Given subproblem count p and estimator N:
 - Iteratively deepen frontier until size p reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.



- Given subproblem count p and estimator N :
 - Iteratively deepen frontier until size p reached:
 - Pick subproblem n with largest estimate N(n) and split.
 - Submit subproblems into job queue by descending complexity estimates.
- Hope to achieve better subproblem balance.





Aside: Modeling AOBB Complexity

• Model number of nodes N(n) in subproblem as exp. function of subproblem features $\varphi_i(n)$:

$$N(n) = \exp(\sum_{i} \lambda_{i} \varphi_{i}(n))$$

Aside: Modeling AOBB Complexity

• Model number of nodes N(n) in subproblem as exp. function of subproblem features $\varphi_i(n)$:

$$N(n) = \exp(\sum_{i} \lambda_{i} \varphi_{i}(n))$$

- Logarithm yields *linear regression* problem.
 - Minimize MSE with Lasso regularization. [Tibshirani]

$$\frac{1}{m} \sum_{j=1}^{m} \left(\sum_{i} \lambda_{i} \varphi_{i}(n_{k}) - \log N(n_{k}) \right)^{2} + \alpha \sum_{i} |\lambda_{i}|$$

- Full details:
 - "A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models", UAI 2012.

35 Subproblem Features

- Characterize subproblem:
 - Static, structural properties:
 - Number of variables.
 - Avg. and max. width.
 - Height of sub pseudo tree.
 - State space bound SS.
 - Dynamic, runtime properties:
 - Upper and lower bound on subproblem cost.
 - Pruning ratio and depth of small AOBB probe.
 - only *5n* nodes, very fast.

Subproblem variable statistics (static):

- 1: Number of variables in subproblem.
- 2-6: Min, Max, mean, average, and std. dev. of variable domain sizes in subproblem.

Pseudo tree depth/leaf statistics (static):

- 7: Depth of subproblem root in overall search space.
- 8-12: Min, max, mean, average, and std. dev. of depth of subproblem pseudo tree leaf nodes, counted from subproblem root.
- 13: Number of leaf nodes in subproblem pseudo tree.

Pseudo tree width statistics (static):

- 14-18: Min, max, mean, average, and std. dev. of induced width of variables within subproblem.
- 19-23: Min, max, mean, average, and std. dev. of induced width of variables within subproblem, conditioned on subproblem root context.

State space bound (static):

24: State space size upper bound on subproblem search space size.

Subproblem cost bounds (dynamic):

- Lower bound L on subproblem solution cost, derived from current best overall solution.
- 26: Upper bound U on subproblem solution cost, provided by mini bucket heuristics.
- 27: Difference U L between upper and lower bound, expressing "constrainedness" of the subproblem.

Pruning ratios (dynamic), based on running AOBB for 5n node expansions:

- 28: Ratio of nodes pruned using the heuristic.
- 29: Ratio of nodes pruned due of determinism (zero probabilities, e.g.)
- 30: Ratio of nodes corresponding to pseudo tree leaf.

AOBB sample (dynamic), based on running AOBB for 5n node expansions:

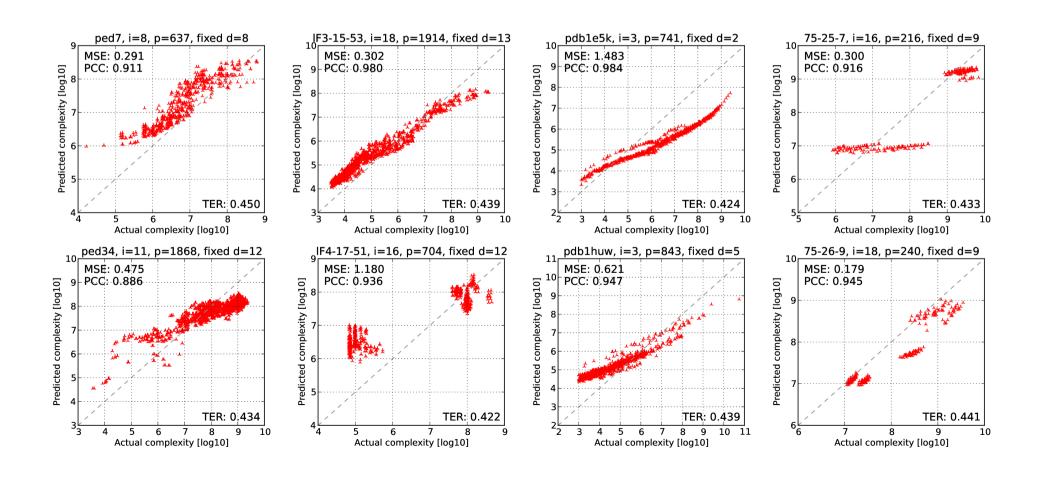
- 31: Average depth of terminal search nodes within probe.
- 32: Average node depth within probe (denoted \bar{d}).
- 33: Average branching degree, defined as $\sqrt[d]{5n}$.

Various (static):

- 34: Mini bucket i-bound parameter.
- 35: Max. subproblem variable context size minus mini bucket *i*-bound.

Example Estimation Results

- Across subproblems from several domains.
 - Hold out test data for model learning.



- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.
- Parallel AOBB performance metrics:
 - T_{par} : parallel runtime including central preprocessing.
 - S_{par} : Parallel speedup T_{seq} / T_{par} .

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.
- Parallel AOBB performance metrics:
 - T_{par} : parallel runtime including central preprocessing.
 - S_{par} : Parallel speedup T_{seq} / T_{par} .
 - N_{par} : Node expansions across all subproblems.
 - O_{par} : Relative parallel overhead N_{par} / N_{seq} .

- Sequential AOBB performance baseline:
 - T_{seq} : sequential runtime.
 - N_{seq} : number of sequential node expansions.
- Parallel AOBB performance metrics:
 - T_{par} : parallel runtime including central preprocessing.
 - S_{par} : Parallel speedup T_{seq} / T_{par} .
 - N_{par} : Node expansions across all subproblems.
 - O_{par} : Relative parallel overhead N_{par} / N_{seq} .
 - U_{par} : Avg. processor utilization, relative to longest.

Performance Considerations

- Amdahl's Law [1967]:
 - "If a fraction p of a computation can be sped up by a factor or s, the overall speedup cannot exceed 1/(1-p+p/s)."
 - Example: 20 minute computation, 30 sec preprocessing.
 Best speedup 40x (regardless of parallel CPUs).

Performance Considerations

- Amdahl's Law [1967]:
 - "If a fraction p of a computation can be sped up by a factor or s, the overall speedup cannot exceed 1/(1-p+p/s)."
 - Example: 20 minute computation, 30 sec preprocessing. Best speedup **40x** (regardless of parallel CPUs).
- Implication of overhead O_{par} :
 - Proposition: assuming parallel overhead o and execution on p CPUs, speedup is bounded by p/o .
 - Example: 500 CPUs, overhead 2 → best speedup 250.
 - In practice even lower due to load balancing, communication delaysets

Parallel AOBB Performance Factors

- Distributed System Overhead:
 - Master preprocessing and parallelization decision.
 - Repeated preprocessing in workers (mini-buckets).
 - Communication and scheduling delays.

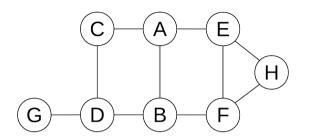
Parallel AOBB Performance Factors

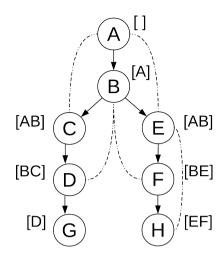
- Distributed System Overhead:
 - Master preprocessing and parallelization decision.
 - Repeated preprocessing in workers (mini-buckets).
 - Communication and scheduling delays.
- Parallel search space redundancies:
 - Impacted pruning, lack of bounds propagation.
 - Local search for near-optimal initial bound.
 - Loss of caching across parallel subproblems.
 - Analyzed subsequently.

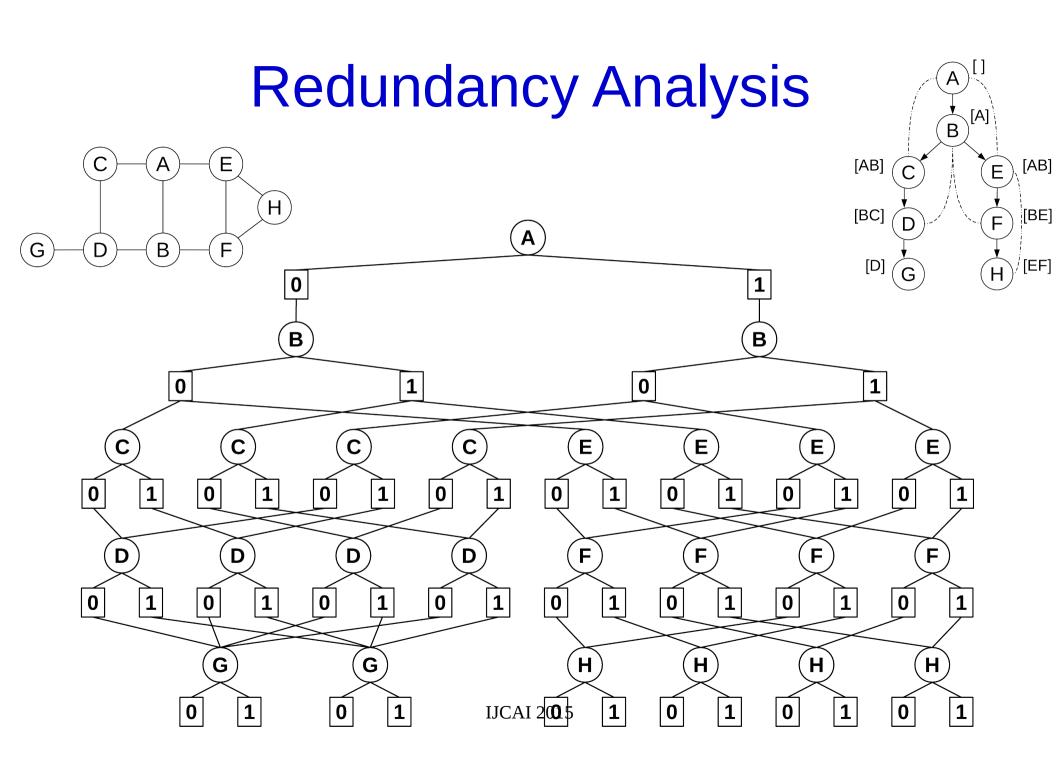
Parallel AOBB Performance Factors

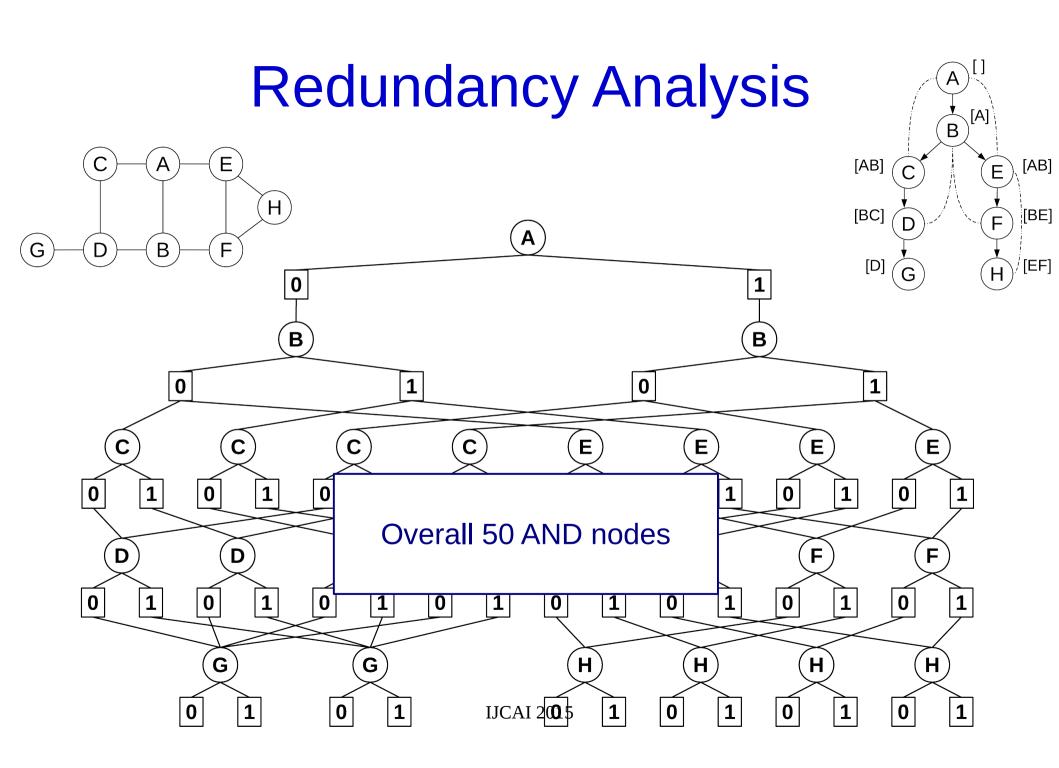
- Distributed System Overhead:
 - Master preprocessing and parallelization decision.
 - Repeated preprocessing in workers (mini-buckets).
 - Communication and scheduling delays.
- Parallel search space redundancies:
 - Impacted pruning, lack of bounds propagation.
 - Local search for near-optimal initial bound.
 - Loss of caching across parallel subproblems.
 - Analyzed subsequently.
- Parallel AOBB is <u>not</u> "embarrassingly parallel".

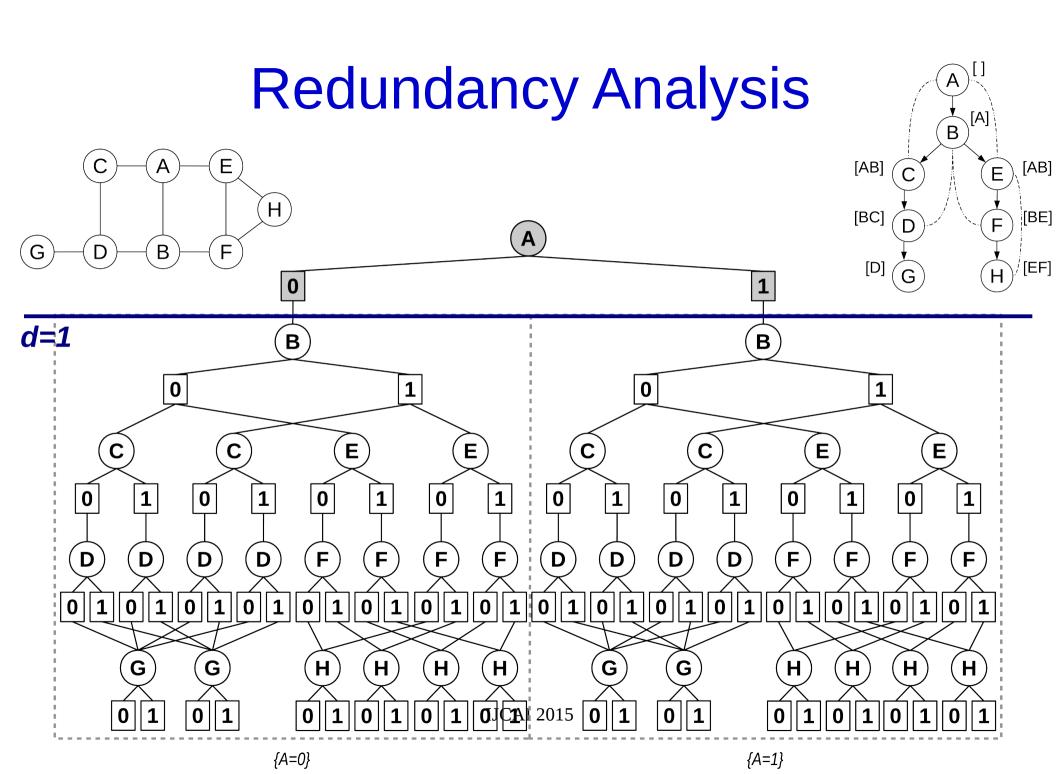
Redundancy Analysis

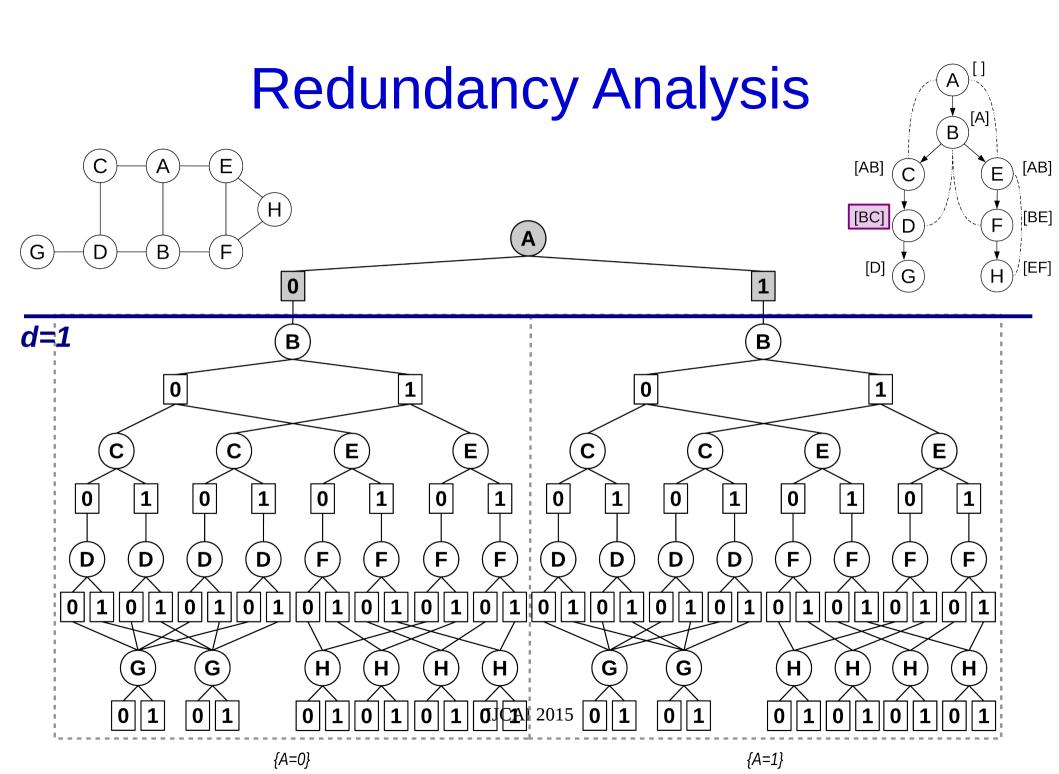


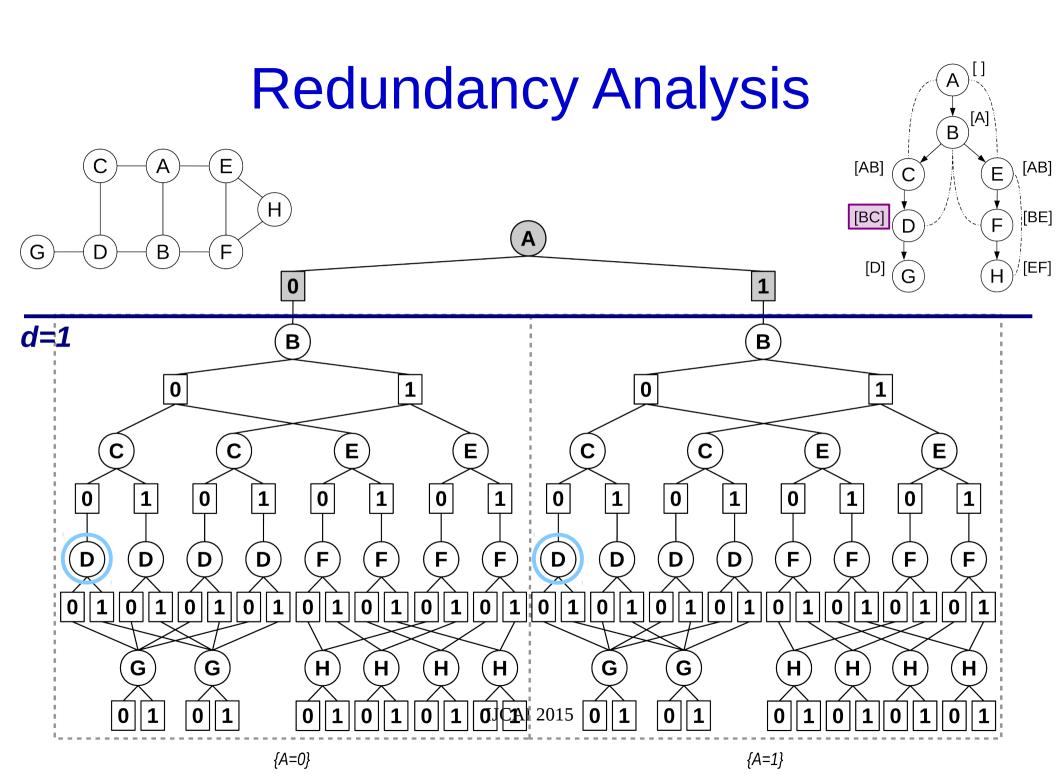


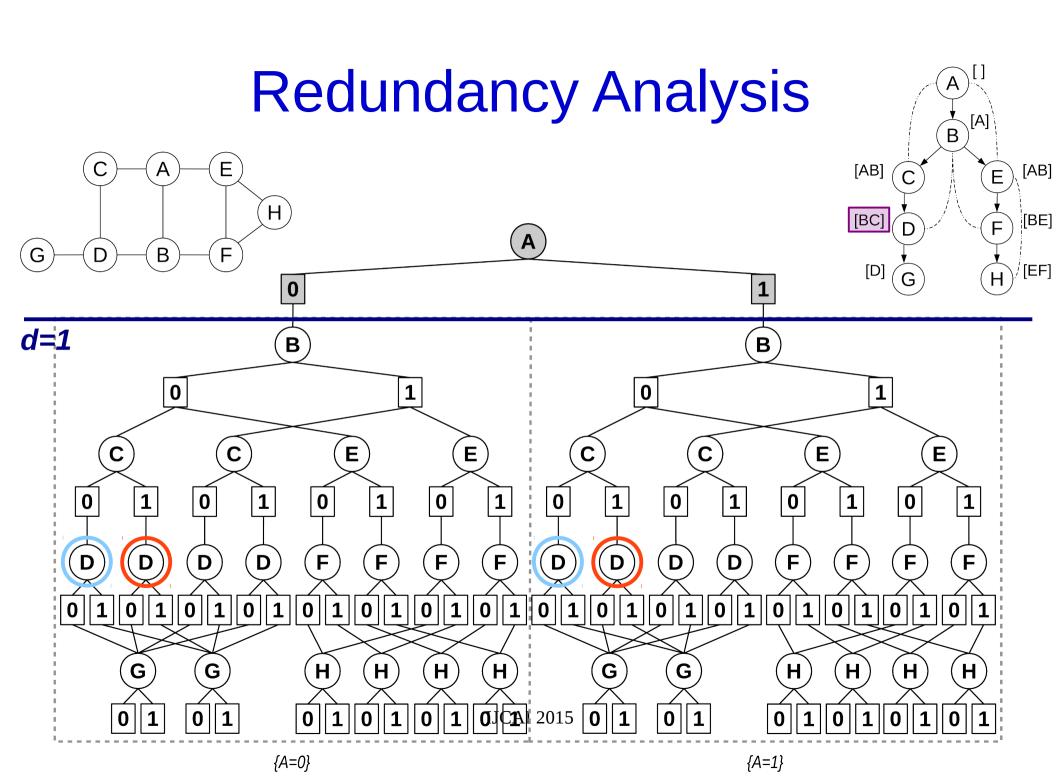


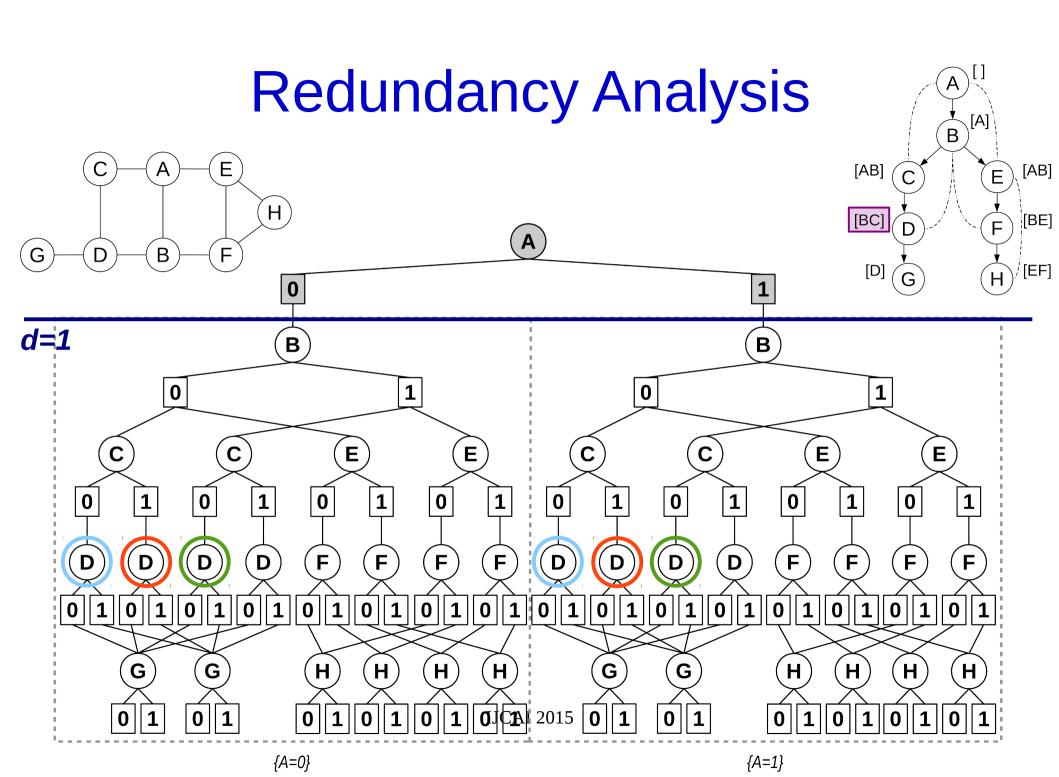


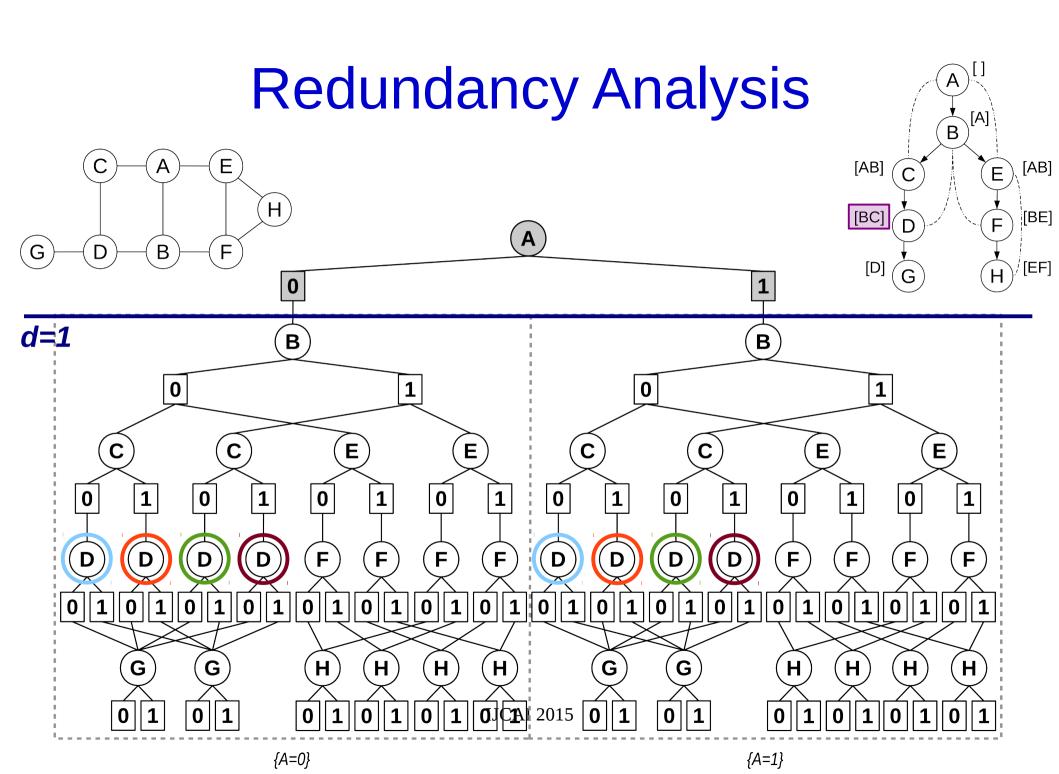


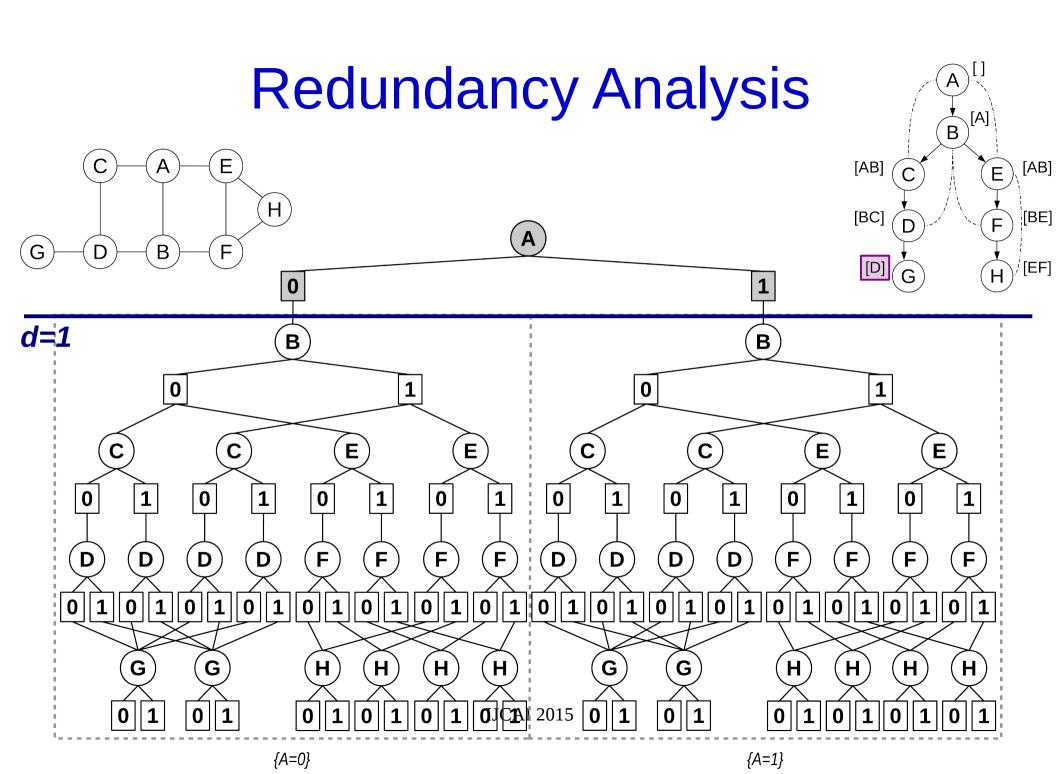


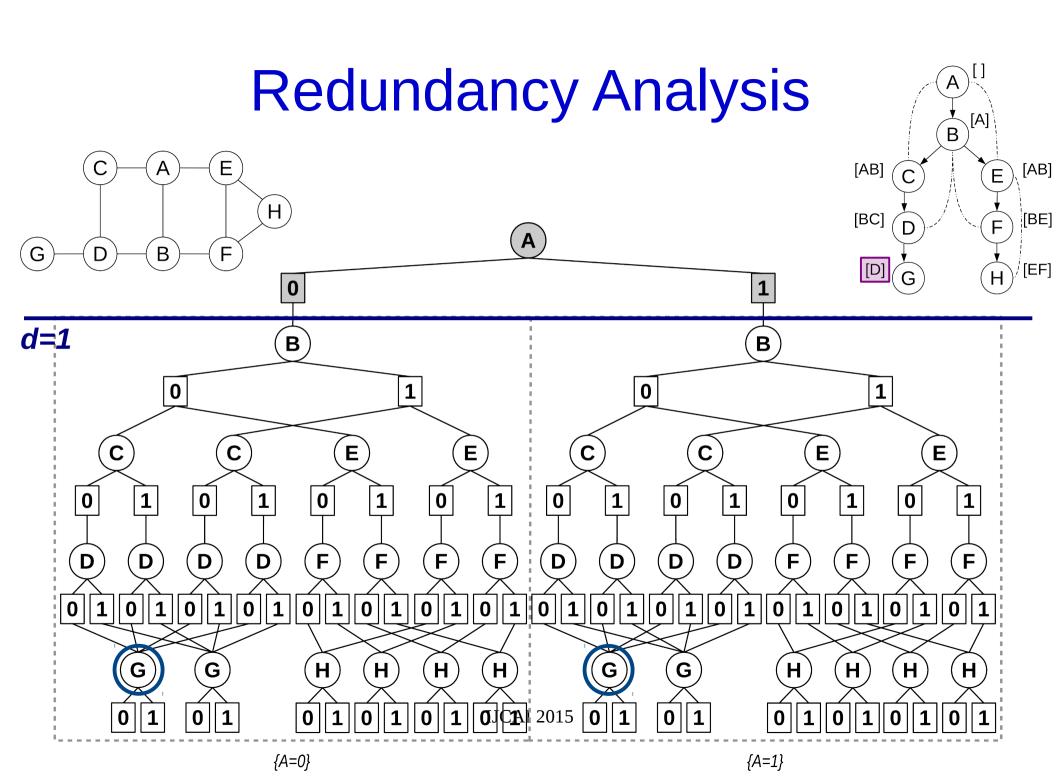


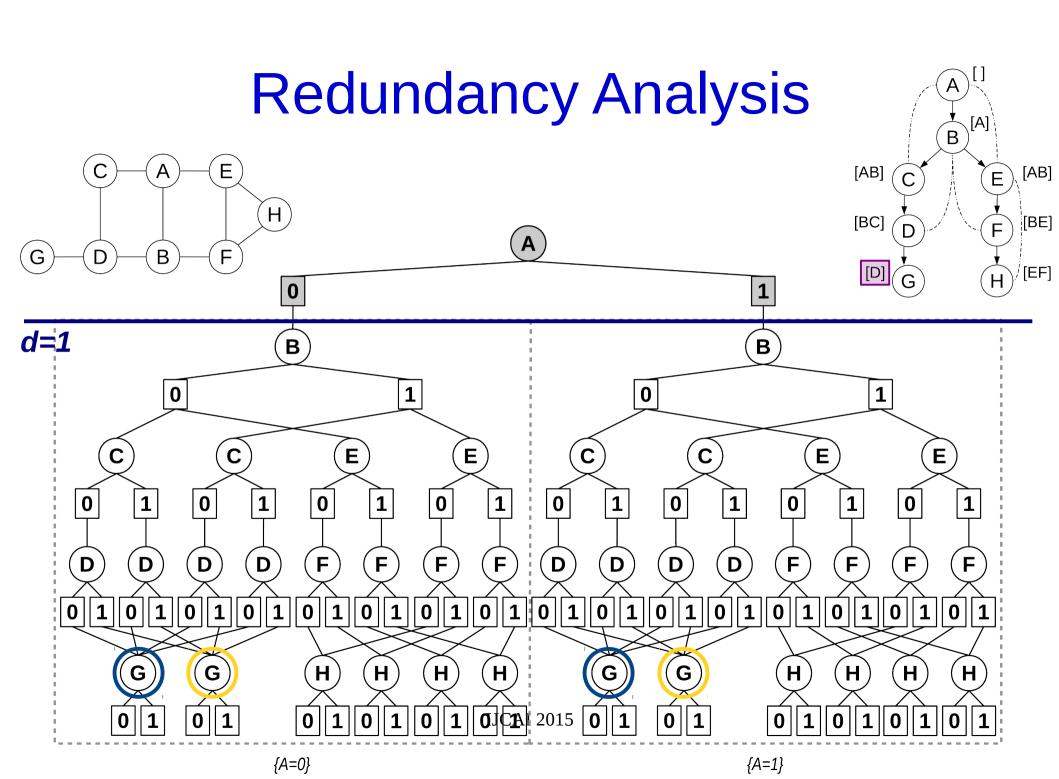


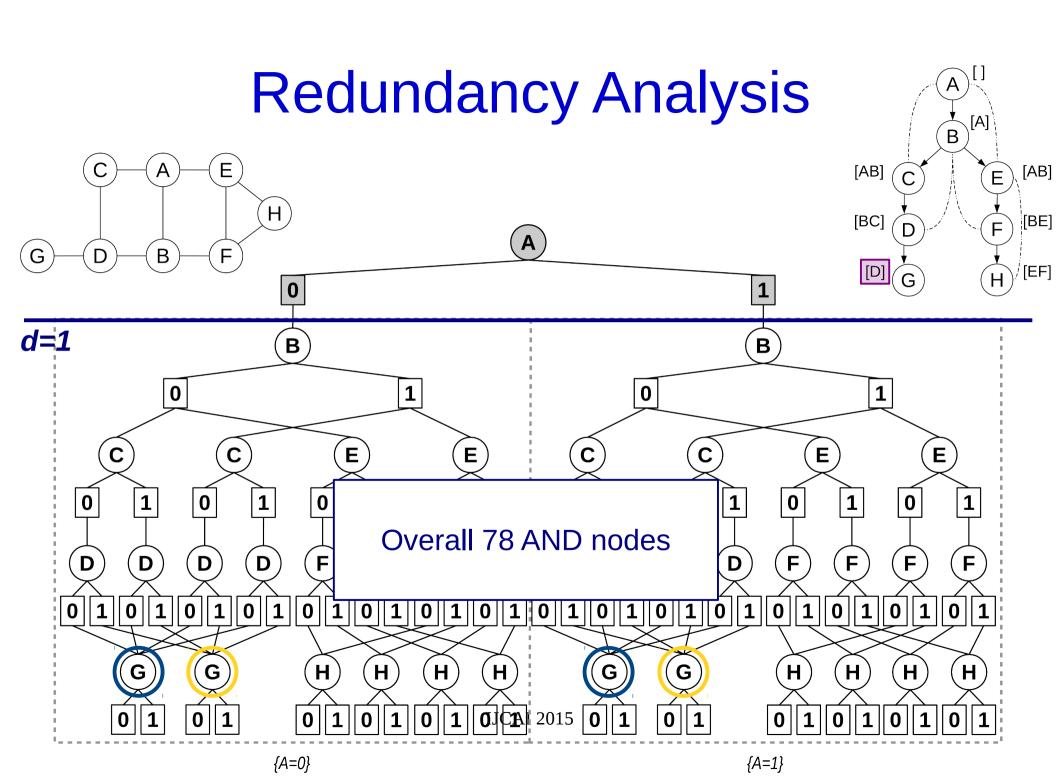


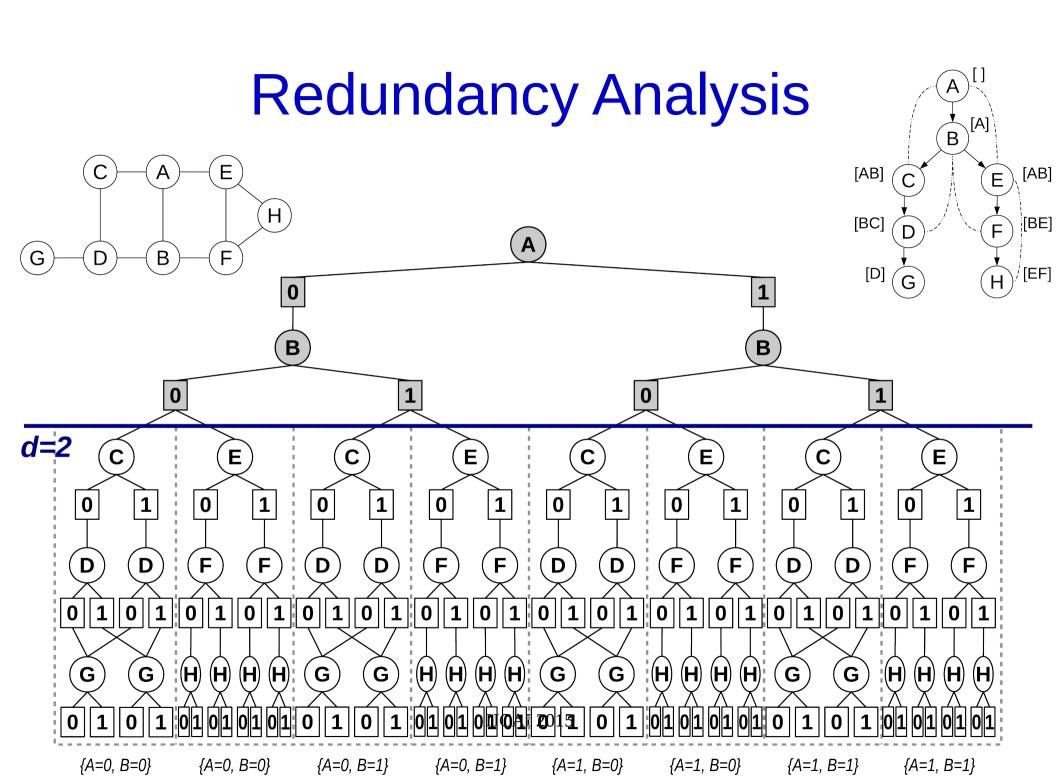


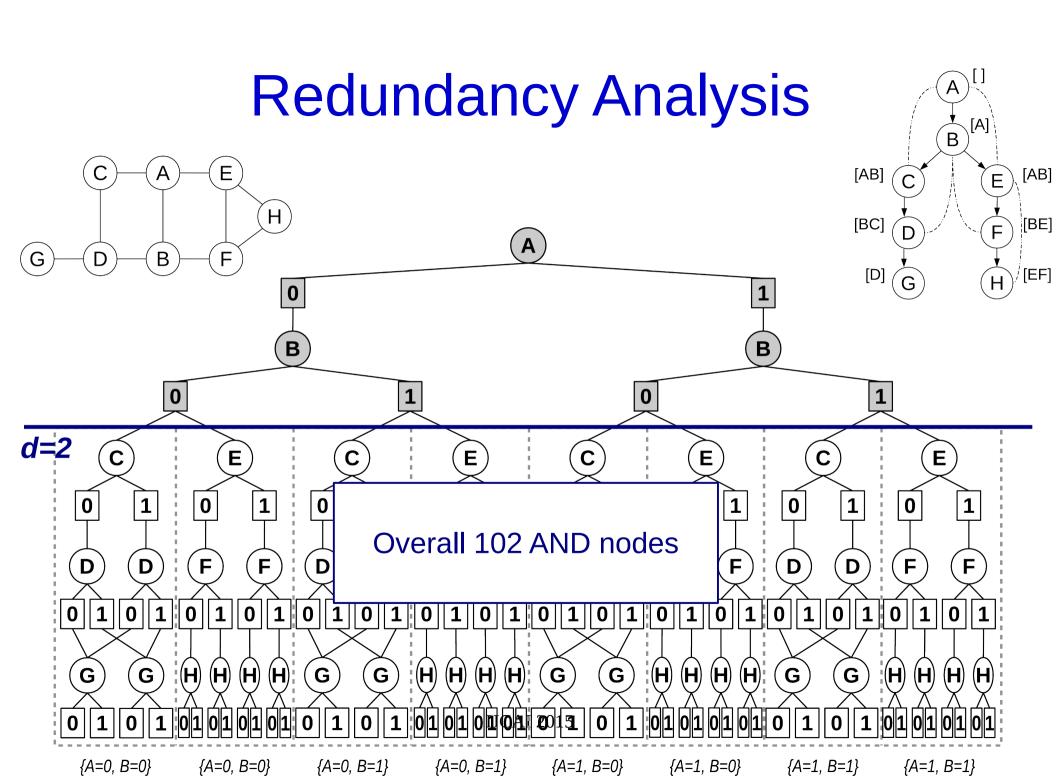


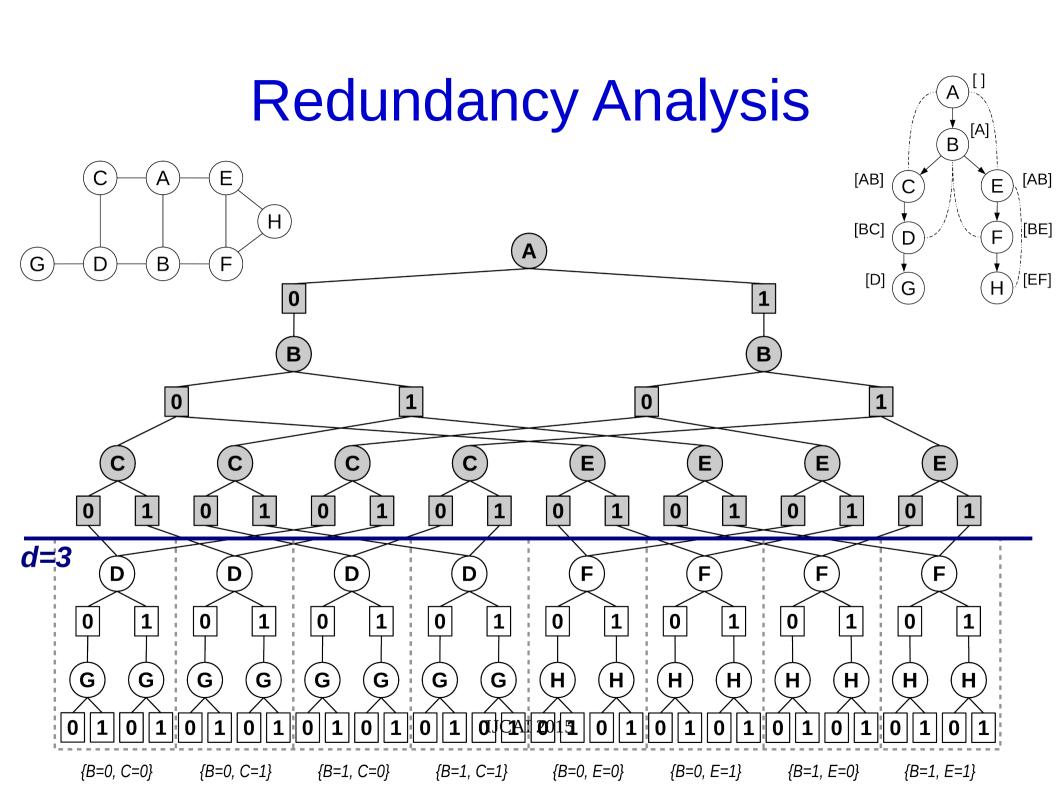


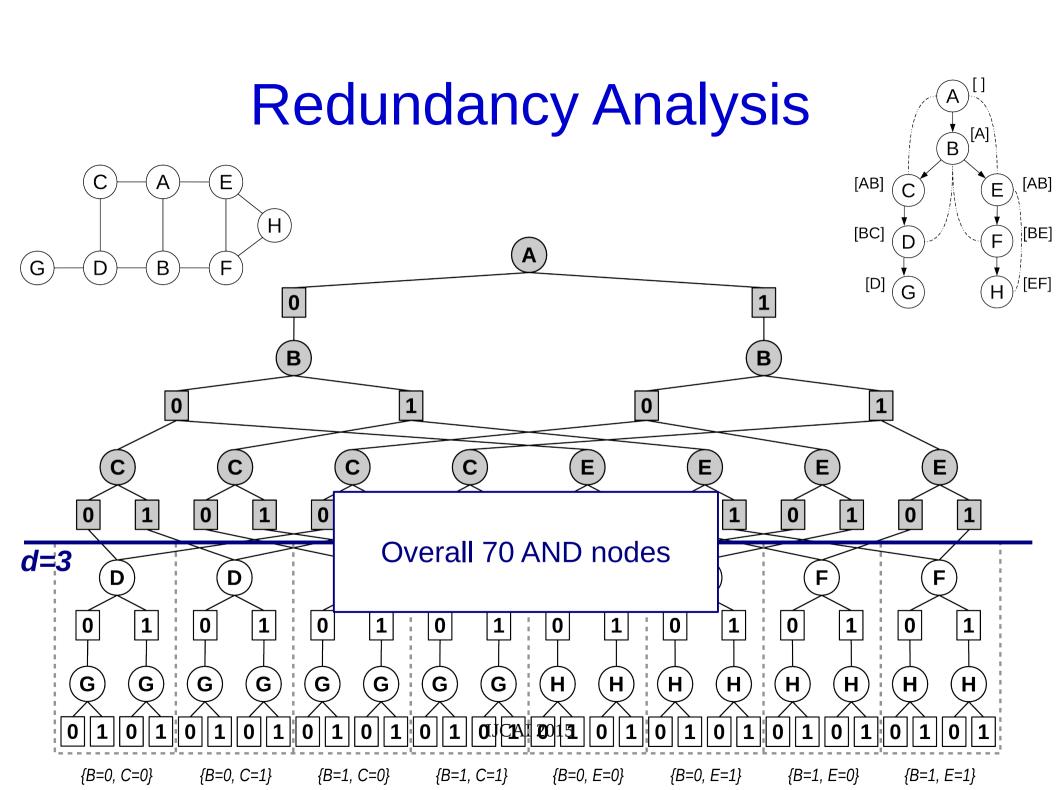












Redundancy Quantied

Definitions:

- $w_d(X)$ is size of context of X below level d.
- $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par} :

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{w(\pi_d(X'))+w_d(X')+1}$$

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par} :

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{w(\pi_d(X'))+w_d(X')+1}$$

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par} :

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{w(\pi_d(X'))+w_d(X')+1}$$

- Definitions:
 - $w_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par} :

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{\overline{w(\pi_d(X'))} + w_d(X')+1}$$

- Definitions:
 - $W_d(X)$ is size of context of X below level d.
 - $\pi_d(X)$ is ancestor of X at level d.
- Underlying parallel search space size SS_{par} :

$$SS_{par}(d) = \sum_{j=0}^{d} \sum_{X' \in L_j} k^{w(X')+1} + \sum_{j=d+1}^{h} \sum_{X' \in L_j} k^{\overline{w(\pi_d(X'))} + w_d(X')+1}$$

$$-SS_{par}(0) = SS_{par}(h) = SS_{seq}.$$

$$-SS_{par}(d) \geq SS_{par}(0) \text{ for all } d.$$

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d							
	0	1	2	3	4	5		
parallel space $SS_{par}(d)$	50	78	102	70	50	50		
conditioning space	0	2	6	22	38	50		
no. of subproblems	1	2	8	8	6	0		
max. parallel subproblem	50	38	14	6	2	_		
cond. space + max. subprob	50	40	20	28	40	50		

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d							
	0	1	2	3	4	5		
parallel space $SS_{par}(d)$	50	78	102	70	50	50		
conditioning space	0	2	6	22	38	50		
no. of subproblems	1	2	8	8	6	0		
max. parallel subproblem	50	38	14	6	2	_		
cond. space + max. subprob	50	40	20	28	40	50		

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d							
	0	1	2	3	4	5		
parallel space $SS_{par}(d)$	50	78	102	70	50	50		
conditioning space	0	2	6	22	38	50		
no. of subproblems	1	2	8	8	6	0		
max. parallel subproblem	50	38	14	6	2	_		
cond. space + max. subprob	50	40	20	28	40	50		

- Assume parallelism with sufficient CPUs.
 - Consider conditioning space + max. subproblem.

Example revisited:	d							
	0	1	2	3	4	5		
parallel space $SS_{par}(d)$	50	78	102	70	50	50		
conditioning space	0	2	6	22	38	50		
no. of subproblems	1	2	8	8	6	0		
max. parallel subproblem	50	38	14	6	2	_		
cond. space + max. subprob	50	40	20	28	40	50		

- But: doesn't capture explored search space.
 - Can pruning compensate for redundancies?

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
 - Instances from four classes, with varying i-bound.
 - T_{seq} from under 1 hour to over 2 weeks.
 - Run with 20, 100, and 500 parallel CPUs.

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
 - Instances from four classes, with varying i-bound.
 - T_{seq} from under 1 hour to over 2 weeks.
 - Run with 20, 100, and 500 parallel CPUs.
- Experimental Methodology:
 - Apply different fixed-depth cutoff depths d.
 - Use subproblem count p as var-depth input.

Empirical Evaluation

- Parallel experiments over 75 benchmarks.
 - Instances from four classes, with varying *i*-bound.
 - T_{seq} from under 1 hour to over 2 weeks.
 - Run with 20, 100, and 500 parallel CPUs.
- Experimental Methodology:
 - Apply different fixed-depth cutoff depths d.
 - Use subproblem count p as var-depth input.
- ~91 thousand CPU hours over 10 years!
 - Over 1400 parallel runs.
 - Can only summarize some aspects here.

Example Results

- Record overall parallel runtime / speedup.
 - Lots of data!

				Cutoff depth d											
instance	i	T_{seq}	#cpu	2		4		6		8		10		1:	2
				fix	var	var fix var		fix	var	fix	var	fix	var	fix	var
				(p=4) $(p=20)$		(p=	=80)	(p=0)	<i>476)</i>	(p=1)	(p=1830)		3964)		
$\frac{1F3-15-59}{n=3730}$	19	43307	20	15858	15694	5909	5470	3649	2845	2744		3482	3505	7222	7238
$k=3 \\ k=3 \\ w=31 \\ h=84$	19	45507	100	15858	15694	5909	5470	3434	2247	1494	723	928	741	1540	1536
$\tilde{h}=84$			500	15858	15694	5909	5470	3434	2247	1414	573	692	260	415	399
144				(p=4)		(p=16)		(p=112)		(p=560)		(p=2240)		(p=8960)	
$\frac{\text{ped44}}{\text{ped44}}$	6	95830	20	26776	26836	9716	9481	6741	6811	7959	7947	10103	9763	12418	12472
$ \begin{array}{r} $	O	95050	100	26776	26836	9716	9481	2344	3586	1799	1700	2126	2276	2545	2543
h=65			500	26776	26836	9716	9481	1659	3586	583	886	536	905	569	824
17				(p=	=4)	(p=	- <i>32)</i>	(p=	160)	(p=	640)	(p=1)	280)	(p=3)	840)
$\frac{\text{ped7}}{\text{m=106}}$	6	110909	20	35387	58872	12338	58121	9031	8515	9654	7319	8705	7582	8236	7693
$ \begin{array}{c} \overline{n=106}8 \\ k=4 \\ w=32 \end{array} $	O	118383	100	35387	58872	11956	58121	5122	7690	4860	2306	3929	1814	2644	1649
h = 90			500	35387	58872	11956	58121	4984	7690	4359	2086	3294	1301	1764	943

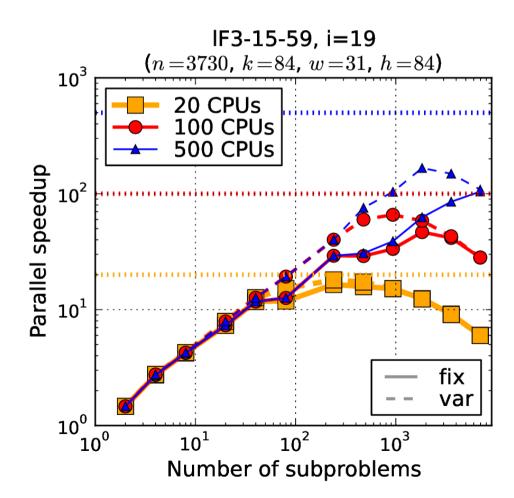
Example Results

- Record overall parallel runtime / speedup.
 - Lots of data!

				Cutoff depth d											
instance	i	T_{seq}	#cpu	2	2 4		(Ĵ	8		10		12		
				fix	var	fix	var	fix	var	fix	var	fix	var	fix	var
ID0 15 50	TTO 47 TO			(p=2)	4)	(p=	=20)	(p=	-80)	(p=1)	<i>(76)</i>	(p=1)	830)	(p=6)	964)
$\frac{1F3-15-59}{n-3730}$	10	42207	20	2.73 2	2.76	7.33	7.92	11.87	15.22	15.78	17.32	12.44	12.36	6.00	5.98
n=3730 $k=3$ $w=31$ $h=84$	19	43307	100	2.73 2	2.76	7.33	7.92	12.61	19.27	28.99	59.90	46.67	58.44	28.12	28.19
$\tilde{h}=84$			500	2.73 2	2.76	7.33	7.92	12.61	19.27	30.63	75.58	62.58	166.57	104.35	108.54
144					(p=4) $(p=16)$		=16)	(p=112)		(p=560)		(p=2240)		(p=8960)	
$\left \frac{\text{ped44}}{n=811} \right $	6	95830	20	3.58	3.57	9.86	10.11	14.22	14.07	12.04	12.06	9.49	9.82	7.72	7.68
$ \begin{array}{l} n = 811 \\ k = 4 \\ w = 25 \\ h = 65 \end{array} $	O	90000	100	3.58	3.57	9.86	10.11	40.88	26.72	53.27	56.37	45.08	42.10	37.65	37.68
h = 65			500	3.58 3	3.57	9.86	10.11	57.76	26.72	164.37	108.16	178.79	105.89	168.42	116.30
17				(p=1)	4)	(p=	=32)	(p=	160)	(p=0)	640)	(p=1)	280)	(p=3	840)
$\frac{\text{ped7}}{1068}$	6	110909	20	3.35 2	2.01	9.59	2.04	13.11	13.90	12.26	16.17	13.60	15.61	14.37	15.39
n=1068 $k=4$ $w=32$ $h=90$	U	118383	100	3.35 2	2.01	9.90	2.04	23.11	15.39	24.36	51.34	30.13	65.26	44.77	71.79
h = 90			500	3.35 2	2.01	9.90	2.04	23.75	15.39	27.16	56.75	35.94	90.99	67.11	125.54

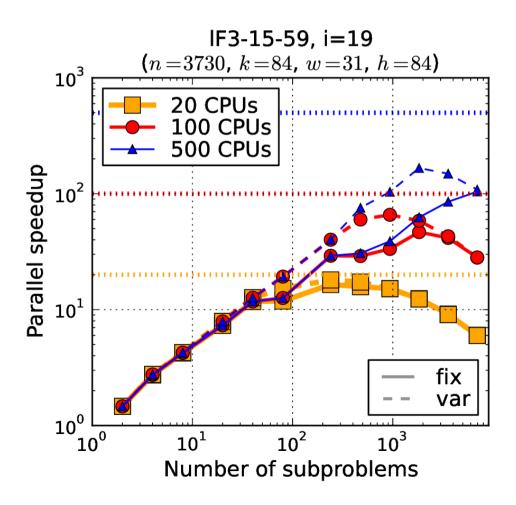
Example: LargeFam3-15-59, *i*=19

• Sequential runtime $T_{seq} = 43,307 \text{ sec.}$

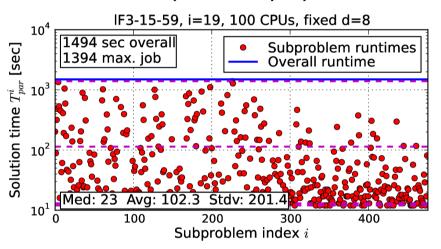


Example: LargeFam3-15-59, *i*=19

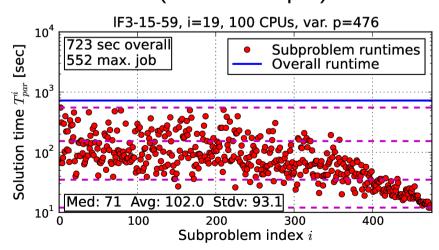
• Sequential runtime $T_{seq} = 43,307 \text{ sec.}$



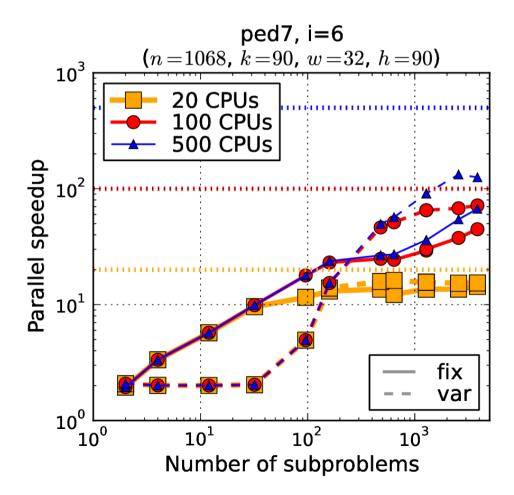
(Fixed-depth)



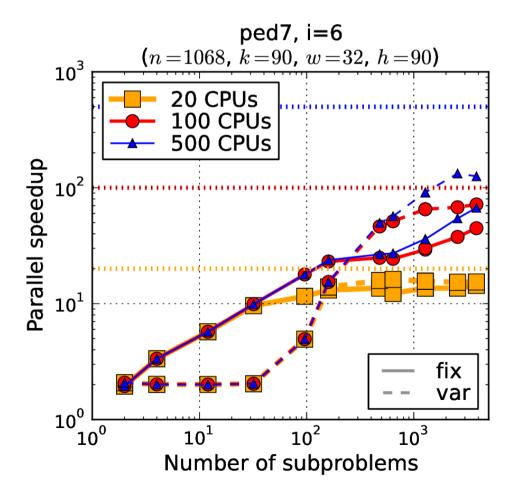
(Variable-depth)



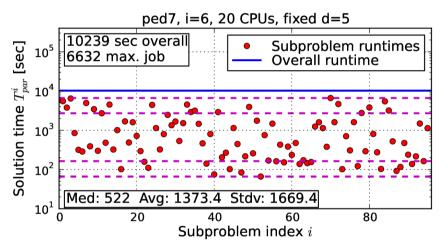
• Sequential runtime $T_{seq} = 118,383 \text{ sec.}$



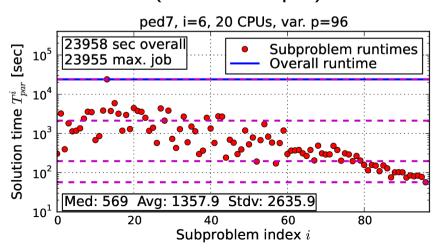
• Sequential runtime $T_{seq} = 118,383 \text{ sec.}$



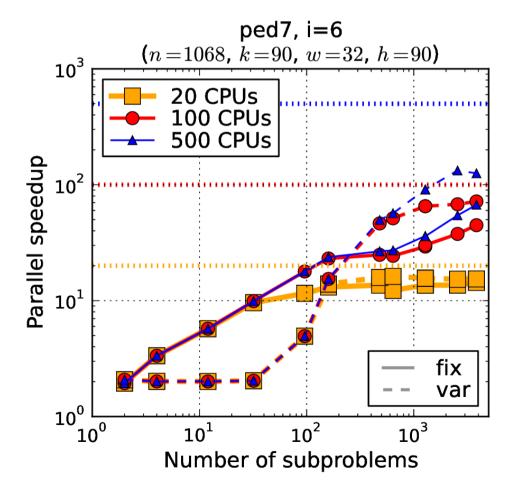
(Fixed-depth)



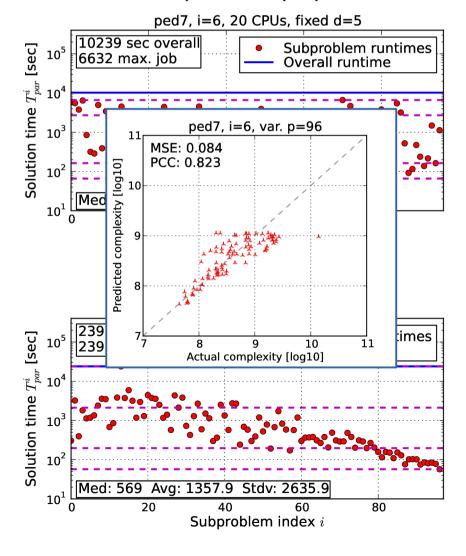
(Variable-depth)



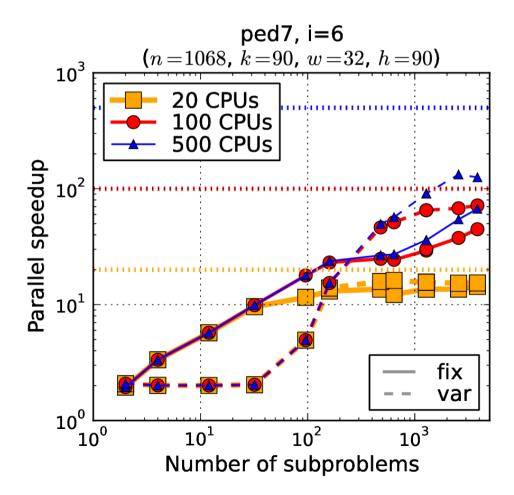
• Sequential runtime $T_{seq} = 118,383 \text{ sec.}$



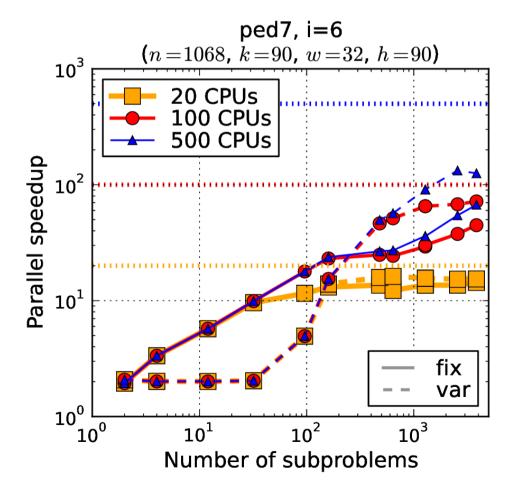
(Fixed-depth)



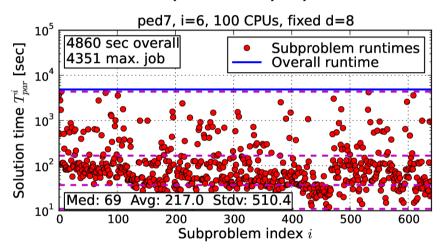
• Sequential runtime $T_{seq} = 118,383 \text{ sec.}$



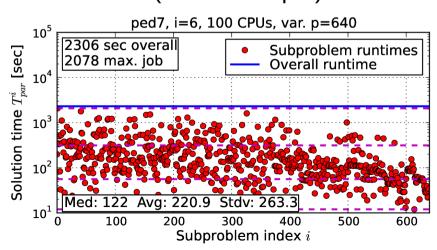
• Sequential runtime $T_{seq} = 118,383 \text{ sec.}$



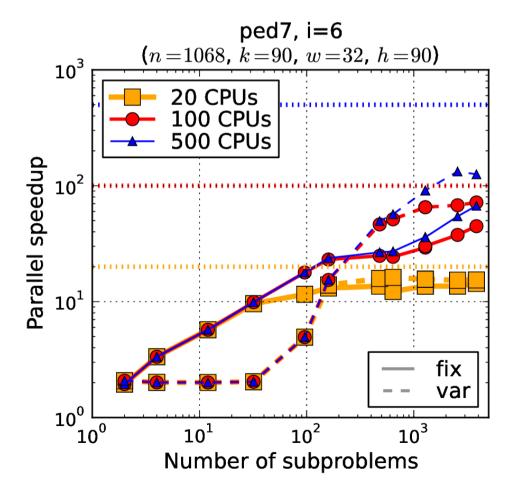
(Fixed-depth)

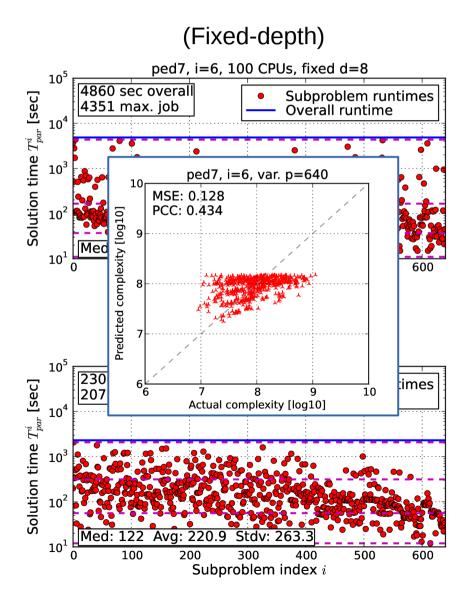


(Variable-depth)



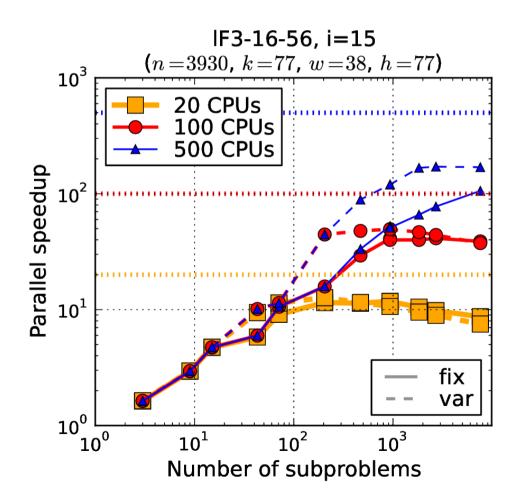
• Sequential runtime $T_{seq} = 118,383 \text{ sec.}$





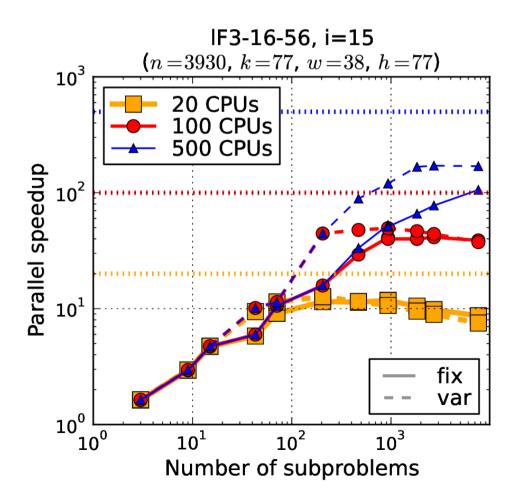
Example: LargeFam3-16-56, *i*=15

• Sequential runtime $T_{seq} = 1,891,710 \text{ sec.}$

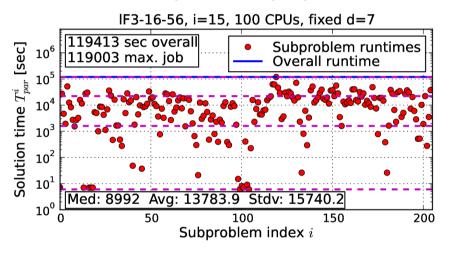


Example: LargeFam3-16-56, *i*=15

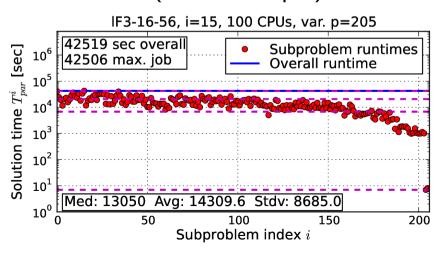
• Sequential runtime $T_{seq} = 1,891,710 \text{ sec.}$



(Fixed-depth)

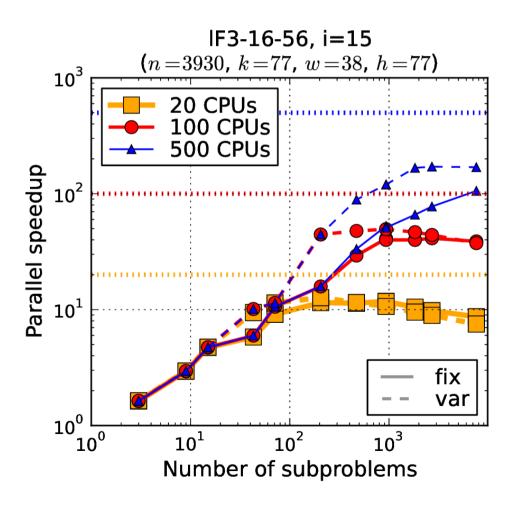


(Variable-depth)

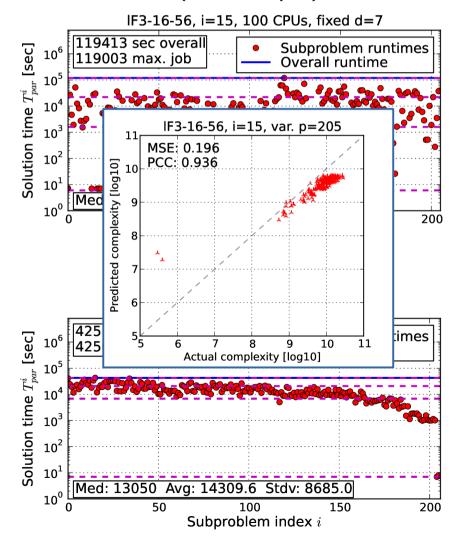


Example: LargeFam3-16-56, *i*=15

• Sequential runtime $T_{seq} = 1,891,710 \text{ sec.}$

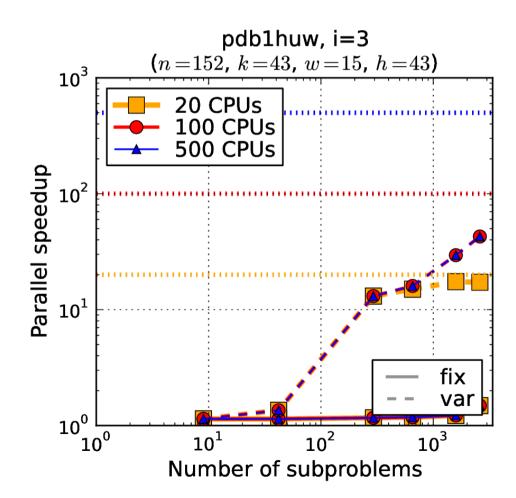


(Fixed-depth)



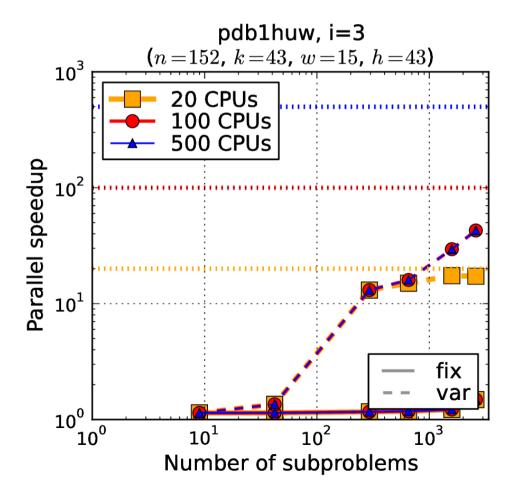
Example: Pdb1huw, *i*=3

• Sequential runtime $T_{seq} = 545,249 \text{ sec.}$

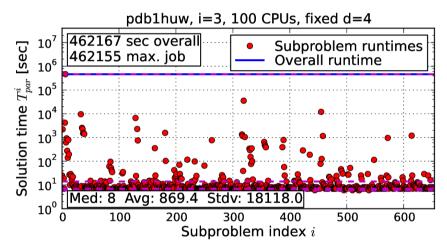


Example: Pdb1huw, *i*=3

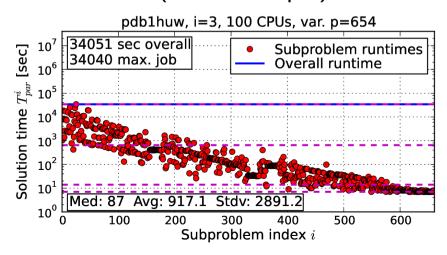
• Sequential runtime $T_{seq} = 545,249 \text{ sec.}$



(Fixed-depth)

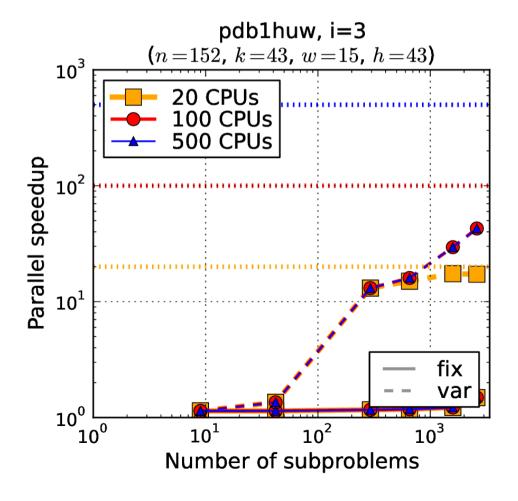


(Variable-depth)

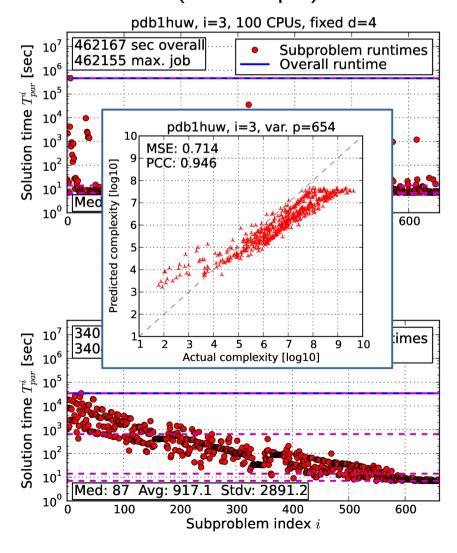


Example: Pdb1huw, *i*=3

• Sequential runtime $T_{seq} = 545,249 \text{ sec.}$

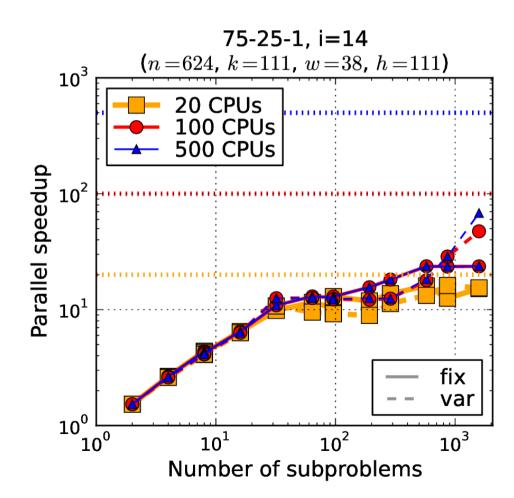


(Fixed-depth)



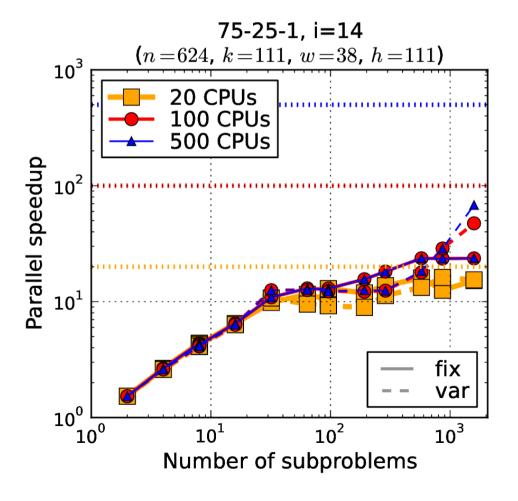
Example: 75-25-1, *i*=14

• Sequential runtime $T_{seq} = 15,402 \text{ sec.}$

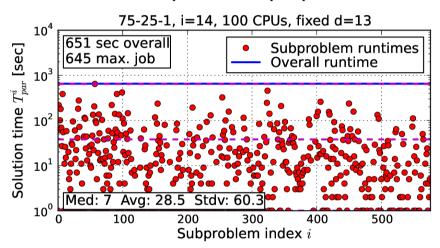


Example: 75-25-1, *i*=14

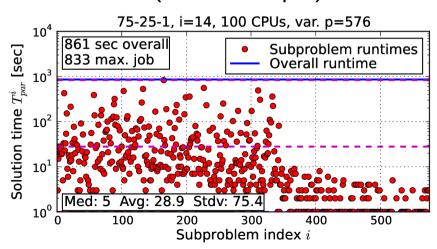
• Sequential runtime $T_{seq} = 15,402 \text{ sec.}$



(Fixed-depth)

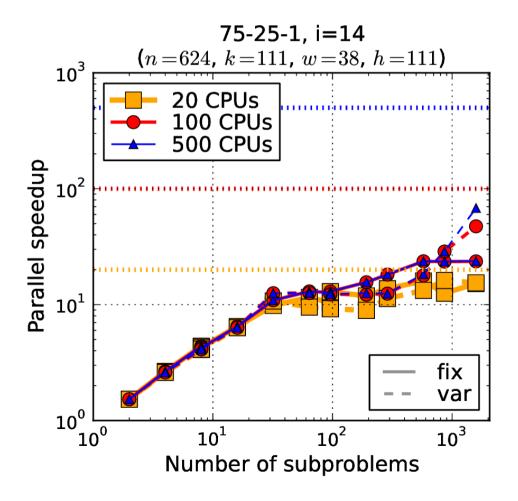


(Variable-depth)

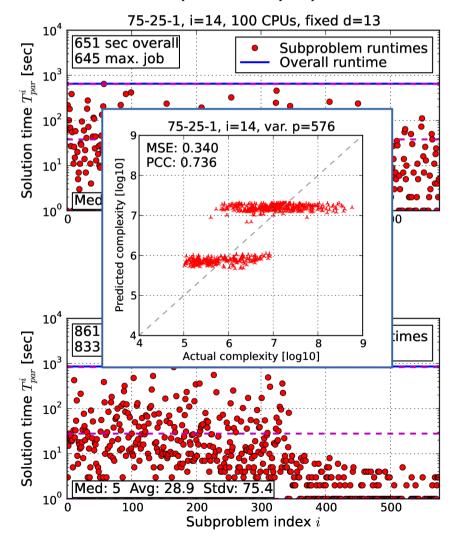


Example: 75-25-1, *i*=14

• Sequential runtime $T_{seq} = 15,402 \text{ sec.}$

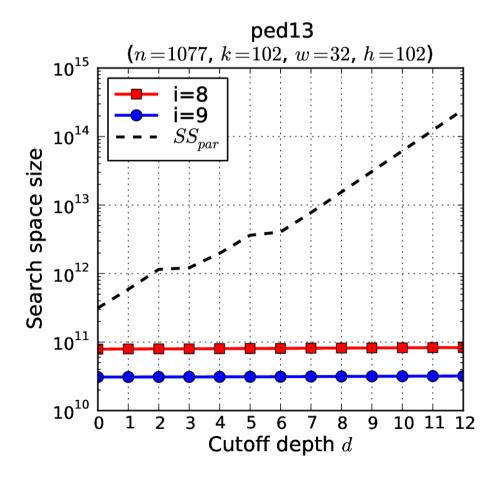


(Fixed-depth)

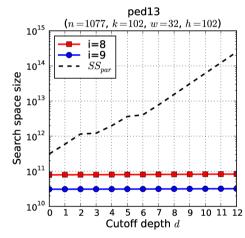


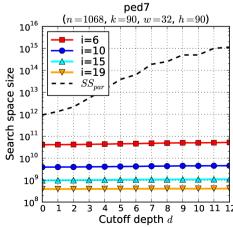
- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

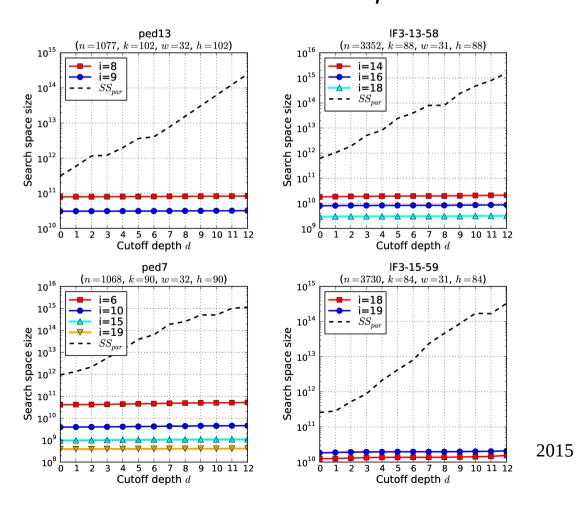


- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

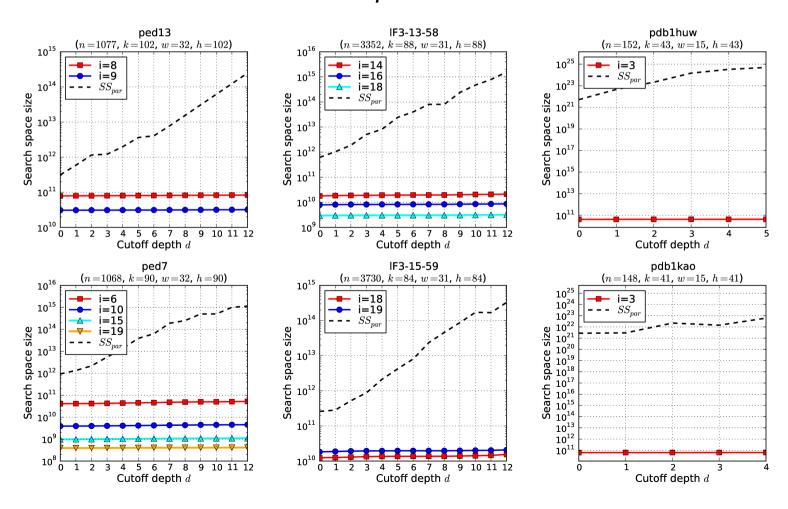




- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.

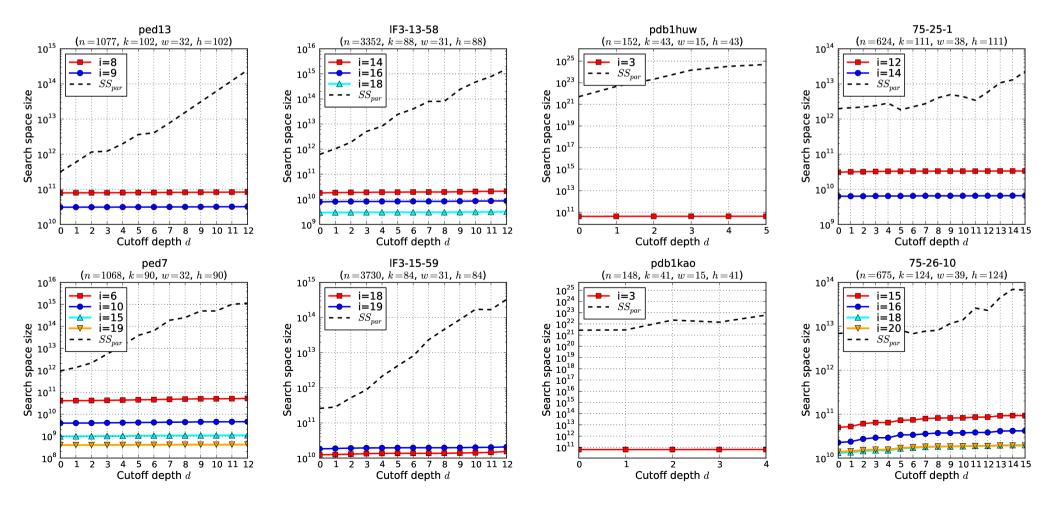


- Compute SS_{par} bound (ahead of time).
 - Plot against N_{par} for different *i*-bounds.



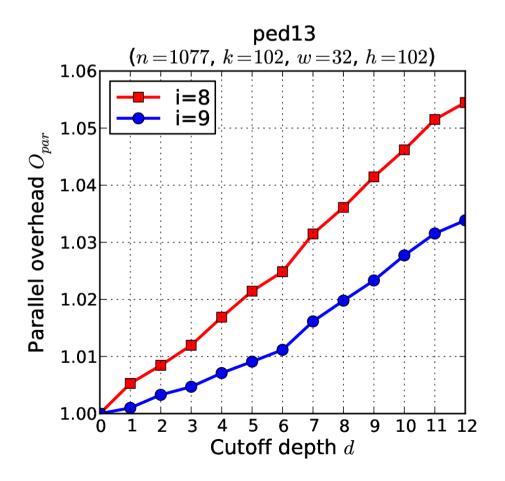
Underlying vs. Explored Search Space Space • Compute SS_{par} bound (ahead of time).

- - Plot against N_{par} for different *i*-bounds.

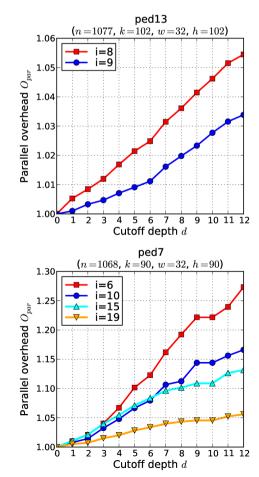


- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

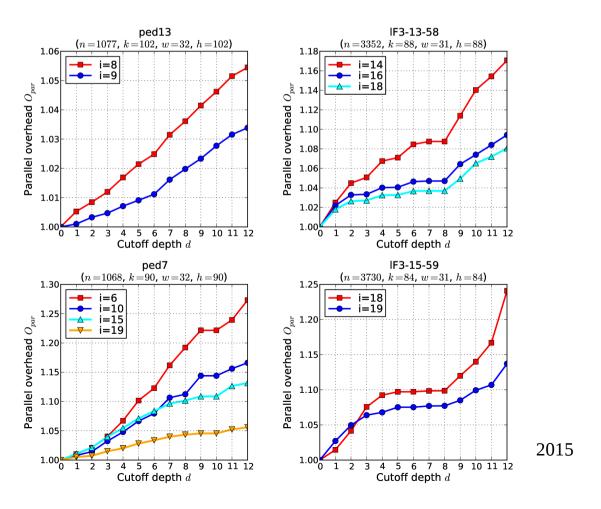
- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.



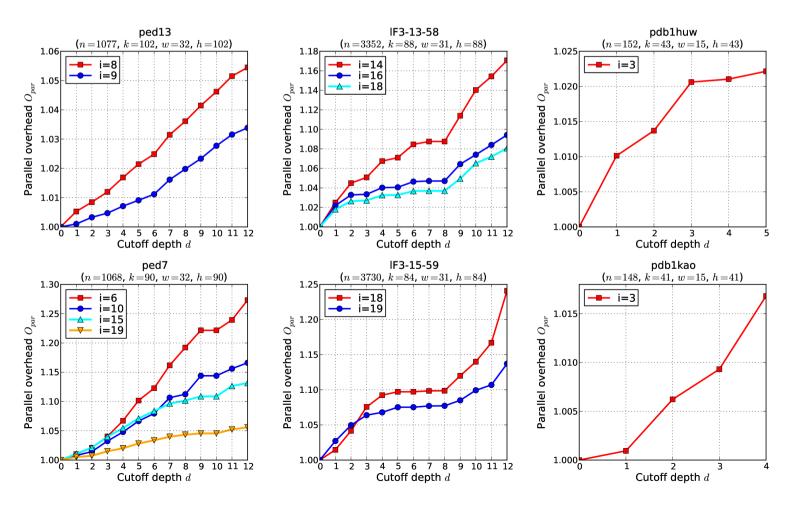
- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.



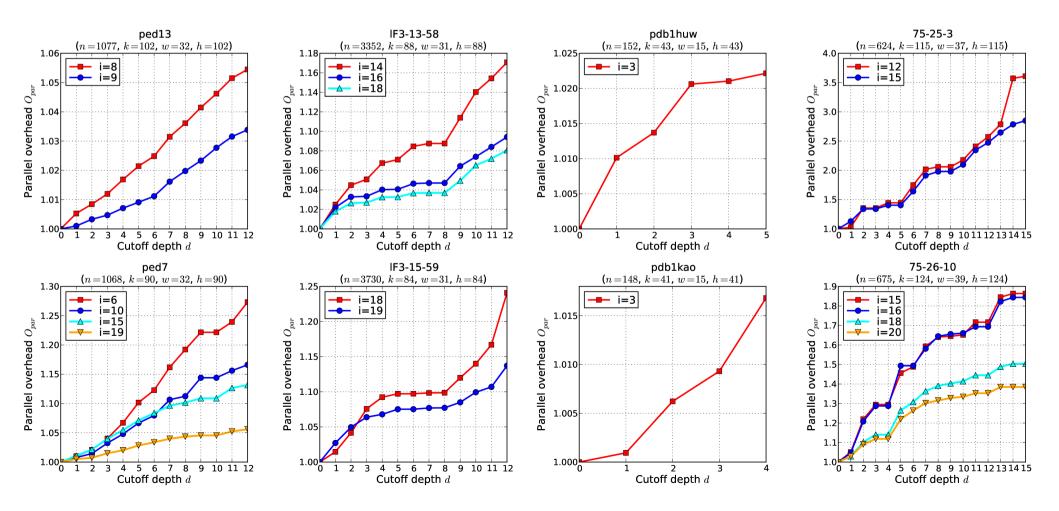
- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.



- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

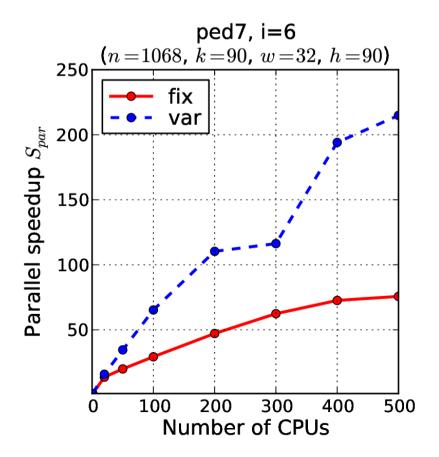


- Assess parallel redundancies in practice.
 - Node expansion overhead $O_{par} = N_{par} / N_{seq}$.

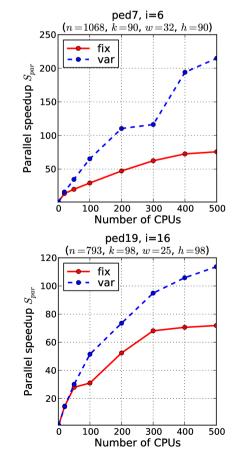


- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems ≈ 10 × #CPUs

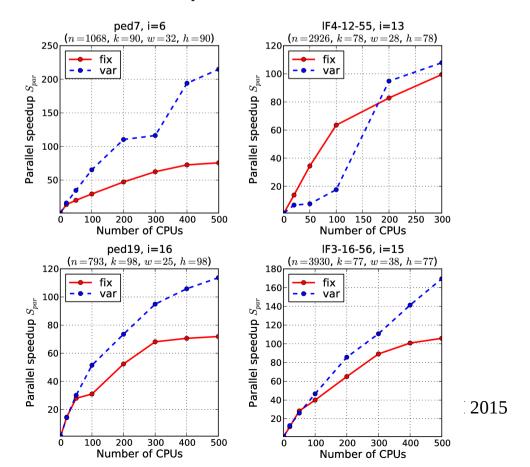
- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems ≈ 10 × #CPUs



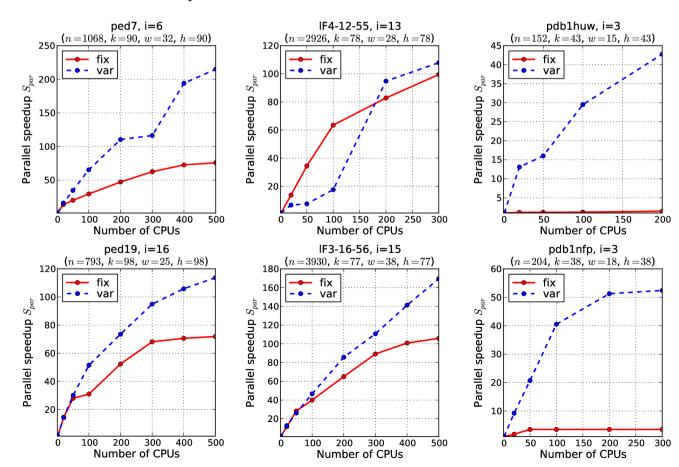
- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems ≈ 10 × #CPUs



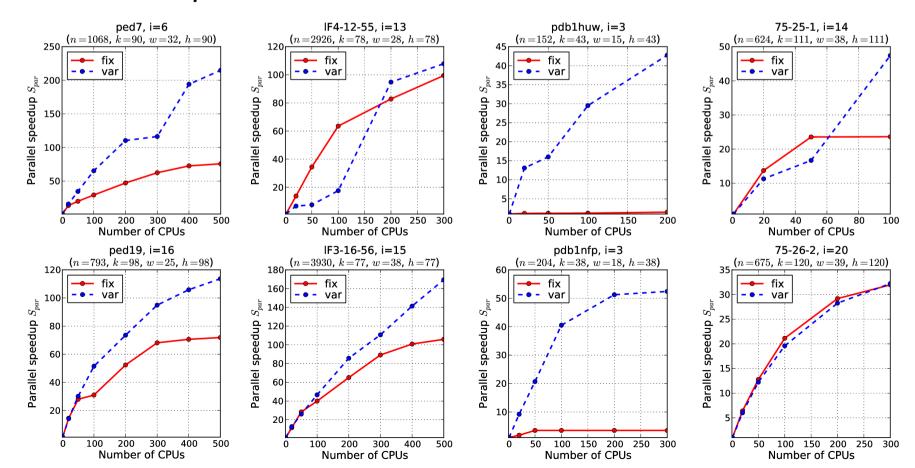
- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems ≈ 10 × #CPUs



- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems ≈ 10 × #CPUs



- Plot speedup against CPU count.
 - Trade off load balancing vs. overhead:
 - #subproblems ≈ 10 × #CPUs



Fixed-depth vs. Variable-depth

- Compare speedup of the two parallel schemes.
 - Count cases that are 10% and 50% better.

	margin	fix	var	fix	var	fix	var	fix	var	fix	var	fix	var
		d=2		d=4		d=6		d = 8		d = 10		d = 12	
	10%	20	16	40	30	38	41	24	49	28	40	12	28
Pedigree	50%	20	12	27	15	30	15	16	${\bf 22}$	20	9	$\mid 4 \mid$	13
		(116	total)	(116	total)	(116	total)	(116	total)	(108	total)	(88	total)
		d=2		d=4		d=6		d=8		d = 10		d = 12	
	10%	32	12	21	30	11	51	7	52	5	47	8	32
LargeFam	50%	12	0	15	10	8	28	3	36	1	30	5	22
		(84 total)		(84 total)		(84 total)		(76 total)		(76 total)		(76 total)	
		d=1		d=2		d=3		d=4		d=5		d=6	
	10%	0	0	5	39	0	33	0	20	0	4	0	4
Pdb	50%	0	0	4	30	0	28	0	16	0	$oldsymbol{4}$	0	4
		(44	total)	(44	total)	(36 t	total)	(20 t	total)	(4 t	otal)	(4 t)	otal)
		d=2		d=4		d=6		d = 8		d = 10		d = 12	
	10%	20	13	12	9	17	8	27	10	20	9	12	19
Grid	50%	12	4	10	0	9	3	11	3	5	6	5	8
		(60 total)		(60 total)		(60 total)		(60 total)		(60 total)		(60 total)	

Outline

- Introduction
- Inference
- Bounds and heuristics
- AND/OR search
- Exploiting parallelism
- Software
 - UAI probabilistic inference competitions

Software

aolib

http://graphmod.ics.uci.edu/group/Software
 (standalone AOBB, AOBF solvers)

daoopt

https://github.com/lotten/daoopt
 (distributed and standalone AOBB solver)

UAI Probabilistic Inference Competitions

2006

(aolib)

• 2008

(aolib)

2011

(daoopt)

2014

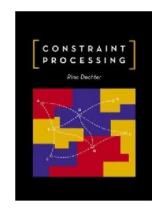
(daoopt)

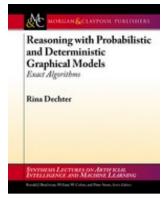
MPE/MAP

MMAP

Summary

- Only a few principles
 - Inference and search should be combined
 - Time-space tradeoff
 - AND/OR search should be used
 - Caching in search should be used
 - Parallel search should be used if a distributed environment is available
 - Ongoing work:
 - Parallel search in shared-memory environments





For publication see: http://www.ics.uci.edu/~dechter/publications.html

Thank You

Kalev Kask
Irina Rish
Bozhena Bidyuk
Robert Mateescu
Radu Marinescu
Vibhav Gogate
Emma Rollon
Lars Otten
Natalia Flerova
Qiang Liu
Drew Frank
Sholeh Forouzan
Javier Larossa

IJCAI 2015

Exhibition Area Tuesday 07/28 – Friday 07/31

