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• How I met “Networks of Constraints”

• Networks of Constraints: 

– Sections 1&2 – Motivation and definitions

– Section 3 – Networks of constraints

– Section 4 – Path consistency

– Section 5 – Tractable classes

• Early research after “Networks of Constraints”

• Current research in graphical models and yet 

another Montanari’s paper.



Mechanical Heuristic Generation

Observation: People generate heuristics by consulting simplified/relaxed models.

Context: Heuristic search (A*) of state-space graph (Nillson, 1980)

Context: Weak methods vs. strong methods

Domain knowledge: Heuristic function

h(n):Heuristic underestimate

the best cost from

n to the solution

A problem is simple

If it can be greedily solved
How can we identify

Greedily solved problems?



Mechanical Generation of Heuristics 

pursuit lead to

• Question: How do we identify a greedily solved problems?

• Breakthrough: A sufficient condition for backtrack-free solution” by 

Gene Freudeder (JACM, 1982)” (pages 24-32)

• A. Mackworth “Consistency  in networks of relations” 1977 Pages 

99-118, Artificial Intelligence

• “Montanari, U. Networks of constraints: Fundamental 

properties and applications to picture processing” 

Information Science, 1974.”



(850 citations)

•Does anybody read it all the way to the end?



• Constraints as relations

• Characteristic matrix, 

• union, intersection  Composition:

Section 2: Mathematical Notation
Scene Labeling Constraint Network

(Waltz, 1972. Generating semantidescriptions from 

drawings of scenes with shadows. )
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yellow red

Example: map coloring

Variables - countries (A,B,C,etc.)

Values    - colors (red, green, blue)

Constraints: etc.  ,ED  D,  AB,A
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Constraint graph

Semantics: set of all 
solutions

Primary task: find a solution



Section 3: Networks of Constraints

The section defines constraint networks, showing that:

• Expressivness: Not every relation can be expressed as a network of 
binary constraints

• Defining The projection network

• The minimal network

• The intricate concept of decomposability

• The central problem: Computing the minimal network.



Section 3: Networks of Constraints

The section defines constraint networks, 
showing that:

• Expressiveness: Not every relation can be 
expressed with binary constraints.

• The projection network is the best binary 
network approximation.

• The minimal network is the intersection of 
all equivalent constraint networks

• The minimal network is unique and 
identical to the projection network and thus 
the most explicit representation,

• Decomposability: a relation may be 
represented by a network of binary 
constraints but its projection may not. 
(Namely, it can never become backtrack-
free with binary constraints only). 

• The central problem: Computing the 
minimal network.
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(2,4,1,3)

(3,1,4,2)

The 4-Queen Problem
(specification (a) and minimal network (b))



“Therefore we look for an 

approximation of the minimal 

network  which is as explicit 

as possible and still computable 

with local operations”

Section 4: Approximate Solution of the Central 

Problem



Defining Closure (e.g., Path-consistency)



Defining Closure (e.g., Path-consistency)



A Closure Algorithm

(Path-Consistency)
Complexity:

PC-1: 

PC-2:

PC-4 optimal:  

)( 55knO

)( 53knO

)( 33knO



From Global to Local Consistency

Mackworth: Consistency in networks of relations (1977) (850 citations).

Freuder: Synthesizing Constraint Expressions” (1977) (420 citations).



• Regular networks: when the path-consistent network is minimal

• Topology-based:

• Restriction on allowed relations:
– He defines distributed and star-distributed classes 

1985: 

Mackworth & Freuder

Freuder 1982

Dechter 1987

Section 5: Exact Solutions for the Central 

Problem for Particular Classes of Networks



Distributive Networks (section 5)

• A network is distributive if composition is distributive over intersection. 

• Theorem 5.3: “star distributivity” requires one iteration of closure algorithm.

• Algorithm C (in case of star distributivity) is the Gausian elimination algorithm of the system 

equation (4.1)). Similar to the Floyd Warshal algorithm for all pairs shortest path in a graph

• What relations are (star) distributive?
– Monotone, 

– Row convex (van Beek 1995)



Simple Linear Constraints



Temporal  Constraint Networks

(Dechter, Meiri and Pearl 1990, 971 citations)





Using Hidden variables





On the expressiveness of networks with 

hidden variables

Can a relation be expressed by a binary constraint networks with hidden variables?

Yes. If no limit on number of values

And, with limit?

With 2 values?

With 3 values?

How many hidden

Variables?



On the expressiveness of networks with 

hidden variables
Theorem: Relations which are not binary network decomposable cannot 

be binary network decomposable by adding any number of bi-valued 

Hidden variables.

Proof: We want to exclude (x1,x2,x3)=(0,0,0) using a variable Y={0,1}. …

Reason: 3-consistent bi-valued binary networks are globally consistent

Theorem (Dechter, 1992): k-valued binary networks which are strong 

(k+1)-consistent  are globally consistent (decomposable).

Semantic based tractability: row-convex constraints (van Beek 1995)

A whole major line of work by Jeavons and Cohen (1995-2007)

(Constraint Processing, chapter 10, 2003)

0 0 0

0,1 Y

So, it is not possible that Y allows 

any pair but not triplets.



On the expressiveness of networks with 

hidden variables



From Then On… Personal Perspective

Backjumping and no-good learning ( 1987-88)

(Wanted to understand TMS and Logic programming)

Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990) 

(answer-set programming)

(Wanted to understand default logic, logic programming)

Temporal constraint networks (with Meiri and Pearl, 1988-90)

(Understanding what Dean and Macdermoth and James Allen were doing)

Distributed constraints (with Collin and Katz, 1990)

Neural networks hyped up again.

On the expressiveness of networks with hidden variables(Dechter 1990),

from local to global consistency (Dechter 1992)

Neural networks  (will explain)

Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990) 

Learnability / PAC learning.

Bucket-elimination (Dechter, 96)  (bringing treewidth/induced-width

to Bayesian networks)

Understanding probabilistic reasoning through VE

Mini-buckets, (with Rish 1997) finally Generating heuristics for real

( with Kask, Marinescu, 2001, 2004)

AND/OR search (with Mateescu, 2004)



• A graphical model  (X,D,C):
– X = {X1,…Xn} variables

– D = {D1, … Dn} domains

– C = {F1,…,Ft} functions
(constraints, CPTS, cnfs)

Graphical models

CAFF

CAFPF
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• All these tasks are NP-hard

•  identify special cases

•  approximate

Primary tasks

•Constraint satsifaction
•Constraint optimization
•Counting, belief updating
•Max expected utility

Semiring-based constraint satisfaction and 

optimization

(Bistareli, Montanari,  Rossi JACM, 1997)



Elimination operator

OPT

bucket  B: 

F(c,a) F(c,e) 

F(a,b) F(b,c) F(b,d) F(b,e)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: (a)hE

e)c,d,(a,hB

e)d,(a,hC
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Algorithm elim-opt (Dechter, 1996)
Non-serial Dynamic Programming (Bertele & Briochi, 1973)
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Generating the Optimal 

Assignment

C:

E:

F(a,b) F(b,c) F(b,d) F(b,e)B:
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Mini-Bucket Elimination
(Dechter and Rish 2003)

bucket A:

bucket E:

bucket D:

bucket C:

bucket B:

minBΣ

F(a,b)

F(a,d)

hE(a)

hB(a,c)

hB(d,e)

F(b,d) F(b,e)

F(c,e) F(a,c)

hC(e,a)

L = lower bound 

Mini-buckets

A

B C

D E

F(b,c)

e = 0 hD(e,a)

minBΣ

We can now generate a solution going up in the same manner
Yielding an upper bound



Bucket vs Mini-Bucket  Elimination
(Dynamic porgamming)

C:

E:

F(a,b) F(b,c) F(b,d) F(b,e)B:

D:

A:

F(c,a)F(c,e)

e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

F(a,d)

bucket A:

bucket E:

bucket D:

bucket C:

bucket B: F(a,b’)

F(a,d)

hE(a)

hB(a,c)

hB(d,e)

F(b’,d)F(b’,e)

F(c,e) F(a,c)

hC(e,a)

L = lower bound 

F(b’,c)

hD(e,a)

),(),( edhca BBB h e)c,d,(a,h





Problem A

Example:



Best approximation on a given set 

of scopes



Optimal approximation with a 

given interaction graph
• Sum of terms:

Interaction graph:               Alternative sum of                                                

terms:

Problem B reduces to:

1. Finding all complete subgraphs of  

graph G

2. Solving problem A



The Central Approximation 

Problem



Mini-bucket Heuristics for BB search ( Kask and 

dechterAIJ, 2001,  Kask, Dechter and Marinsecue UAI 2003)

…

B

A

E

D

C

L

B: P(E|B,C) P(D|A,B) P(B|A)

A:

E:

D:

C: P(C|A) hB(E,C)

hB(D,A)

hC(E,A)

P(A) hE(A) hD(A)

f(a,e,D) = P(a)·hB(D,a)· hC(e,a)

A

B C

D

E

a

e

h(x) computed by MB(i)

before  or during search



So, where are we today?

• Lots of progress on tractability for constraints and for general 

graphical models (Graph-based and constraint-based).

• Local computation by mini-bucket for heuristic generation yield 

powerful search solvers for optimization

• Belief propagation algorithm are central for probabilistic reasoning

• Compilation scheme: the minimal network and multi-valued decision 

diagrams

• Powerful solvers for SAT/CSP for combinatorial optimization and 

counting.



In Summary

Thanks UGO!!!


