How | Entered Constraints

(and Met Ugo at the Doorway):
Some of the Early Milestones

Rina Dechter
UC-Irvine



Outline

How | met “Networks of Constraints”

Networks of Constraints:

— Sections 1&2 — Motivation and definitions
— Section 3 — Networks of constraints

— Section 4 — Path consistency

— Section 5 — Tractable classes

Early research after “Networks of Constraints

Current research in graphical models and yet
another Montanari's paper.
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Mechanical Heuristic Generation

Observation: People generate heuristics by consulting simplified/relaxed models.
Context: Heuristic search (A*) of state-space graph (Nillson, 1980)

Context: Weak methods vs. strong methods
Domain knowledge: Heuristic function

h(n):Heuristic underestimate ' ">
the best cost from
n to the solution 243
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A problem is simple
If it can be greedily solved



Mechanical Generation of Heuristics
pursuit lead to

* Question: How do we identify a greedily solved problems?

« Breakthrough: A sufficient condition for backtrack-free solution” by
Gene Freudeder (JACM, 1982)” (pages 24-32)

A. Mackworth “Consistency in networks of relations” 1977 Pages
99-118, Artificial Intelligence

« “Montanari, U. Networks of constraints: Fundamental
properties and applications to picture processing”
Information Science, 1974.”




IAVFORM A TION SCFEMNCES 7,95-132 (1'974% o5

*Does anybody read it all the way to the end?

MNetworks of Constraints: Fundamental Properties (850 Clta‘“ons)

amnd Applications to Picture Processing™

TGO MOMNTAMNARI
Fsrirrero di Flaboraziorne della Fnforrmazione el AN R Pisa, Fraly

ABSTRACT

The problem of representation and handling of constraints is here considered, mainly for
picture processing purposes. A systematic specification and atilization of the available comn-
straints could significantly reduce the amount of search in picture recognition. On the other
hand, formally stated constraints can be embedded in the syntactic productions of picture
languagcs. Only bimary consiraints arc treated here, but Tthey are represented in Fall =2en
erality as binary relations. Constraimts among more than two variables are then represented
s networks of sitmultanecus binary relatiomns. In general, miore thamn one eqguivalent (d.e.,
representing the same constraint) network can be found: a minimal egquivalent network
s shown o exist, and its computation is shown to solve most practical problems abowut cone-
straint handling., ™Mo exact solution for this centrml problerm was fournd . Anwway . corm—
straimnts are treated algebraically ., and the solution of a system of linear eguations i this
algebra provides an approximation of (e meinitrmaal network. This soluifion is then prowved
exact in special cases, e g., for tree-like and series-parallel networks and for classes of rela-
tions for which a distributive property holds, This Iatter condition is satisfied in cases of
practical interest.

1. INTRODUCTIOM

In writing this paper we had in mind mainly the problems of a particular
field, namely picture recognition and description. Howewver, the problem of
proper representation and economic handling of constraints is very general
and is important in many problems of operations research . engineering. and
computer science. For instance, many practical design problems consist of find-
ing any solution which satisfies all topological and geometrical restrictions [1].
Ewven when an optimization problerm muast be stated, the chosen constraint
represcntation is essential in determining the nature of the Mmathematical prolb-

FThis work was carried out while the author was visiting at the Department of
Computer Science, Carneggie Mellon University , Pittsburgh, Pa. and was supported in parct
by the Adwvanced Research Projects Agency of the Office of the Secretary of Defense
(Fad620-TO0-C—0 LT N,

= MAamerican Elsevier Pukblishing Company . Inc., 1974



Section 2: Mathematical Notation

X2 x1 Scene Labeling Constraint Network
-------- (Waltz, 1972. Generating semantidescriptions from
ab drawings of scenes with shadows. )
+  Constraints as relations ac
Ch_arac.terlstlc matrlx, N b a \ abcde
* union, intersection Composition: c a . o
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Note that composition, in matrix notation, is just binary matrix multiplication.
For example, we may have
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Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency
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Constraint Networks
A

Example: map coloring
Variables - countries (A,B,C,etc.)
Values - colors (red, green, blue)
Constraints: A =D, D#E, efc.

Constraint graph

A B (A)

red green

red yellow

green red

green  yellow B) \
yellow  green

yellow red

Semantics: set of all
solutions



Section 3: Networks of Constraints

The section defines constraint networks, showing that:

« Expressivness: Not every relation can be expressed as a network of
binary constraints

* Defining The projection network
« The minimal network
» The intricate concept of decomposability

» The central problem: Computing the minimal network.



Section 3: Networks of Constraints

XYz
XYz RXY) ... aan

The section defines constraint networks,  _______|  _____ {0’1} 000
showing that: 100

«  Expressiveness: Not every relation can be 000 00 010
expressed with binary constraints. 101 s 10 001
011| 01 @\@

«  The projection network is the best binary 101
network approximation. 110/ 11 011
« The minimal network is the intersection of 110

all equivalent constraint networks

« The minimal network is unique and
identical to the projection network and thus
the most explicit representation,

« Decomposability: a relation may be
represented by a network of binary
constraints but its projection may not.
(Namely, it can never become backtrack-
free with binary constraints only).

. r oy z t r Yy oz
« The central problem: Computing the b W a0 a 4 a4 a

minimal network. po= 0 bbb Ty = 0 b b
b b a c b b a

X y Z aba



The 4-Queen Problem

(specification (a) and minimal network (b))

R, Ry, = {(1.3), (1.4), (24), (3.1). (4,1). (4.2)}
e Riz = {(1.2), (14), (2,1), (2,3), (3,2), (34), (4.1), (4.3)}
; Ris = {(1,2), (1.3), (2,1), (2,3), (24), (3.1), (3.2), (34)
2 (4.2), (4.3)}
3 Rys = {(1.3). (1.4), (2.4), (3.1). (4.1), (4.2)}
4 Ryy = {(1.2), (1.4). (2.1), (2,3). (3.2), (3.4), (4.1), (4.3)}
Ry = {(1.3), (1.4), (24), (3,1), (4,1), (4,2)}
(2,4,1,3) o] '
(3 1 ) (b)
M= {(2,3), (3.2)} Dy — {14}
2 — .
*'1"{213_ {(134)3 (431)} D. = {1 4 }
¢ 3 — )
Moy={(1,2), (4.3)} D, — 113}
M= {(1,3), (4.2)} |




Section 4: Approximate Solution of the Central
Problem

108 LIGO MOMNT A MNARI

4. APPROXIMATE SOLUTION OF TIHE CENTRAL PROBLEM

In this section, we consider the problem of computing the minimal network
equivalent to a given network. INo exact general algorithm, besides complete
enumeration, was found. Howewver, an approximate solution is given, which
generates an equivalent **closed™ network.

In a generic network of constraints, a certain pair (x; ,,X; ) can be allowed
by the direct relation ,; (or also by M. R, and &), but can be actually for-
bidden because it is not possible to give to all the other variables any set of
walues allowed by all the constraints. To recognize such pairs and erase them,
namely to make explicit the global constraint, is the essence of the central
problem. The central problem, in its generality , is very difficult. Graph-coloring
problems, for instance, are very neatly represented by networks of constraints:
relations are all of the tvpe L'-f, i.e., all pairs are allowed except those of the
same color. The number of allowed colors (i.e., the cardinality of sets X)) and
the topology of the graph characterize the particular problem. For instance,
Fig. 3 shows the network of constraints representing the problem of coloring a
tetrahedron with three colors: an impossible task. Howewver, it is difficult to
recognize it with a seguence of local examinations of the network, and without
“*higher-order” reasonings. MNeedless to say, no hope exists to extend such tricks

Wy

“Therefore we look for an
approximation of the minimal |
network which is as explicit

as possible and still computable
with local operations”

—
'U'z — v:_j.
a1 1
Fig. 3. In this network, the relation 1 O 1 is associated to every arc. This network repre-
1 1 O

sents the impossible problermnm of coloring a four-vertex complete graph with three colors.
This network is symmetric and closed buar mot mindrmnal



Defining Closure (e.g., Path-consistency)

MNETWORKS OF COMNSTRAINTS 109

to the general case. Therefore, we look for an approximation of the minimal
network Af, i.e., a network Y which is as explicit as possible and still computable
with local operations.

Let us consider an ordered pair of values

&= (xz',r- xf...:)
and a path?
= {VF; = I

o

N I = ¥ =1

‘p > v = = 2 L era
in the complete network & from vertex ; to vertex F;. The pair & is allowed
By the parf P iF the variables

T ='!'-!_::I 3 = = . :axl'p-: - - - sxfj.H =Xy
can be given suitable wvalues
xi_r‘:—tia,r“;—---xi'p.rp--~--.—xa'm,=-m = Xyi.=

which satisfw the relations

¥ R, R

Fpdfy = - - - = _]_fp=""" .l_m__lt'm

along the path &, MNote that the same vertex Iy can occur in a path any number
of times, and different values can be given to its variable x, for each occurrence.
A pair & is called legaf if it is allowed by all the paths P from F; to ;. We will
see that the property of being legal is decidable in a finite number of steps.
Finally, a network is called cfosed it any pair & which is not legal is also not al-
lowed by the direct relation R;.

It is clear from the definition that minimal networks are closed. The converse
is, in general, not true. For instance, the network in Fig. 3 (representing the
uncolorable tetrahedron) is closed but not Minimal. This also mMmeans that many
closed networks equivalent to a given network maw exist. Given a network &,
its cfosere ¥ is defined as the largest closed network not larger than & but equiv-

alent to &. The next theorem proves the unigueness of the closure.

THEOREM <+ 1. The ser of closed networks ot larger tluarr IR bt eguivalers
ror 2 whiich s ordered under &) fias a Faorgesr elerment Y., Therefore, T is the
orrdv oloswre o .

Proc)l. We must prove that the union of two closed networks ¥ " and ¥ ™,
both not larger than &~ but egquivalent to &, is a closed network 7 not larger than
£ but equivalent to &. In fact from & = ¥ and R 2 ¥V we have R D ¥V w0 ¥ " =
Y. From /& = ¥ 2 ¥', R eguivalent to ¥ ' and (3.7) twice. we have ¥ eguivalent



Defining Closure (e.g., Path-consistency)

MNETWORKS OF COMNSTRAINTS 109

to the general case. Therefore, we look for an approximation of the minimal
network Af, i.e., a network Y which is as explicit as possible and still computable
with local operations.

Let us consider an ordered pair of values

B = (xz',r- xf...:)
and a path?
= {VF; = I

o

:—*-sVEP:*—-sVEm_p‘:F} e =1

in the complete network & from vertex ; to vertex F;. The pair & is allowed
By the parf P iF the variables

T ='!'-!_::I 3 = = . :axl'p-: - - - sxfj.H =Xy
can be given suitable wvalues
xi_r‘:—tia,r“;—---xi'p.rp--~--.—xa'm,=-m = Xyi.=

which satisfw the relations

¥ R, R

g, 2 - - - = B L T e Jere

along the path &, MNote that the same vertex Iy can occur in a path any number
of times, and different values can be given to its variable x, for each occurrence.
A pair & is called legaf if it is allowed by all the paths P from F; to ;. We will
see that the property of being legal is decidable in a finite number of steps.

gal is also not al-

ased. The converse
presenting the
means that many
en a network &,
rthhan & but equiv-
OSLTe.

R Bt eqguivalerns
refore, Y is rfie

ks ¥ and YU,

k ¥ mot larger than
(a) &) ave 2 2O Y w0 ¥ U=
hawve T eqguivalent

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency



A Closure Algorithm

(Path-Consistency) PCL

Complexity:

PC-4 optimal:

The closure Y of a network R can be characterized as being the solution of
the following system of equations.

n
Y”= Z RER ij+dif (41)
k=1

where

dff = ‘I.Ej" if i =7 dﬂ = UI'!' otherwise.

Given a network R with n vertices we can give an algorithm for computing its
closure Y.

Algorithm C
Step1 Y" =R,
Step 2 Execute next step fork =1, .
- k-1 vk _
Step 3 Yi=Yi" ]+Y:k|YkkI h 1 (;; 1,...,n). (4.4)

Step4 If Y" + }"° then let Y° = yn and go to Step 2 else let Y = Y and stop.

THEOREM 4.4, Algorithm C computes the closure Y of R, In particular, if
Y:;, ys = 1 in the network Y" obtained at the end of the first iteration, then pair
(xi, »,X;, 5) is allowed by all the paths from V;to V; in R.

oO(n°k>)
O(nk®)
Oo(n°k?)



From Global to Local Consistency

Global consistency

local consistency
approximations

-CONSISTENCY

Mackworth: Consistency in networks of relations (1977) (850 citations).
Freuder: Synthesizing Constraint Expressions” (1977) (420 citations).



Section 5: Exact Solutions for the Central
Problem for Particular Classes of Networks

* Regular networks: when the path-consistent network is minimal

We can determine regular classes of networks in essentially two ways: either
constraining the topology of the network or restricting the type of allowed rela-
tions. We will consider the former case first.

- 1985:
{ Mackworth & Freu;r

- Topology-based: /

THEOREM 5.1. (a) Tree networks® are regular. (b) Symmetrical series:
parallel networks with respect to a pair V; V;, possibly with trees rooted at any

vertex, are regular with respect to V; V.
Freuder 1982
 Restriction on allowed relations: Dechter 1987

— He defines distributed and star-distributed classes




Distributive Networks (section 5)

* Anetworkis distributive if composition is distributive over intersection.

Ryy (R33 + R33) # Rya Ras + Ryy R,

THEOREM 5.2. A closed, distributive network Y is decomposable, Further-
mare, its symmetrization

Fo Ty: o+ —
}/U' - Y”' + Yff (Ia_lr = l'! L ?ﬁl}
is minimal, Thus in particular if Y is symmetric, it is minimal.

« Theorem 5.3: “star distributivity” requires one iteration of closure algorithm.
« Algorithm C (in case of star distributivity) is the Gausian elimination algorithm of the system

equation (4.1)). Similar to the Floyd Warshal algorithm for all pairs shortest path in a graph

011

*  What relations are (star) distributive? Rp,=|010
— Monotone, 110
— Row convex (van Beek 1995) @ =@




Simple Linear Constraints

3,81(3) =8 (4) 2. Aspeial ase of monotonerelaton,with nfinite st
s represented by the “shortest path” constraint

s<fii(r)=rtd,

[n fact, the shortést path problem in a weighted graph is a special case of our
oentral problem, The network of relations R can be obtained from the weighted
graph as follows. The set of values for each variable is the set of natural numbers
and all relations Ry (1,j=1,...,n) are monotone. If Ry is specified by the de-
fining function ﬁfwe have

LT
X ﬁ:]}i (x,-) =Xt fﬁ

where £; are the arcs weights: £ = £ 1= 0, We will see that the minimal net-
work M has the same form

;<[ )=x 4y



Temporal Constraint Networks
(Dechter, Meiri and Pearl 1990, 971 citations)

f‘-'ij "E J'j — I "E béj'

Alternatively, the constraint can be expressed as a pair of mequalities:

J'j' — I i bi‘d t’:.'i'i'i'!I Iy — J'j' i —t'.!i_ji.

Figure 12.10: A distance graph representing a portion of Example 12.2.1,

[3040]

Figure 12.8: A constramt graph representing Example 12.2.1.

{[40.60.[70.70]}

— (30401
- - [50,—3} N

: Ty 2 )
_-/{[.0.1'3]} (__ _,Qc}c-,sn]} -
(D ) {10301,
[+0,407} B — {[9.200}
~_{[20.507} . 10,20} ? -
o _<i_,,f 20307, = i)
[40,5003

{[60.70]}

Figure 12.12: The minimal network of Example 12.2.1.



NETWORKS OF CONSTRAINTS 131
COMNCLUSIOMN

In this paper we have presented a formal treatment of networks of binary
constraints. The main practical result was the discovery of an algorithm for
adding to the direct constraint between each pair of variables the indirect con-
straints transmitted by all the paths in the network. In particular cases the re-
sulting constraint was proved equivalent to the global constraint represented
bw the entire network as seen by that pair of vertices. This result allows the
partial or total utilization of the global constraint structure for reducing the
set of feasible values of a variable to be determined, when the values of other
variables are known.

For the practical computer implementation of this method, the following
requirements can be suggested:

{a) In the application under examination, most constraints must be reasonably
represented or approximated by binary constraints or simple networks of binary
comnstraints. MNote that if we allow a constraint among rt variables to be repre-
sented by a network of n vertices, with r# > 2, then the negative result of Sec-
tion 3 no longer holds, and many representations of the constraint, trivial and
not, can be found. For instance, the ternary relation (3.4) which is not repre-
sentable with a 3-vertex network, can be represented by the 4-vertex network
in Fig. 2, as seen from vertices V', , I, ,and V5.

(b} The resulting binary relations (finite or infinite) must be capable of being
stored in an economical way in a computer memory. For instance, if the wvari-
ables are points of m-dimensional spaces, a relation R;; could be stored repre-
senting the images in X; of all elements” x; , of X; as m-dimensional domains.
Known technigues of domain encoding can then be used. For instance, two
given points are sufficient for determining a rectangular domain: this is often
the meaning of functions f;; () and £ (v) representing a monotonc relation.

(¢) The operations of intersection and composition must be easily definable

in the chosen class of relations. In particular, this class must be closed under
those two operations. For instance, this is the case of relations represented by
domains, convex domains, domains enclosed by polygons or convex polygons,
rectangular domains.

(d) The closed network is then obtained with algorithm C. The closed network
should then be close to the minimal. For instance, we have coincidence for
rectangular domains, and we expect reasonable closeness for convex domains.
Bad results can be expected if the relations allow most pairs and forbide a few
isolated pairs, like in graph-coloring problems. Anyway, if the addition of a
further constraint destroys regularity (i.e., closed # minimal), it is, nevertheless,

TOr just one, if all the other images can be obtained from it by a fixed procedure (e.g.,
translation ).



Using Hidden variables

For the practical computer implementation of this method, the following
requirements can be suggested:

(2) In the application under examination, most constraints must be reasonably
represented or approximated by binary constraints or simple networks of binary
constraints. Note that if we allow a constraint among m variables to be repre-
sented by a network of n vertices, with n > m, then the negative result of Sec-

tion 3 no longer holds, and many representations of the constraint, trivial and
not, can be found. For instance, the ternary relation (3.4) which is not repre-

sentable with a 3-vertex network, can be represented by the 4-vertex network
in Fig, 2, as seen from vertices ¥, V;,and V5.



ON THE EXPRESSIVENESS OF NETWORKS WITH HIDDEN VARIABIL.ES

Rina Dechter

Computer Science Department
Technion -- Israel Institute of Technology
Haifa, Israel, 32000
e-mail: dechter@techsel . bitnet

Abstract

This paper investigates design issucs associated
with representing relations in binary necrworks
augmented with hidden wvariables. The wmtrade-off
between the number of variables required and the
size of their domains is discussed. We show that
if the number of values awvailable to each variable
is just two, then hidden wvariables cannot improve
the expressional power of the network. regardless
of their number. However, for £=3, we can
alwayws find a layered nerwork using k-valued hid-
den wariables that represent an arbitrary reladon.
WWe then provide a scheme for deccrmposmg an

arbitrary relation, p, using ——2—2~ hidden wari-
ables, each having X values (k>2).

I. Introduction -

Hidden unirts play a central role in connectionist
model, without which the model would not represent many
useful functions and relations. In the early days of the Per-
cepoons [MMinsky 1969] it was noted that even simple
functrions like the XOR were not expressible in a single
laver perceptron: a realization that slowed research in the
area until the notion of hidden wanits had emerged
[Rumelhart 1988a, Hinton 1988]. Newvertheless., a formal
treatment of the expressiveness gained by hidden units, and
systematic schemes for designing systems with hidden
units within the neural nerwork paradigm are still not avail-

able.

Owur intention is to investigate formally the role of
hidden units and devise systematic schemes for designing
systems incorporating hidden units. Specifically, we
address the following task: given a relation on n variables,
called wisible, we wish to design a network having n+A

{13 This research was supported in part by INSF grant #IRT-
8821444 and by an Air Force grant #AFOSR 88 0177 while the
author was visiting the cognitive systems lab at UCL.A

units whose stable patterns, (relative to the wisible units)

coincide with the original relation. This task is cenwual to
most applications of connectionist networks, in pardcular
to its Tole as associative memory. The task will be investi-
gated for a connectionist architecture which is different
from classic connectionist networks in that it is based on
constraint metworks. The sequential constraint netwaork
model is defined next.

A WNetwork of binary constraints involves a set
of n wvariables X ,,...,X,, each represented by its domain
values, 03,,.....,0D,, and a set of consoaints. A binary
constraint R; berween two variables X; and X; is a subset
of the cartesian product D; x D; that specifies which walues
of the variables are compatible with each other. A soluton
is an assignment of values to all the variables which satsfy
all the constraints, and the constraint satisfactiom prob-
lems {(CSP) associated with these networks is o find one
or all soludons. A binary CSP can be associated with a
constraint-graph in which nodes represent variables and
arcs connect pairs of variables which are constained expli-
citly. Figure la presents a constraint nerwork where each
node represents a wvariable hawving wvalues {a, &, ¢} and
each link is associated with a strict lexicographic order
(where X; < X; iff { < 7). (The domains and the constraints
explicitlyv 1nd.1cated on some of the links.)

e s 2 K= Ca,b,c)
L8 i £¥
fa,b Ca,b)
(b (b,c)
el Ca,c)
-
Xz *q g

-Figure 1: An example of a binary CIN

Our constaint-based connectionist architecture
assumes that each unit plays the role of a variable having &
states, and that the links, representing the constraints, arc
quantified by compatibility relations between states of
adjacent units. Each unit asynchronously updates its state

P

s



On the expressiveness of networks with
hidden variables

Can a relation be expressed by a binary constraint networks with hidden variables?

Yes. If no limit on numl:p)er of values )
.n e xi "‘I'

And, with limit?

p
X!X:X:;X.;Xﬂ_:
10000 With 2 values?
Us =4 01000 ) With 3 values?
00100 How many hidden
00010 Variables?
k0 000 1)




On the expressiveness of networks with
hidden variables

Theorem: Relations which are not binary network decomposable cannot
be binary network decomposable by adding any number of bi-valued

Hidden variables.
Proof: We want to exclude (x1,x2,x3)=(0,0,0) using a variable Y={0,1}. ...

r-')ft)f:Xw"f-: Xs] @ @
Us = 81 ;1) 8 8 8 r So, it is not possible that Y allows
100 any pair but not triplets.
00010
(00001 @ Y
Reason: 3-consistent bi-valued binary networks are globally consistent

Theorem (Dechter, 1992): k-valued binary networks which are strong
(k+1)-consistent are globally consistent (decomposable).

Semantic based tractability: row-convex constraints (van Beek 1995)
A whole major line of work by Jeavons and Cohen (1995-2007)
(Constraint Processing, chapter 10, 2003)



On the expressiveness of networks with

hidden variables

ok X X KK X Xy RoXy x,

OO O OO O O O O O — 3
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Figure 6: A layered decomposition of U



From Then On... Personal Perspective

Backjumping and no-good learning ( 1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and James Allen were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990),
from local to global consistency (Dechter 1992)
Neural networks (will explain)
|ldentifiability of structures (trees) from relations (with Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (with Rish 1997) finally Generating heuristics for real
( with Kask, Marinescu, 2001, 2004)
AND/OR search (with Mateescu, 2004)



Graphical models

« A graphical model (X,D,C):
— X={X,...X} variables
- b={D,,...D,} domains

— C={F,,...,F} functions
(constraints, CPTS, cnfs)

Primary tasks

eConstraint satsifaction
eConstraint optimization
Counting, belief updating
*Max expected utility

Semiring-based constraint satisfaction and
optimization
(Bistareli, Montanari, Rossi JACM, 1997)

F.=P(F|AC)

F=F=A+C
A

B C

E D

All these tasks are NP-hard
- identify special cases
—> approximate



Finding OPT =, min Z1(X)

Algorithm elim-opt (Dechter, 1996)
Non-serial Dynamic Programming (Bertele & Briochi, 1973)

OPT = rr:jinb F(a,b)+ F(a,c)+ F(a,d) + F(b,c) + F(b,d) + F(b,e) + F(c,e)
o min> < Elimination operator
b

P

bucket B: F(a,b) F(b.c) E(b.d) E(b.e)
CORAFL @

bucket C: F(c,a) F(c,e) h®(a,d,c,e) (©
bucket D:  F( ?ﬁ/ (a.d. e)
ucket D: a, “(a,d,e
pucket E1 hD(/ ) ®
ucket E: a, e

p O
bucket A: h=(a)

% (»)

OPT



Generating the Optimal
Assignment

5. b'=arg max F(b,a' )+

F(d' ,b,a' )+F(e',b,c')
4. c' =arg max F(c,a' )+ F(c,e'")

+h®@' ,d' ,c,e')
3. d =arg max F@@ ,d)+h“(@" ,d,e")

2. e =argmax _h°(a,e)

1. a' =arg max h®(a)

B: F(a,b) F(b,c) F(b,d) F(b,e)

C: F(c,a)F(c,e) h®(a,d,c,e)

D: F(ad) h"(ade)

E: h°(a,e)

A: h*(a)

Return (a',b',c',d' ,e')



Mini-Bucket Elimination
(Dechter and Rish 2003)

Mini-buckets

mingZ ‘/\ mingZ
AN

- N - N
° bucket B:  F(a,b)F(b,c) F(b,d) F(b,e)

/

bucket C: h"(a,c) F(c,e) F(a,.c)

' bucket D: F(a,d) hB(d €)

e o
Q bucket E: \e:O hC(e,a) hD(e,a)J

v bucket A: hE(a)

L = lower bound

We can now generate a solution going up in the same manner
Yielding an upper bound

30



Bucket vs Mini-Bucket Elimination
(Dynamic porgamming)

N A
\

bucket B: }(a,b’) F(b?c) Eb.dF®.e) | B: F(a,b) F(b,c) F(b,d) F(b.e)
7 / \,

bucket C: hB(a,c) F(c,e) F(a,c
o ) C: F(c,a)F(c,e) 7B(a,d,c,e)

bucket D: F(a,d) hB(d,e)
) l D: F(ad) N @de
bucket E: _ h¢(e,a) hP(e,a), '/
— E: h°(ae)
v bucket A: hE(a) v/

A: h*(a)

L = lower bound

h®(a,d,c,e)<h®(a,c)+h®(d,e)
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SEETD.

ON THE OPTIMAL APPROXIMATION OF
DISCRETE FUNCTIONS WITH LOW-DIMENSIONAL TABLES

Upgo MONTANARI

Istiture df Elabovazione dell nformazione ded ©N R, Pisa, fralv

A disceewe function, defined by a high-dimensional array s here approsimated with @ sum of functions, each de-
pendent of @ smaller number of variables, The tables defining these functions are computed by mimmizing the
mein square errer, Three different types of constraints for this preblem are considered. In the first type, the fune-
tional dependence of each term is given, while in the second tvpe the “mneraction graph™ of the approximating sum
15 known, bn the third ty pe of problem, only the amount of the total available memory is given. In all these cases the
solution of the problem can be ebixined with simple algorithms. An important application of this approximation
technigue can be the approximate implementation of a dynamic programming procedure, where the intermediate
stages necd the moemornzation ot tables of rapidly growing dimension. In fact, the objective function can be broken

in the sum of lower-dimensional pieces alter each siage

I INTRODUCTION

The practical problem of storing large high-dimen-
stonal arrays is often critical in numerical methods.
For instance, the main limitation of dynamic pro-
gramming optimization techniques [ 1] is the dimen-
sion of intermediate tables. If an approximate repre-
sentation can be tolerated, many methods can be de-
vised For instance frunoated mRPANSIONS in ferms of
arthogonal functions can be a solution [2].

The method suggested by this paper consists in the
aptimal approximation (in the least square sense) of
the given function with a sum of lower-dimensional
functions, The advantages of this method are:

(1) The decoding process i1s very simple (a fixed
number of semmations).

(23 The compression ratio which we can obtain in
tiis way is high, while the mean error can be smali if

the Interaction among “separated™ variables is limited.

{3} The approximating function has the form of a
s of terms and is therefore suitable Tor dyvnamic

assume as fixed the functional dependence of each
term of the optimal approximating sum. An algorithm
is then given Tor computing the actual value of the
terms. Those values are essentially obtained using
simple averaging techniques®*. In section 3 the “inter-
action graph’™ of the approximating sum is given in-
stead. This problem can be simply reduced to the
precedent ane. Finally, in section 4 we assume only
the total available storage as given. The form of the
approximating sum is here obtained by solving a
linear programming problem (0,1) restricted.

2LAPPROXIMATION WITH A SUM OF LOW-
DIMENSIONAL FUNCTIONS

Let £ be a function of # discrete variables (for sim-
plicity all with the same definition domain):

Flayoox, s xp=01 N (=1, 1) (2.1

Rl



Problem A

Given a function F and a characteristic
function B for its lattice L, find a function Fg € Sp

such that the error is minimal.

e=|F-Fgl=v/ 2 (F-Fg)?
X

Example: —
F(x] ,XZ,X3,X4-X5) =f1 (Xl,.\‘z,X:;) .

+ /o (x, X3,X5) +[3(x3,x,) +f4(x4q.x5)



Best approximation on a given set
of scopes

Problem A: Given a function F and a charactensic
function B for its lattice L, find a function Fp E€5p
such that the error

e=IF-Fyl=v Li(F-Fy)
X

is minimal.

THEQREM 2.2 (a) The average projections i (X;) com-
puted by Step | of Algorithm A are the orthogonal
projections of F on §; *.(b) The union of proper spaces
5 ,1:’ C X, spans th{: entire space 5;. (¢} Functions

X}mmputud by Step 4 are the urt]mgmml projec-
Lmns of Fon§;. (d) Function Fg computed by Step 5
is the solution ui Problem A.

Algorithm A
Srep ].Emupuie the averape projections

h(X)= 25 FOX)
X-X,

of F on all the elements X; of lattice L.

Step 2. Let k(@) = hyle)

Step 3. Execute next step forr =1, .1

Step 4, For all the elements X; of L having cardinality

T let

kX =hilX) — D KkAX;) (24)
XX

where the summation is extended to all the elements
.![}- of L smaller than X
Step 5. Compute the function

Fp= 21 k(X)) (2.5)

where the summation is extended to all the elements
X;of L such that BLY;)= 1.



Optimal approximation with a

given interaction graph
* Sum of terms:

F(XI,X2,X3,x4vX5) =fl (‘xl"t?_’x3) i

P Xx3.x5) +f3(x3.04) + [y (x4.x5)

Interaction graph: Alternative sum of

f1(xp.xp,x3) +f3(X1,X5) -
+f2(x3,x4,x5)

Problem B reduces to:

1. Finding all complete subgraphs of
graph G

2. Solving problem A




The Central Approximation
Problem

roblenm O Given il S W N Probien 0 Dertermine the integer variables 1,
P___" ']'Ilr' . { I:_||'.,.E|:] d 1“”""“““'{ {'” ﬁ”['l 4 :'“n?'lll (i=l..... 0Ly reswriceed such that
whose terms can be stored as tables in no more than
M cells of memory and such that the ereor 25 e,vp = max

.= =i

€=[F-F|
with the constraints
is minimal. 3 = M
i=1

L
I — E N = )
k=1

The correspondence between Problem C and D is
given by

Ve =B
frpo= >

cpo= RN
a; = (A _]J|_Jc’,|
rrr. = X

Vigr (=1 m) = BUX ) (X € X))

o
F= 20 pkiX,).
1



Mini-bucket Heuristics for BB search (Kask and
dechterAlJ, 2001, Kask, Dechter and Marinsecue UAI 2003)

h(x) computed by MB(i)
before or during search

P(E|B,C) P(D|A,B) P(B|A)

B
\
C. P(CIA) hB(EC)
7
D

B VA 1E(D.A)
E: Bhe(E.A) j
L T
A:  P(A)  hE(A) hP(A)

f(a,e,D) = P(a)-hB(D,a)- h‘(e,a)



So, where are we today?

Lots of progress on tractability for constraints and for general
graphical models (Graph-based and constraint-based).

Local computation by mini-bucket for heuristic generation yield
powerful search solvers for optimization

Belief propagation algorithm are central for probabilistic reasoning

Compilation scheme: the minimal network and multi-valued decision
diagrams

Powerful solvers for SAT/CSP for combinatorial optimization and
counting.



In Summary

Thanks UGO!!!



