!'- Reasoning with Bayesian Networks

Rina Dechter

Donald Bren School of Computer Science
University of California, Irvine, USA

:-| Road Map

s Overview: Bayesian networks and algorithms
s Exact Inference

= Bounded-inference

= Search

s Sampling

= Hybrid of search and inference

= Modeling and learning

= Software

!-| Road Map

s Overview: Bayesian networks

Bayesian Networks (pearl, 1988)

P(S)

BN = (G, O)

P(CI|S) P(B|S)

P(X]C,S)

-

P(s, G B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)
Belief Updatlng.
P (lung cancer= yes | smoking=no, dyspnoea=yes) = ?

Most IikeI explanatlon((3:
MPE = find argmax P(S)- P(C|S)- P(B|S)- P(X]C,S)- P(D]|C,B)

Bayesian Networks encode independencies

Causal relationship

P(S)

BN = (G, O)

P(CI|S) P(B|S)

P(X|C,S) P(D|C,B)

P(s, G B, X, D) =P(S) P(C|S) P(BIS) P(X|C,S) P(DIC,B)

What are they good for?

= Diagnosis: P(cause |symptom)="?
= Prediction: P(symptom|cause)="
= Classification: max P(class|data)

class

= Decision-making (given a cost function)

Medicine
Speech
recognition

Bio-
(‘L;Z }; 22l Jinformatics

N, =7

/f

I
A\

AN

/

Text

Classification

Computer '
troubleshooting

Stock market

!-| Monitoring Intensive-Care Patients

Alarm network

37 variables p 237
509 parameters

Linkage Analysis

2|2 Al a
> 2 [aBb

*6 individuals
eHaplotype: {2, 3}
e Genotype: {6}

e Unknown

i Pedigree: 6 people, 3 markers

Constraint Networks

Map coloring

Variables: countries (A B C etc.)

Values: colors (red green blue)

A;tD, D%E,..

Constraints:

A B

red green
red yellow
green red
green yellow
yellow green
yellow red

Constraint graph

b e

10

Graphical Models

= A graphical model (X,D,F): Relation

= X={X,..X.} variables oo br%e g;gcgn r;g;

« D={D,,..D.} domains R o e e

= F={f,..f} functions % ?1, z §§§ { = (F=A+C)
m Operators: | f

= elimination (projection)

m Tasks:

combination

Primal graph
(interaction graph)

Belief updating: =, [];P,
MPE: max, [;P

CSP: [1,x,C;

Max-CSP: min, 2,

m All these tasks are NP-hard
= exploit problem structure
= identify special cases
= approximate

i Type of CPD

= Discrete variable
= Tables
= Noisy-or, noisy-and,
= Decision trees
= If/then rules
= multinomial

m Continuous variables

s Linear Gaussian

Example of Networks

Q’ WIS

FIG. 2. An example of the graphical display of Markov features. This graph shows a “local map™ for the gene
SVSI. The width (and color) of edges corresponds to the computed confidence level. An edge is directed if there is a
sufficiently high confidence in the order between the genes connected by the edge. This local map shows that CLN2
separates SVS1 from several other genes. Although there is a strong connection between CLN2 to all these genes,
there are no other edges connecting them. This indicates that, with high confidence, these genes are conditionally
independent given the expression level of CLN2.

Using Bayesian Networks to analyze expression data
(Friedman et, al. 2001)

Example of networks

2 C|PeE 1gC)

Ofe.C.g.C)
wCeC| 1 @

e
1
2

(a) (b) (c)

. C P By 10,0

WL WA R R

Fig. 2. (a) Naive Bayes model over 3 classes, for an expression data set with 3 expression measurements for each gene. A multinomial
distribution is associated with g.C (shown as a histogram). For each class g.C, each experiment is associated with a Gaussian CPD (shown
in CPD 1). (b) Protein interaction model for a dataset with 4 genes in which the interactions are between: g and g-: ¢> and g3: go and g4:
and g3 and g4. Shown is the resulting Markov network, with its two types of potentials: ¢; (g;.C) and ¢¢(g;.C, g;.C). (¢) Resulting unified
partially-directed model.

Segal, Wang and Koller, 2003 “Discovering molecular pathways from Protein
interaction and gene expression

Sample Domains for Graphical Models

Web Pages and Link Analysis
Communication Networks (Cell phone Fraud Detection)

Natural Language Processing (e.g. Information Extraction and
Semantic Parsing)

Battle-space Awareness

Epidemiological Studies

Citation Networks

Intelligence Analysis (Terrorist Networks)
Financial Transactions (Money Laundering)

= Computational Biology
= RNA
= Linkage Analysis
= Association studies
Object Recognition and Scene Analysis

!-| Road Map

m Overview: and algorithms

Tree-solving is easy

CSP — consistency

Belief updating (projection-join)

(sum-prod)

MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory

:-| Transforming into a Tree

= By Inference (thinking)

= Transform into a single, equivalent tree of sub-
problems

= By Conditioning (guessing)

= Transform into many tree-like sub-problems.

‘_-| Inference and Treewidth

FHK

Inference algorithm:
Time: exp(tree-width)
Space: exp(tree-width) toopigth = 4 -1 = 3
treewidth = (maximum cluster size) - 1

:-| Conditioning and Cycle cutset

@ O © (9 (¥ ©
@ © © @ @ (4
Corf o A Bl of
(7 (o) —> © ©
L Nl
Cycle cutset = {A,B,C} ‘B

:-| Search over the Cutset

e Inference may require too much memory

Graph
Coloring

oroblem e Condition (guessing) on some of the variables

:-| Search over the Cutset (cont)

e Inference may require too much memory

Graph
Coloring

oroblem e Condition on some of the variables

Inference vs. Conditioning

= By Inference (thinking)

(PGP Exponential in treewidth
(BDEF) Time and memory

= By Conditioning (guessing)

poydow s Exponential in cycle-cutset

B=blue] [B=green| [B=red| [B=blue| Time-wise, linear memory

M M M
= 2P o P o P Ro
G'D‘I‘ G'D‘I‘ G'D‘I‘

C5 %50 Cob

Solution Techniques, State of the art

AND/OR search Search (Conditioning)

Time: exp(treewidth * log n) Time: exp(n)
Space: linear Space: linear

Incomplete

) Simulated Annealing
Complete Gradient Descent

DFS search Stochastic Local Search

Space: exp(treewidth)

Time: exp(treewidth) Time: exp(pathwidth)

Space: exp(pathwidth)

Branch-and-Bound
A*

Incomplete

Belief-propagation

Unit Resolution

Complete
Adaptive Consistency Mini-bucket(i)
Tree Clustering

Variable Elimination
Resolution

Time: exp(treewidth)
Space: exp(treewidth)

Inference (Elimination)

Solution techniques and queries

I will present algorithms that are uniformly applicable to both
likelihood and optimizations, first.

As time permits, will focus on specific tasks:
Likelihood: belief, probability of evidence

optimization: mpe vs map

Will focus on discrete variables and assume table
representation

!-| Road Map

m Exact Inference

Outline

= Inference
s Exact: Variable elimination, bucket elimination

Incomplete

1

1
\
\

sssss

Variable Elimination

Resolution

“Moral” Graph

P(X.,...X,) = I_L[E(Xi | parent{X;))

P(a)

Moralize ("marry parents")

Conditional

Probability
« P(cla) Distribution
© 9 (cPD)
A/Chque in

moral graph
@ (“family”)

P(dlh.a)

i Belief updating: P(X|evidence)=?

P(ale=0) oc P(a,e=0)=

Z P(a)P(b|a)P(c|a)P(d|b a)P(e|b c)-
e=0,d,c,b —
a T~

BRI C)Y ZZP(c|a)Z P(bla)P(d|b,a)P(e|b,c)
'\‘X\/\ ~ J

Variable Elimination h®(a,d,c,e)

Bucket elimination
Algorithm BE-bel (Dechter 1996)

P(A|[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

E=0,D,C,B

ZH<— Elimination operator
b A

bucket B: P(bla) P(db,a) P(elb,c)
/
bucket C: P(cla) /IB(a,d,c,e)
\/ A\ v
bucket D: A (a,d,e)
bucket E: e=0 A°(a,e)
~. Wr=4

bucket A: P(@) f(a) '('::g)liccel% L‘j‘gdstifz‘;)
sy -
/M P(ale:O):P(a,e 0)

P(e=0)

P(ale=0)

:-| The operation in a bucket

= Multiplying functions

= Marginalizing (summing-out) functions

Combination of Cost Functions

A | B | f(A,B)
b|b 0.4
blg 0.1
g|b 0
g9 0.5

O

A|B| C| f(ABC)
b | b | b 0.1

b b g 0

b | g b 0

b g g 0.08

g b b 0

g b g 0

gl 9 |b 0
g|9]|9 0.4

B| C | f(BC)

b| b 0.2

b| g 0

g| b 0

gl g 0.8
=0.1x0.8

Factors: Multiplication Operation

B C D f1

true true true .95

true true false .05 D E f5
true false true true true 0.448

9
true false false .1 true false 0.192
false true true .8 false true 0.112
false true false .2 false false 0.248
false false true O
false false false 1

The result of multiplying the above factors:

B C D E fi(B.C.D)f(D. E)

true true true true | 0.4256 = (.95)(.448)
true true true false | 0.1824 = (.95)(.192)
true true false true | 0.0056 = (.05)(.112)

false false false false | 0.2480 = (1)(.248)

Thanks to Darwiche

Factors: Sum-Out Operation

The result of variable X from factor f(X)
is another factor over variables Y = X\ {X}:

STy E Y flxy)
X X

B C D f1

true true true .95 B C
true true false | .05
true false true
true false false

true true
true false
false true
false false

2.82.c2ph
T 4

9
1
false true true | .8
false true false | .2
false false true | O
1

false false false

Thanks to Darwiche

Bucket Elimimmation and
Induced wWwidth

Ordering: a, e, d, c, b

bucket({ B) — Ple|lb, e), P(d|la, b)), FP(bla)
bucket (') = Plcla) || Ap(a,c.d,e)
bucket (1) =] Ao, £,)

bucket(F) — e = 0 || Ap(a,c)
bucket(A) = Pla) || Asla)

EBucket Elimination and
Induced wvwwidth

Ordering: a, b, c, d, e

bucket(F) — Ple|lb,), e = O

bucket (1) = FPd|la, B)

bucket () = Plcla) || P(e = O|b, <)
bucket(B) — Pli|la) || Aon(a,b), Aa(b, o)

bucket () FPla) || As(a)

@ W*=2
Ordering: a, e, d, c, b

bucket({ B) — FPlelb, o). P(d|la, b)), P(bla)
bucket () — Plcla)y || Ap(a,c,d,e)
bucket (1) = [] A, e, =)

bucket(F) — e —= 0O || Ap(a, c)

bucket (A) Pla) || Asla)

:-| Induced-width

= Width along ordering d, w(d):

= max # of previous neighbors (parents)

= Induced width along ordering d, w*(d):

= The width in the ordered induced graph,
obtained by connecting “parents” of each
node X, recursively from top to bottom

:-| Induced width (continued)

w’ (d) —the induced width of the primal graph along ordering d

The effect of the ordering:

(A) @
@)
©
// &
© E ®
constraint graph
W*(dl):4 W*(dz):2

Finding smallest induced-width is hard!
Greedy algorithms (min-fill) works well.
Significant research area

al

Input: A belief network {FPy,.... Pn}, d,e.
Output: belief of X471 given e.
1. Initialize:

2. Process buckets from p — n to 1
for matrices Aq, Ao, ..., }c._?- in buckety do
e If (Observed wvariable) X, = x,; assign
Ny — 1 tOo each Aj;.

e Else, (r'rlultipnlzg..'r and sum)
Ap = 3 x, M1,
Add Ap to its bucket.

3. Return Bel(axq) = o«P(axq) - TN (1)

Handling Observations

O bserving H — 1
Ordering: a, e, d, ¢, b

bucket(B) — Ple|lb, c). P(d|la,. b)), P(bla). b = 1
bucket () = Pl{c|la)y, || FP(e|lb 1.)

bucket (D) — | P{d|a,b = 1)

bucket() — e — 0 || Ao(e,a)

1|a) Apl(a). Ae=(e, a)

bucket () Pla), || (b

Ordering: a,. b, c, d, e

bucket() — Ple|lb,), e = O

bucket (D) — Pld|la, b)

bucket (7)) = Plc|la) || Ag(H,)

bucket(B) — Pl(bla). b = 1 || Ap(a.b). Ao(a.b)
bucket(A) — P(a) || Asp(a)

:-| Search vs. Inference

Search (conditioning) Inference (elimination)

| @ : | © @e G’e‘!e

k “sparser” problems 1 “denser” problem

i Finding MPE = max P(X)

Algorithm BE-mpe (Dechter 1996)

Y isreplacedby max:
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

i Finding MPE = max P(X)

Algorithm BE-mpe (Dechter 1996)

Y isreplacedby max:
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

max H— Elimination operator

bucket B: P(bj\A P(d|b a) P(eb,c)

bucket C: P(cla) h® (\a d, . e),
\/
bucket D: “(a,d, e)

bucket E: e=0 h"”(a,e)
bucket A: P(a{A (@) "induced W|dth”
MPE (max cligue size)

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=argmax P(c|a')x
xh®(@' ,d",c,e")

3. d'=arg max h(a' ,d,e')

2.e' =0

1. a' =arg max P(a)-h(a)

‘_-| Generating the MPE-tuple

B: P(bla) P(db,a) P(e|b,c)

C: P(clay h°(ad,c,e)
D: h®(a,d,e)
E: e=0 h°(ae)

A: P@@) h@

Return (a',b',c' ,d',e')

:-| Complexity of Bucket-elimination

= Theorem: Bucket-elimination is O(rek"**1) time
and O(nk"™) space.

s When w=1 then w*=1 - trees

= When we have a tree of functions w=w* and the
hypertree width hw =1.

bucket-elimination
Sends messages
From leaves to root

Belief Updating Example

P(H) F P(F) F_hyF)
.9 0] .99 % 0| .1245
1 1| .01 1(.73175

-

h,(F) F P(F,B=1)
1 0].123255
1 — |1].073175

o™

SUM-PROD operators
POLY-TREE structure

H F M P(M|H,F) HFM

0/0]0 9 0[(0]0 F R P(R|F)

oo 1 M h(M) H hH) GTTD T
: 0] .05 0] .9 0j1, .2

0]1]1 .9 *1 8 *1 1 — |0]1(1] . 110 3

1/0/0 .8 : - 1/{0]0]| .008 0l1 7

1/0]1 .2 1{0[1]| .008

1/1/0 .01 1{1(0]| .00®mD5

111 .99 1(1]1] .07

P(B|M)

) D

B
1 .05
1

[

.8

= ol

P(h,f,,m,b) = P(h) P(f) P(m[h,f) P(r|f) P(b]m)

P(F| B=1)="7? P(B=1) = .19643 P(F=1|B=1) = .3725
Probability of evidence Updated belief

Relationship with Pearl’s belief propagation
on poly-trees (Pearl 1988)

Az () = . T o
P(Zl |U1) l |/1’Zz (uz) l /123 3

“Causal (X v
support” (1) -)
X
v I/@l ' “Diagnostic
QW support”

Pearl’s belief propagation i : , :
for single-root query {m=) BE-bel using topological ordering
On a trees induced-width is 1: message-passing is linear.

On poly-tree width = induced-width, message-passing is linear.
But message propagation can go both ways

:-| Propagation in both directions

s Messages can propagate both ways and we get
beliefs for each variable

Outline

= Inference
= Exact:
= cluster-tree propagation (join/junction-trees)

From Bucket elimination to bucket-tree elimination

If we want the marginal on D? /@

@)
©)

Bucket G: P(G/F)

G
Bucket F: F(F/B,B\ JE(F) ﬂri(/F)

E
Bucket D: F(D/AE)\ D

Bucket C: P(C/A)\/I (B,C) N £G.0)

Bucket B: A B/A) gB(A B) A2(AB) m)l
Bucket A: A(A) Z(A) N m

oML

BTE: allows messages both ways

Each bucket can
Compute its
marginal probability

F .
S (@) = Pla)
e, B B
£(B.C)Y 5 (c,a) = P(bla)Ap(a, b)ry
Ieo (Aigf A3 B(a,b) = P(bla))B(a,b)r!
P(CIA) | B m2aB) mé(e,b) =3, P(cla)mG(a, b
AR e B)(P(BIA) i (f) =2 P(fIb,)7
A

P(A) =
A T

Bucket G: A G/F) 72 (F)
/ F
Bucket F: P(F/B%\gg(F) e (B,C)
Bucket D: F(D/AE)\ / g (A, B)
Bucket C: P(C/A)\ e (B% g (A, B)

Bucket B: A B/A) ,15(A B) A(AB) 7 (A)
Bucket A: AA) /IQ(A)

G
ﬂG(F) 2P@GIF)

=
Za(A)

* Same Message Passing rule up and down

bucket(u) = P(u) U{A(x;,u), A(X,,U),..., A(X,,u), A(V,u)}

Compute the message :

ﬂ,(U,V) = Zenm(u,v)erbucket(u)—{ft(V,U)} f

Elim(u,v) = cluster(u)-sep(u,v)

From a bucket-tree to a join-tree

= Merge non-maximal buckets into maximal clusters.

m Connect clusters into a tree: each cluster to one with
which it shares a largest subset of variables.

m Separators are variable- intersection on adjacent clusters.

(B)

(ABCDF)

A super-bucket-tree is an i-map of the Bayesian network

‘_-| The general tree-decomposition

FHK

Inference algorithm:
Time: exp(tree-width)

Space: exp(tree-width) treewidth=4-1=3
treewidth = (maximum cluster size) - 1

The general Message Passing
onh a general tree-decomposition

cluster(u) =y (u) u{h(x;,u),h(x,,u),....h(x_,u),h(v,u)}

For max-product
Just replace 2, Compute the message :

With max.
h(U,V) — Zenm(u,v)ercluster(U)—{h(V,U)} f

Elim(u,v) = cluster(u)-sep(u,v)

Tree decompositions (formal)

[ABC J
p(a), p(bla), p(cla,b)

A tree decomposition for a belief network BN =< X,D,G,P >isa
triple<T, y,w >, whereT =(V,E)isatree and y and y are labeling
functions, associating with each vertex v eV twosets, y(v) < X and [BCDF J
w(v) < P satisfying . p(d}b), pfic,d)

BC

1. For each function p, € P there is exactly one vertex such that BF
P € y(v) and scope(p;) < x(v)

2. For each variable X, € X theset{v eV|X, € y(v)} formsa [pe(’eﬁ)’% J
connected subtree (running intersection property) -

[EFG]
p(gle.f)

Tree decomposition

iwition for belief updating

ABC
p(a) [p(2), p(bla). p(cla.b)]
BC
BCDF
p(dlb). p(flc.d)
p(cla,b) i
BEF
p(elb.f)
EF

EFG
p(gle.f)

CTE: Cluster Tree Elimination

1| ABC
| huy.0)=> p@)-plbla)- p(clab)
BC
h(2,1) (b,c) :Z p(d|b)- p(f |C’d)'h(3,2) (b,)
2| BCDF
h(z,s) (b, f)= Z p(d|b)- p(f|c,d)- h(1,2) (b,c)
BF)
h(3,2) (b,)= Z p(e|b, f)'h(4,3) (e, f)
3| BEF
hiq (e)= Z p(e|b, f)-h,4 (b,)
EF b

T hus(e f)=p(G=g.le f)
4| EFG

Time: O (exp(w+1))
Space: O (exp(sep)) For each cluster P(X|e) is computed, also P(e)

Algorithm cluster-tree elimination (CTE)

Input: A tree decomposition < Ty, > for a problem M =< X, D, F [} >,
X={Xy,..X,}, F={fi....f.}.

Output: An augmented tree whose vertices are clusters containing the original
functions as well as messages received from neighbors. A solution computed from
the augmented clusters.

Compute messages:

For every edge (u,v) in the tree, do

e Let m,,) denote the message sent by vertex u to vertex v.
o Let cluster(u) = (u) U {mgw|(i,u) € T}.

e If vertex u has received messages from all adjacent vertices other than v,

then compute and send to v,

SEPE..“:“} fECEuStET{u}'.f?Em{v,u}

Endfor

Note: functions whose scope does not contain elimination variables do not need
to be processed, and can instead be directly passed on to the receiving vertex.
Return: A tree-decomposition augmented with messages, and for every v € T

CTE (continued)

A G T ={A80
) wil) ={pla), plb|a), picia,)

(2\ 7@ =(B.C.D.F)

=/ w2 =(p(di8), pl flcd)

C) rM=(8EF)
3 vy =iple|b)

@) =(EF.G)
=/ vty =(plg]e, N)

(b)

1| aBC | .
s | O by (b,c) = : pla)- p(bla)- plc|a.b)
BC :
, ARl B (b.c):: pld |b)-p(f|c.d)- By, (b, F)
2|BeDF s

T enb.1) =Y p(d]b)- p(f|c.d)- Bz (b.c)
c 4

L Ban(b.)= ple|b. £)-hyyle. £)
i) "
' Bsole)=Y ple|b. 1) -hyy(b. 1)

L hule. H="p(C=g.|e F)
erc] :

(c)

Let Ci and Cj two adjacent clusters and sep(i,j) be their separator

bel(sep)= > [1f= 2 []f=hs;ehg,

elim(i, j) f<C, elim(j,i) feC;

i Examples of tree-clustering

de ev 0 o) by

CTE - properties

Correctness and completeness: Algorithm CTE is correct, i.e. it
computes the exact joint probability in each cluster and therefore of
every single variable and the evidence.

Time complexity: O (deg x (n+N) x k w*1)

Space complexity: O(N xk=ep)
where deg = the maximum degree of a node in the cluster-tree
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
k = the maximum domain size of a variable
w* = the induced width
sep = the separator size

!-| Road Map

[
s Bounded-inference
[
[

Road Map

= Bounded-inference
= Mini-buckets, mini-clusters
= Belief propagation, Generalized belief propagation

Incomplete

Simulated Annealing

Complete Gradient Descent
DFS search

Branch-and-Bound

The idea of Mini-bucket (Dechter and Rish 1997)

Local computation: bound the size of recorded dependencies

Split a bucket into mini-buckets =>bound complexity

bucket (X) =
i hl seses Ny s hpyg 5eee; }

-

; T n
/ hX= max [| h; \
f’ X =1
¥

{hlﬂ'":rhr} Ih{llr'+1:v-":rl1n)}
N ~—— r n e
gX= (max [Th;) -(max [Th;)
X i=1 X i=r+l

Exponentia | complexity decrease:O(e") —> O(e") +O(e" ")

Mini-Bucket Elimination

Bucket B

Bucket C

Bucket D

Bucket E

Bucket A

maxgll

/\ 4

maxgll
AN

~

P(EIB,C) P(B|A) P(D|A,B)

N\

P(C|A) h®(C,E)

\
E=0 hC(AE)

|

\
h® (A,D)

P(A) h=(A) h"(A)

G

/

hd

MPE* is an upper bound on MPE --U

P(D|A,B)

P(C|A)

Generating a solution yields a lower bound--L

Semantics of Mini-Bucket: Splitting a Node

Variables in different buckets are renamed and duplicated
(Kask et. al.,, 2001), (Geffner et. al., 2007), (Choi, Chavira, Darwiche , 2007)

Before Splitting: After Splitting:

67

M BE(I) (Dechter and Rish 1997)

= Input: i — max number of variables allowed in a mini-bucket
= Output: [lower bound (P of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

Mini-buckets Max variables
N in a mini-bucket T
max, [] . maxg PN N
P(elb,c)" P(dla,b)P(bla) 3 P(elb,c) P(dla,b) P(bla)
\\ IIIIII _____H_____"“-L.
P(cla) h® (e,c) f 3 P(cla) Kt (a,d,c,e)

|
A

72 (t},a) > k€ (a,d,e)

— o E=0 kP (a,e)

E=0 kcfe,a) 2 s
/

/ P<a>\hE/fr3 W@ 1 P%\ >

N WE=2 e WX=4

U = Upper bound (MPE)

Properties of MBE(i)

Complexity: O(r exp(i)) time and O(exp(i)) space.
Yields an upper-bound and a lower-bound.

Accuracy: determined by upper/lower (U/L) bound.
As i increases, both accuracy and complexity increase.
Possible use of mini-bucket approximations:

= As anytime algorithms

s As heuristics in search

Other tasks: similar mini-bucket approximations for: belief updating,
MAP and MEU (Dechter and Rish, 1997)

Anytime Approximation

anytime mpeg)

Initializei =1,

W hildimeandspaceresourcesareavailable
<1 +1lg,
U < upperboundcomputedoy approx- mpe(i)
L < lower boundcomputedoy approx- mpe(i)
keepthebest solutionfoundso far

If 1< Uf <1+ ¢&, returnsolution

end
returnthelargest L and thesmallestU

MBE for likelihood computation

m |ldea mini-bucket is the same:;

D F()eg() <D F(x)eD g(x)
2 F(x)eg(x) < f(x)emax, g(X)

= So we can apply a sum in each mini-bucket, or better, one sum and
the rest max, or min (for lower-bound)

s MBE-bel-max(i,m), MBE-bel-min(i,m) generating upper and lower-
bound on beliefs approximates BE-bel

= MBE-map(i,m): max buckets will be maximized, sum buckets will be
sum-max. Approximates BE-map.

CPCS networks — medical diagnosis

noisy-OR CPD’s

Test case: no evidence

Anytime-mpe(0.0001)
U/L error vs time

38 |
—a— Cpcs422b
3.4 —o— Cpcs360b
. 30 |
(D)
% 2.6 |
= 22 |
(é 1.8 | ¢
S
1.0 11 1 eeee-—o-
06 Li 1oy 00 1y
=1 10 100 =21 1000
Time and parameter i)
Time (sec)
Algorithm cpcs360 cpcs422
elim-mpe 115.8 1697.6
anytime-mpe(), £ =10"* 70.3 505.2
anytime-mpe(©), £ = 101 70.3 110.5

:-| Mini-Clustering (for sum-product)

Split a cluster into mini-clusters => bound complexity

APPROXIMATE
algorithm

S < (S {20

elim i=1 elim i=1 elimi=r+1

Exponential complexity decrease O(e") — O(e*”) + O(e"" ")

Mini-Clustering, i-bound=3

ABC
L1 | p@). p(ola), p(clab)

s | v N, b0 =Y p@-pbla) pc|ab)
" BCD)
p(d[b), hy 5 (b,c)

2 CDF
__P(flc.d) ! V h, 5 (b)=>" p(d|b)-hg; ., (b,c)
BF 2 ¢.d
e h(2,3)(f):”g%Xp(f|C1d)
3 { p(elb,f), }
h'e5(0), W% 5() APPROXIMATE algorithm
EF
Time and space:
EEG exp(i-bound)
4 { p(gle.f }
Number of variables in a mini-cluster

MBE-mpe vs. IBP

approx - mpe is better on low - w *codes
IBP isbetter on randomly generated (high - w*) codes

Bit error rate (BER) as a function of noise (sigma):

Structured (50,25) block code, P=7 . Random (100,50) block code, P=4
10 ° E
10! 10
o~ =
E B 107

—+8&— 1BP(1)
—*&— 1BP(10)
elim-mpe 1079

1BP(1)
—=— 1BPF(1O)

—®— approx-mpe(l)
—S— approx-mpe(7)

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

NHD

Relative error

Grid 15x15, evid=10, w*=22, 10 instances

0_evidence

Grid 15x15, evid=10, w*=22, 10 instances

0.14 0.06
—e— MC
0.12 A 0.05 A —— IBP
—e— MC
—— IBP
0.10 004
<]
0.08 - o
[0
5 003+
o
0.06 - 2
<
0.02
0.04
0.01
0.02
000 ’ i i ' j ' ' o 0 zlt (Is Eli 1Io 1I2 1I4 1I6 18
0 4 6 8 10 12 14 16 18
i-bound i-bound
Grid 15x15, evid=10, w*=22, 10 instances Grid 15x15, evid=10, w*=22, 10 instances
0.12 12
—e— MC 10 - —e— MC
0.10 —— IBP —— IBP
8 -
0.08 —
2]
he]
5 6
3
0.06 8
[0] 4 4
£
0.04 - =
2 -
0.02
o4 o o o o
0.00 ; ; ; ; ; ;
0 4 6 8 10 12 14 16 18 0 4 6 8 10 12 14 16 18

i-bound

i-bound

Heuristics for partitioning

(Dechter and Rish, 2003, Rollon and Dechter 2010)

Scope-based Partitioning Heuristic (SCP) aims at minimizing the
number of mini-buckets in the partition by including in each minibucket
as many functions as respecting the /bound is satisfied

1234
- Log relative error:

14023 17234 12453 13724 12374 13472 12434 RE(f. h‘] _ Zg{lﬂf.-‘; UPHJ:' B 1{}5_{”?{“]‘.'

- Mazx log relative error:
1723704 140203 112403 137274 120314 112734

w MRE(f,h) = max,{log (f(t)) — log (h(t))}

1/2/3./4

Partitioning lattice of bucket {fi, fa, fa, fa}.

Use greedy heuristic derived from a distance function to decide which
functions go into a single mini-bucket

Road Map

s Bounded-inference

= Belief propagation, Generalized belief propagation

Iterative Belief Proapagation

m Belief propagation is exact for poly-trees
= |IBP - applying BP iteratively to cyclic networks

One step :
update

BEL(U,)
Ax, (UB\

= No guarantees for convergence
= Works well for many coding networks
m Lets combine iterative-nature with anytime--1JGP

:-| BP works on dual graph

= Need a slide saying the belief propagation
operates on the dual graph

:-| IJGP - Example

Belief network Loopy BP graph

i Arc-Minimal Join-Graph

Arcs labeled with
any single variable
should form a TREE

Collapsing Clusters

Join-Graphs

GHI
FGHI

more accuracy

less complexity

®

elief Propagation

o

cluster(u) =y (u) u{h(x;,u),h(x,,u),....h(x_,u),h(v,u)}

Compute the message :

h(U,V) — Zenm(u,v)ercluster(U)—{h(V,U)} f

For max-product: IJGP replaces summation with maximization

Message propagation

ABCDE
p(a), p(c), p(blac),
p(djabe),p(elb,c)
h(3,1)(bc)

h(3,1)(bC)

Minimal arc-labeled:
sep(1,2)={D,E}
elim(1,2)={A,B,C}
Non-minimal arc-labeled: h, , (cde) = Z p(a) p(c) p(b|ac) p(d | abe) p(e|bc)h,,, (bc)
sep(1,2)={C,D,E} a,b
elim(1,2)={A,B}

:-| Constructing Join-Graphs

G: (GFE)
E: (EB}‘(EF)
F: ZFCDSQA(BFJ) p(r1c,0) (0FED
D: (DB)™(CDY
C: \(CAB)K* (c;j)\
B::(BA)K‘(AB)/ (B)
A 2 (A

P(G|F,E)

a) schematic mini-bucket(i), i=3 b) arc-labeled join-graph decomposition

:-| Linear Block Codes

Received bits @ @ @ @ @ @ @ @

Input bits) B © (D C(E G) \
> ,
\V\Y(';\ ‘%‘" .
e Sa e Gaussian
)'0“/’*‘»4" channel noise
Parity bits + + + + + +

N

Received bits @ @ @ @ @ @

Coding Networks — Bit Error Rate

N=400, 1000 instances, 30 it, w*=43, @ = .22

le-1 4
—e— |JGP
—v— MC
— IBP
7 V/'\v\v\
w 1le-3 4
le-4
le-5 T T T T T 1
0 2 4 6 8 10 12
i-bound
N=400, 500 instances, 30 it, w*=43, @ = .51
0.0785 4
0.0780 1
0.0775 1
— IBP
0.0770 —e— 1IGP
2
w 0.0765 1
o
0.0760 A
0.0755 4
0.0750 +
0.0745 T T T T T 1
0 2 4 6 8 10 12

BER

BER

N=400, 500 instances, 30 it, w*=43, @ = .32

0.00243
0.00242
0.00241 —— IBP
—o— |JGP

0.00240 -
0.00239 -
0.00238 - (4 ® g * *
0.00237 T T T T T 1

0 2 4 6 8 10 12

i-bound
N=400, 500 instances, 30 it, w*=43, @ = .65
0.1914 4
0.1912 4
—— IBP

0.1910 4 —e— |JGP
0.1908 1
0.1906 1
0.1904 4
0.1902 4
0.1900 T T T T T 1

0 2 4 6 8 10 12

KL distance

0.1 1

0.01 A

0.001 A

CPCS 422, evid=0, w*=23, linstance

—&— |JGP 30 it (at convergence)

—v— MC
—— IBP 10 it (at convergence)

\'/T

0.0001

10 12 14 16

i-bound

evidence=0

18

KL distance

CPCS 422 — KL Distance

CPCS 422, evid=30, w*=23, linstance

0.1 1
0.01 A
—e— |JGP at convergence
—o— MC
0.001 - —— IBP at convergence
00001 T T T T T T T T T T T T T T
3 4 5 6 7 8 9 10 11 12 13 14 15 16
i-bound
evidence=30

KL distance

CPCS 422, evid=0, w*=23, linstance

0.1
—e— 1UGP (3)
v 1JGP(10)
—e— IBP
0.01
0.001 A
0.0001

0 5 10 15 20 25 30 35

number of iterations

evidence=0

0.1 A

0.01 4

KL distance

0.001 A

CPCS 422 — KL vs. Iterations

CPCS 422, evid=30, w*=23, linstance

—e— 1JGP(3)
v 1JGP(10)
—e— |BP

0.0001

5 10 15 20

number of iterations

evidence=30

i More On the Power of Belief Propagation

m BP as local minima of KL distance

= BP’s power from constraint propagation
perspective.

Optimizing the KL-Divergence

@ IBP fixed points are stationary points of the KL—divergence:
they may only be local minima, or they may not be minima.

@ When IBP performs well, it will often have fixed points that
are indeed minima of the KL—divergence.

@ For problems where IBP does not behave as well, we will next
seek approximations Pr’ whose factorizations are more
expressive than that of the polytree-based factorization.

Therse results also extend to generalizzed BP

A spectrum of approximations.

IBP: results from applying IJGP to the dual joingraph.

Jointree algorithm: results from applying IJGP to a jointree (as a
joingraph).

In between these two ends, we have a spectrum of joingraphs and
corresponding factorizations, where I1JGP seeks stationary points of
the KL—divergence between these factorizations and the original

distribution.

Constraint networks

Map coloring
Variables: countries (A B C etc.)
Values: colors (red green blue)

Constraints: @ A =D, D#E, etc.

A

red
red
green
green
yellow
yellow

Sound
Incomplete

Always converges
(polynomial)

W N | = D>

W(N = |0

Arc-consistency

WIN =

W(IN| = |

WIN = 0O

i Relational Distributed Arc-Consistency

Primal Dual
A B AB BC
1 1 AB 1222 BC
2 2 2 3|3 3
> A A=b B > =2 ABJ B \BC 3 3
Vo 12 &
2 | 3 B=C
A<D 1] 1 AB AD BC DC
Lz 2 | 2 1 2[1 2 2 2(1 2
= L= 3|3 2323 A C 3323
D<C
> (p) (c) ¢
1 1|2 1 AD DC
2 2 € 2 1 2 Y D Vs
3 3 AD DC —
AD DC

1223

P(G|D,F)
1
1
0

Belief network

P(F|B,C)

Flattening the Bayesian Network

Flat constraint network

IBP — inference power for zero beliefs

= Theorem:

Trace of zero beliefs of Iterative Belief Propagation =
Trace of invalid tuples of arc-consistency on flat network

= Soundness:

= The inference of zero beliefs by Loopy BP converges in a finite number of iterations
m all the inferred zero beliefs are correct

= Incompleteness:
= Loopy BP may not infer all the true zero beliefs

:-| Properties of ijgp

= Properties of the sum-product algorithm

= [f/when the algorithm converges, the
covergence is a stationary point of the KL
distance to the posterior distribution

m Properties of the max-product algorithm

= If the max-marginals agree...

lJGP summary

IJGP borrows the iterative feature from IBP and the anytime virtues of
bounded inference from MC

Empirical evaluation showed the potential of IJGP, which improves
with iteration and most of the time with i-bound, and scales up to
large networks

IJGP is almost always superior, often by a high margin, to IBP and MC

Based on all our experiments, we think that IJGP provides a practical
breakthrough to the task of belief updating

:-| Exact Reasoning by Search

s Why consider search?
s Can we do any better in search?

m Can we combine search and inference?

‘_-| Road Map

Search

Conditioning generates the probability tree

P(a,e=0)=P(a))_P(b|a)d P(cla)d P(d|a,b)> P(e|b,c)

e=)
':—:'E:ﬂ

-
P{EII:,:F P(a)P(bla)P{cla)Pidla,b)P elb.c)

Complexity of conditioning: exponential time, linear space

Classic OR Search Space

ol [a fof f[o [ol [2 f[of f[a [of [a f[ol [af [of [af f[of [af [of [a] [of f[a] fol f[o] [of f[a] fo f[a] f[o] f[a] f[ol f[a] fo] f[a]

o] [1] o] [x][o][z] o] [x][o] 1] [o] 1] [o] [1] [o] 1] [o] 1] [o] [1] o] [x] [o] [1] o] [1] [o]] o] [] [o][1] [o][x][o][z][o][][o][x][o][z] [o][x][o][x] [o][z] [o][x] o] [x] [o][z] [o] [x][o] [x] [o] [x] [o] [x] [o]]

The AND/OR Search Tree

c () F
D \Bj E
Pseudo tree (Freuder and Quinn,1JCAI85)
OR ()
[1]
OR (®) (B)
0 i 0 1]
<> >

OR (© O, (© O, (© (e © O
0 @ P E O F @@ @@ BE @D @

kR @0 O 0O OO 0O G OO GG
(I PDEPE OEUE DEEE PHEE BEULED OHOE ©H6

OR

OR

OR

OR

The AND/OR Search Tree

c (a) F
D \Bj E
Pseudo tree
(»)
[] 1]
(®) (®)
9 4 19 4

(© O, (© O, (© (e © O
0 @ P E O F @@ @@ BE @D @

O OO 00 OO 0 O 0 GG
(I PDEPE OEUE DEEE PHEE BEULED OHOE ©H6

A solution subtree is (A=0, B=1, C=0, D=0, E=1, F=1)

Weighted AND/OR Tree

P(E[AB) P(B[A) P(C|A) P(A)
A|B|E=0|E=1 A|B=0|B=1 A|C=0[(C=1 A | P(A)
olo| 4 [6 o] 4] 6 o] 2| 38 o] 6
0 5] 5 1 1] 9 1] 7 | 3 1] 4
o] 7 [3
1]1) 2 | 8 Result: P(D=1,E=0)
Evidence: E=0
OR .24408 ()
6 4
.3028 [0] .1559
OR .3028 (B) .1559 (B)
4 6 1 9
.352 [0] 27 .623 [0] .104
or \.4(E) .88(0) 5(E) 54 (c) 7 (&) .89 (©) 2(E) 52 (¢)
4 2 8 .5 2 8 7 1 9 2 1 9
o] [1] .8 [o] 1] .9 o] [1] .7 [o] 1] .5 o] [1] .8 [o] 1] .9 o] [1] .7 [o] 1] .5
OR 8(D) (0).9 7 (D) (o) .5 8(p) (p).9 7 (D) (o).5
8 9 7 5 8 9 7 5
[o] [o] [o] [o] [o] [o] [o] [o]
P(D|B,C)
B[C[D=0]D=1] OR node: Marginalization operator (summation)
oo 2 [8
o[1] 1 [9 : TR
o315 AND node: Combination operator (product)
1[1] 5 [5

Evidence: D=1 Value of node = updated belief for sub-problem below

OR

OR

OR

OR

F

AND/OR vs. OR Spaces TR

()

®) 54 nodes ®

g X g
® ® ©® ® @ ® 6 ®
o] [1 o [1 o] [1] o [1 o] [1] o [1 o [1 o] [1]

O ®® 0@ O®0® 0 O 0 GG
(10 PEPE OHUE DEUE OHEE BEUED OCHOE ©H6

(=]

126 nodes

of [[of [o [of f[af [of f[o f[of [d f[of f[af [of [f[of f[af [of [¢f [of f[af [of [af f[of [af [of [af [of [af [of f[a] [of [q]

[0][1] [o][1]{o]{x] [o] [1][o][] [o][x] o] 1] [o] [1] [o][1] [o] 1] o] [1] o] [2][o][x] [o] 1] o] [x] [o] 2] [o][x] [o][x]{o][x] o] [x][o][x] [o][x] o] [x] o] 2] [o][x] [o][x] o] [] o] [x][o] [x] [o] [x] o] [] [o] [1]

AND/OR vs. OR Spaces

_ OR space
width depth
Time (sec.) Nodes
5 10 3.15 2,097,150
4 9 3.13 2,097,150
5 10 3.12 2,097,150
4 10 3.12 2,097,150
5 13 3.11 2,097,150

AND/OR space
Time (sec.) | AND nodes
0.03 10,494
0.01 5,102
0.03 8,926
0.02 7,806
0.10 36,510

OR nodes
5,247
2,551
4,463
3,903
18,255

Random graphs with 20 nodes, 20 edges and 2 values per node

;| Complexity of AND/OR Tree Search

AND/OR tree OR tree
Space O(n) O(n)
O(n dt)
Time ~ O(ndwesm) O

(Freuder & Quinn85), (Collin, Dechter & Katz91),
(Bayardo & Miranker95), (Darwiche01)

d = domain size

t = depth of pseudo-tree
n = number of variables
w*= treewidth

AND/OR search tree for graphical models

The AND/OR search tree of R relative to a spanning-tree, T, has:
= Alternating levels of: OR nodes (variables) and AND nodes (values)

Successor function:
= The successors of OR nodes X are all its consistent values along its path
= The successors of AND <X,v> are all X child variablesin T

A solution is a consistent subtree
Task: compute the value of the root node

OR (A)
0]
OR (&) (8)
o] o]
orR (& © () O, ® (2 (® O,
o] o] o] o] o] o] o] 0]

rR @O @ O @O @60 0O @ © ¢
ol I IR OO E B 006D EOSil IR 00 E B O D0 EE D 112

Pseudo-Trees

(Freuder 85, Bayardo 95, Bodlaender and Gilbert, 91)

4 (1) 6 o

(2)

O—@ O—6 ©

t <= W* Iog N (a) Graph (4)

@ @ @

ouN (AR ¢

(3) (8 @ @ Y © O

O (&)

(b) DFS tree (c) pseudo- tree (d) Chain

depth=3 depth=2 depth=6

AND/OR tree search (P(evidence))

Weighted AND/OR

P(E| A B) P(B|A) P(C|A) P(A) Has weights on arcs
A[B[E=0[E=1] [A[B=0] B=1|[A]c=0] c=1] [A] P(A)
oo «4 | 6 | [0 4] 6 [[o] 2] 8 o] 6
0[1y 5 [5 1] 1] 9 J[af 7 [3 1| 4
10| 7 | 3
(1] 2 8 Result: P(D=1,E=0)
OR Evidence: E=0 .24408 (a)
6 4
.3028 [o] .1559 [1]
OR .3028 (B) .1559 (B)
4 .6 i | 9
.352 [0 .27 (1] .623 [o] .104 (1]
orR \.4(E) .88(c) 5 (E) 54(c) 7 (E) .89 (©) 2(E) 52 ()
4 2 .8 .5 2 .8 .7 | .9 .2 | .9
0] [1] .8 [o] 1] .9 0] [1] .7 [o] 1] .5 0] [1] .8 [0] 1] .9 0] [1] .7 [o] 1] .5
OR 8(p) (0).9 .7 (D) (p).5 8(p) (p).9 .7 (D) (p).5
8 9 7 5 8 9 7 5
O [[0 [[A [o] [a o [[o [l O [[o] [
P(D|B,C) OR node: Marginalization operator (summation)
3 g D;O Dzl AND node: Combination operator (product)
o[1] .1 [.9 Value of node = updated belief for subproblem below
1ol 3 | 7
1{1] 5 [5

Evidence: D=1

From search trees to search graphs

= Any two nodes that root identical subtrees (subgraphs)
can be merged

From search trees to search graphs

= Any two nodes that root identical subtrees (subgraphs)
can be merged

(-4 (-4 (-4 -4 -4
o o o o o o

An AND/OR Gra

(-4
o

OR

OR

OR

Merging based on context

X
context (X) = ancestors of X connected to <

descendants of X

How big is the context?

context (X) = ancestors of X in pseudo tree that are
connected to X, or to descendants of X

context (X) = parents in the induced graph

max | context| = induced width = treewidth

pseudo tree

context(e) = [® 0 O]

AND/OR Tree DFS Algorithm

(Belief Updating)

P(E|AB) P(B|A) P(C|A) P(A) Context
A|B|E=0|E=1 A|B=0|B=1 A|C=0[(C=1 A | P(A)
olo]l .4 [6 0] 41 .6 o] .2 [.8 o] .6
0 5 [.5 1] 1] 9 1] 7 | 3 1] 4
yio|l 7 [3 ! '
(11] 2 [.8 Result: P(D=1,E=0) [AB](E) ' (O[AB]
Evidence: E=0 R
.24408 (a)
6 4
.3028 [o] .1559 [1]
.3028 (B) .1559 (B)
4 .6 1 9
.352 [o] .27 [1] .623 [o] .104 [1]
4 (E) .88(c) 5 (E) 54(c) 7 (E) .89 (©) 2(E) 52 ()
4 2 .8 .5 2 .8 7 1 9 2 1 9
o] [1] .8 [o] 1] .9 o] [1] .7 [o] 1] .5 o] [1] .8 [0 1] .9 o] [1] .7 [o] 1] .5
.8(p) (p).9 .7 (D) (p).5 .8(p) (p).9 .7 (D) (p).5
8 9 7 .5 8 9 7 .5
o] [[0 [l [o] /la] [o] [al [o] [1] [o] [a] o] [a] [0 [al
P(D|B,C)
B[C|D=0]|D=1]
olof 2 | 8
of1f .1 [.9 OR node: Marginalization operator (summation)
: (1) g ; - AND node: Combination operator (product)

Evidence: D=1 Value of node = updated belief for sub-problem below

P(E|AB) P(B|A) P(CIA) P(A)
A|B|E=0|E=1 A|B=0|B=1 A|C=0[(C=1 A | P(A)
0(0| 4 .6 0| 4 .6 0| .2 .8 0| .6
0 .5 .5 1| .1 .9 1| .7 .3 1| 4
yio| .7 3
(1 .

(= [olofw
[l [=1d(=1(e]
Ufio|oo

Cache table for D

Result: {P(D= 1,E=0)

AND/OR Graph DFS Algorithm

(Belief Updating)

Context

B[C|[D=0][D=1]
olo] 2 [8
ol 1 [9
1lo| 3 | .7
11+ 5 | 5

Evidence: D=1

i Complexity of AND/OR Graph Search

AND/OR graph OR graph

Space O(n dv*) O(n dPv")

Time O(n dw¥) O(n dPw)

d = domain size

n = number of variables WX < pW* < W* Iog N
w*= treewidth

pw*= pathwidth

:-| Constructing Pseudo Trees

= AND/OR search algorithms are influenced
by the quality of the pseudo tree

= Finding the minimal induced width / depth
pseudo tree is NP-hard

m Heuristics
= Min-Fill (min induced width)
= Hypergraph partitioning (min depth)

Quality of the Pseudo Trees

Network = hypergraph min-fill Network = hypergraph min-fill
width | depth | width | depth width | depth | width | depth

barley 7/ 13 7 23 spot5 47 152 39 204
diabetes 7 16 4 77 spot28 108 138 79 199
link 21 40 15 53 spot29 16 23 14 42
mildew 5) 4 13 spot42 36 48 33 87
muninl 12 17 12 29 spot54 12 16 11 33
munin2 9 16 9 32 spot404 19 26 19 42
munin3 9 15 9 30 spot408 47 52 35 97
munin4 9 18 9 30 spot503 11 20) 39
water 11 16 10 15 spot505 29 42 23 74
pigs 11 20 11 26 spot507 70 122 59 160

Bayesian Networks Repository SPOT5 Benchmarks

All Four Search Spaces

A
B
C
D
E
F
Full OR search tree Context minimal OR search graph
126 nodes 28 nodes
OR (»)
0] OR
OR () (&) OR
0] 1] 0 1]

or © & © © © (& © (& ©or
ol [[o] [f o [[o [1] o [[o [d [of [[o [oR
orR @QOEHE OOEOE OOE®E @®E G
o] [2][o][1][o][2][o][2] [o][x][o][2][o][x][o][2] [o][z][o][a][o][z][o][a] [o][z]{o][x][o][][o][1]
Full AND/OR search tree
54 AND nodes

Context minimal AND/OR search graph
18 AND nodes

:-| How Big Is The Context?

Theorem: The maximum context size for a
pseudo tree is equal to the treewidth of the
graph along the pseudo tree.

(CKHABEJLNODPMFQG)

;| AND/OR Context Minimal Graph

AND/OR Search [I
o] 1]
K) K H) H)
o 1] o 1] o] 1] o] 1]
[[[[[[[[
L L L L ® ®) 0 &)
o] 1] o 1] o 1] 0 1] o] 1] o 1] 0 1] o 1]
| I | | I I I I (I I I I I I I I\
N N ®) B (8 B (B B B B
0 (1] |0 (1 0 |1 (0] |1 0 (1] |0 |1 0 (1] (0] (1 ol (1| ol (1] |o] |1 ol (1] ol |1] |ol 11| lo| |1| o [1
\\ J
p NN NN
0 © ©0© ©0© 0 0 0 0 0 0 0 0 © 0 0 O©|[E®E EE EEN E ENENE\®E \E E EE
of[1]o]+]of1]o][x] [o]+]o]1]o[x]o][1] [ol[1]ol+]o[1]o][x] [ofx]ol[xfo]]o]]){ [o] [a] [of [tNoN1] NoNzh PN1)\o] [1], [lo] [o] [1] |
N N
) NN EE
P ® ® ® ® ® P @) 0O 00 GLOBNINNGGKDG) ()G
o] [1][0][1] [0l [1] [0][1] [0][x][0][1] [0] [1][0] [x 0 11| (0] [1] |o] [3] |0 (1NO] J1{ [Of [1N\[O\1[(0] [1
D ® © ® ® ©® O © F F

ol|1{[o|[1]]of[1]|0f|1||0][1||O{(1]|O]|1|[O]|1

M M M ™ (@ © © ©)
0| [1][0][1][0][1] [0] [01 [x][o][1][o][1][o] 1]

J

Variable Elimination
(CKHABEJLNODPMFG)

:-| Searching AND/OR Graphs

m AO(j): searches depth-first, cache i-context

= | = the max size of a cache table (i.e. number of
variables in a context)

i=0 j i=w*
>
Space: O(n) \ Space: O(exp w*)
Time: O(exp(w* log n)) Time: O(exp w¥*)

Space: O(exp(j))
Time: O(exp(m_j+j)

:-| Search for MPE/MAP problem

m Searching the AND?OR space by

= Branch and bound
s Best-first

Searching the AND/OR space for MPE/MAP

Heuristic function f(xP) computes a lower bound on the best
extension of xP and can be used to guide a heuristic
search algorithm. We focus on:

1. DF Branch-and-Bound 2. Best-First Search
Use heuristic function f(xP) to Always expand the node with
prune the depth-first search tree the highest heuristic value f(xP)
Linear space Needs lots of memory
Q)
O\Q Q/ N
Y N\

| AND/OR Branch-and-Bound (AOBB)
(Marinescu & Dechter, 1JCAI'05)

Maintain
ub = best solution found so far

> g(n)

) > Ib(n) = g(n) + h(n)

» h(n)
estimates the optimal
cost below n

OR Branch-and-Bound Prune subtree below n if Ib(n) = ub

132

Mini-Bucket Approximation
(Dechter & Rish, 1997)

Split a bucket into mini-buckets => bound complexity

bucket (X) =

{hy v by By o by 3

—

S—
/ h* =min3h,
X =l

{hy ., h

X

{h,y.sh,}

g” =(min2hij+(min ihi

gX th

Exponentia | complexity decrease:O(e") —> O(e") +O(e" ")

Mini-bucket Heuristics for BB search
(Kask and dechterAllJ, 2001, Kask, Dechter and Marinescu UAI 2003)

h(x) computed by MB(i)
before or during search

C B: P(E|B,C) P(D|A,B) P(B|A)
\
C: P(CIA) C
ya A
B = / —
E:
L o '/
A: P(A)

f(a,e,D) = P(a)-

‘_-| AND/OR Branch-and-Bound (contd.)

OR i 0

ub(n)
5 m 11 E
or 50 s @fe— h(n)
N 1] 1

OR
® 1 © 2 0 2

o0 o0
of [s] =[of *[of lof fif =

o]
o /N3 o /N4 o N3 o /N 4
o| [[of [1] o] [1]

h(n) = ub(n)

A

135

AND/OR Branch and Bound for Constraint Optimization
(Marinescu and Dechter, 1JCAI 2005, UAI 2005, AAAI 2006, ECAI 2006)

= Search AND/OR Context-minimal graph
= exploit decomposition and equivalence

m Pruneirrelevance via mini-bucket heuristics, and constraint
propagation

s Depth-first (AOBB) and best-first (AOBF)
= Dynamic variable orderings
= Applied to MPE and weighted CSPs

= Applied to Integer Programming

Experiments

= Benchmarks
= Belief Networks (BN)
= Weighted CSPs (WCSP)

= Algorithms
= AOBB-C - AND/OR Branch-and-Bound w/ caching
= AOBF-C — Best-first AND/OR Search
= Samlam
= Superlink
= Toolbar (DFBB+EDAC), Toolbar-BTD (BTD+EDAC)

= Heuristics
= Mini-Bucket heuristics

Genetic Linkage Analysis

pedigree = SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(W*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes
ped30 - - - - - - - 1
(23, 118) out - - - - - -/ 21410 1,379,131
(1016, 5) 13095.83| 10212.70 93,233,570 8858.22 82,552,957 - - 34.19 193,436
out out out 30.39 72,798
ped33 - - - - - - - -
(37, 165) out| 2804.61 34,229,495 73796 9,114,411 3896.98 50,072,988 159.50 1,647,488
(581, 5) - 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987
out 140.61 407,387 out 74.86 134,068
out
ped42 - - - - - -
(25, 76) out > > = = S S
(448, 5) 561.31 - - - - 2364.67 22,595,247
out out 133.19 93,831

Min-fill pseudo tree. Time limit 3 hours.

Algorithms for AND/OR Space are currently superior

= Back-jumping for CSPs
(Gaschnig 1977), (Dechter 1990), (Prosser, Bayardo and Mirankar, 1995)

s Pseudo-search re-arrangement, for any CSP task
(Freuder and Quinn 1985)

m Pseudo-tree search for soft constraints
(Larrosa, Meseguer and Sanchez, 2002)

m Recursive Conditioning
(Darwiche, 2001), explores the AND/OR tree or graph for any query

m BTD: Searching tree-decompositions for optimization
(Jeagou and Terrioux, 2004)

= Value Elimination
(Bacchus, Dalmao and Pittasi, 2003)

!-| Road Map

= Hybrid of search and inference

Conditioning generates the probability tree

P(a,e=0)=P(a))_P(b|a)d P(cla)d P(d|a,b)> P(e|b,c)

e=)
':—:'E:ﬂ

-
P{EII:,:F P(a)P(bla)P{cla)Pidla,b)P elb.c)

Complexity of conditioning: exponential time, linear space

‘_-| Loop-cutset decomposition

= You condition until you get a polytree

gy

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP

i Conditioning and Cycle cutset

Cycle cutset = {A,B,C}

eaco :g .

:-| Search over the Cutset (cont)

e Inference may require too much memory

Graph
Coloring

oroblem e Condition on some of the variables

Variable elimination with conditioning;
w-cutset algorithms

o oo

|dentify an w-cutset ¢w of the network

For each assignment to the cutset ¢» solve the
conditioned sub-problem by CTE

Aggregate the solutions over all ¢, assighments.
Time complexity: g (kCw+w)
Space complexity: O (k®)
What w should we use?
s W=1? W=0? W=w*
s Depends on the graph
s Practice: use the largest w allowed by space

Alternate conditioning and elimination?

Time vs Space for w-cutset

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

« Random Graphs (50 nodes, 200 edges, average degree 8, w*x23)

60
P Branch and bound

50

40 A

Bucket
30 1 «— elimination

W+c(w)

20

time 10 -

0
N S T N S Nt O N S .

W-cutset time O(exp(w+cutset-size)) w Space
Space O(exp(w))

!-| Road Map

Sampling

i Sampling: Approximation of Search

1. Importance Sampling

2. Markov Chain Monte Carlo: Gibbs Sampling
3. Sampling in presence of Determinism

2. Rao-Blackwellisation

5. AND/OR importance sampling

See :Sampling Techniques for Probabilistic and
Deterministic Graphical models PDF
Tutorial, AAAI 2010, Atlanta, GA, July 12, 2010:

http://www.ics.uci.edu/~dechter/talks.html

http://www.ics.uci.edu/~dechter/talks/tutorial-aaai-2010.pdf

* Sampling for Probabity Inference

= Logic Sampling

m Importance Sampling
s Likelihood Sampling
s Choosing a Proposal Distribution

m Markov Chain Monte Carlo (MCMC)

s Metropolis-Hastings
s Gibbs sampling

m Variance Reduction

Logic Sampling:
No Evidence (Henrion 1988)

Input: Bayesian network
X={Xy,.... Xy}, N- #nodes, T - # samples
Output: T samples

Process nodes in topological order — first process
the ancestors of a node, then the node itself:

1. Fort=0toT
2. Fori=0to N
3. X. «<— sample x.! from P(x, | pa))

Logic sampling (example)

P(X,, X5, X3, X,)=P(X)xP(X, | X;)x P(Xs | X)xP(X, | X, Xs)

‘P(Xl) No Evidence

/

// generatesamplek

1.Samplex, fromP(x,)

P(X, 1 X,)

(X;1X,) | 2.Samplex, fromP(x, | X, = X,)

3.Samplex, fromP(x, | X; =X,)

P(X, | X, X,) 4.Samplex, fromP(x, | X, =X, X, =X,)

Logic Sampling w/ Evidence

Input: Bayesian network
X={X,,.... Xy}, N- #nodes
E —evidence, T - # samples
Output: T samples consistent with E
1. Fort=1toT
2. Fori=1to N
3. X. <— sample x.! from P(x, | pa.)
4. If X, in E and X; # x;, reject sample:
5., Goto Step 1.

i Logic Sampling (example)

@ence: X, :D
P(x,)
// generatesamplek
/ b 1.Samplex, fromP(x,)

2.Samplex, fromP(x, | X,)
P(x, | %) 3.Samplex, fromP(x, | X;)

1f x, #0,rejectsample
P(X, [X3, %) dstartfroml,otherwi

5.Samplex, fromP(x, | X, X;)

P(%, %)

:-| Monte Carlo Estimate

= Estimator:
= An estimator is a function of the samples.

= It produces an estimate of the unknown
parameter of the sampling distribution.

Giveni.i.d.samplesS', S%,...S" drawn fromP,
theMontecarloestimateof E.[g(x)]isgivenhby:

1
§=—-2.,96"

:-| Example: Monte Carlo estimate

s Given:
= Adistribution P(X) = (0.3, 0.7).
= g(X)=40if Xequals 0
=50 if X equals 1.
= Estimate E;[g(x)]=(40x0.3+50x0.7)=47.

= Generate k samples fromP:0,1,1,1,0,1,1,0,1,0

40x#sampleg X =0)+50x#sampleg X =1)
#samples

@:

_ 40x4+50x6
10

=406

:-| Importance sampling: Main idea

m Express query as the expected value of a
random variable w.r.t. to a distribution Q.

s Generate random samples from Q.

= Estimate the expected value from the
generated samples using a monte carlo
estimator (average).

*mportance sampling for P(e)

LetZ =X \E,

LetQ(Z)bea (proposalfistribution,satisfying
P(z,e)>0=0Q(z)>0

T hen,we canrewriteP (e)as.

P
P(e)= 3. P(z.6) =Y Ple)SEZ; E{ éiz‘ﬂ £ [W(2)]

MonteCarloestimate

P(e) :%iw(zt),wherezt «—Q(2)

Likelihood Weighting
(Fung and Chang, 1990; Shachter and Peot, 1990)

Is an instance of importance sampling!

“Clamping” evidence+
logic sampling+
weighing samples by evidence likelihood

Works well for /ikely evidence!

‘_-| Likelihood Weighting: Sampling

Sample in topological order over X |

E%XXXX

Clamp evidence, Sample x; «—P(X;/pa,),
P(X/pa;)is a look-up in CPT!

L_'!ﬁelihood Weighting: Proposal Distribution

Q(X\E)= []P(X;|pa,e)

X, eX\E Notice: Q is another Bayesian network
Example

Givena Bayesiannetwork: P (X, X,, X,;) =P (X)) xP (X, | X)) xP (X | X, X,) and
EvidenceX, =X,.
Q(X,, X;3) =P(X)x P(X; X, X, =X%,)

Weights:
Givenasample: X = (x,,..,X,)

I} POctpa,e)x || Pe | pa))

P(X,8) xex\E E,eE
W = — —
Q(x) | IPCxtpae)
X;eX \E
= [[P 1pa))

EJEE

:-| Likelihood Weighting: Estimates

~ T
Estimate P(e): P(e)= %Z w®

t=1

Estimate Posterior Marginals:

i
A w®a (x®
5(x .e) :tZﬂ] g, (xV)

P(e) o0
E W
t=1

FA)(Xi le) =

g, (xV) =1if x; = xjandequals zerootherwise

‘_-| Likelihood Weighting

m Converges to exact posterior marginals

m Generates Samples Fast

m Sampling distribution is close to prior
(especially if E — Leaf Nodes)

m Increasing sampling variance
—>Convergence may be slow
—=Many samples with P(x{!)=0 rejected

:-| Avoid rejection

s Gibbs Sampling: An MCMC approach

m Likelihood weighting: An importance
sampling approach
= Exploit structure

= Cutset-sampling (likelihood and Gibbs)
= SamplingSearch (avoid inconsistency)

:-| Overview

1.

2.

3.

4.

Markov Chain Monte Carlo: Gibbs Sampling

i Gibbs Sampling (Geman&Geman,1984)

m Gibbs sampler is an algorithm to generate a
sequence of samples from the joint probability
distribution of two or more random variables

= Sample new variable value one variable at a
time from the variable’s conditional
distribution:

P(X;)=P(X, ‘Xi’--’xit—lix't "X;}:P(Xi ‘Xt\xi)

I+l

= Samples from a Markov chain with stationary
distribution P(X/e)

:-| Ordered Gibbs Sampler

Generate sample x**! from xt:
t+1 t t t
X, =X <« P(X| X5, X3,...,Xy , €)

Process

All X _Xt+l(_P(X2| t+1 t ,XtN,E)
Variables

In Some

Order X _ Xt+1 « P(XN | t+l t+1’ XtN+}1’e)

In short, for i=1 to N:
X, =x" «sampledfromP (X, | x'\x ,e)

| Transition Probabilities in BN

Given Markov blanket (parents,
children, and their parents),
X; is independent of all other nodes

Markov blanket:
markov (X;) = pa; Uch; U(U paj)

XjEChj

P(X. | x'\x.)=P(X. | markoy):
P(x; | X"\ x;) oc P(X; | pa;) HP(Xj | pa;)

X j EChi

Computation is linear in the size of Markov blanket!

i Ordered Gibbs Sampling Algorithm (Pearl,1988)

Input: X, E=e

Output: T samples {xt}

Fix evidence E=e, initialize x° at random
1. Fort=1toT (compute samples)

2. Fori=1to N (loop through variables)
3, X1« P(X. | markov})

4. End For

5. End For

* Gibbs Sampling Example - BN

X ={X,, X,,... X, }, E={X,}

X=X
X5 =Xg
Xo = Xg'
X, =x;
Xg = Xg'
Xg = Xgq'
X, =x,

— o 0
X;5=X;

* Gibbs Sampling Example - BN

Xoh E=1Xo}

X = P(X, %% %)
Xp = P(X5 | X0, X5 %)

iAnswering Queries P(x. [e) = ?

= Method 1: count # of samples where X; = x; (histogram estimator):

T / Dirac delta f-n
P (X, =X) =7 28X, X)
t=1

« Method 2: average probability (mixture estimator):

P(X; =x) =%iP(Xi = x. [narkoy)

 Mixture estimator converges faster (consider
estimates for the unobserved values of X;; prove
via Rao-Blackwell theorem)

:-| AND/OR w-cutset

3-cutset 2-cutset 1-cutset

;| Cutset Sampling

Generate sample ct*! from ct, C c X:

@ @ C=Ctt“1+P(c|c£t,<1:é, L,)
@@C—C%P(cw €)

o=}t Pl I

Queries: | P(cle) = %Zfl P(c. |c'.,e)

P(x|€) = %Zf_l P(x | c',€)

i Cutset Sampling Example

Sample a new value for X, :

¢’ ={x;. %}
()@ (%) BTE(X,, Xg:%)

BTE(X;, XJ,%)

4 1[BTE(X,, % %)
(@ (o) X%”’(Xz'XS’X9>=;_+BTEEX;,SX;),X9>_
o)

W-cutset sampling, Bidyuk and Dechter JAIR 2007

CPCS360b Test Results

0.00016

0.00012

0.00008

0.00004

0

CPCS360b, n=360, |C|=21, |E|=36

|—0— Cutset —8— Gibbs |

"

N

.\._*_*_JI,_,\"\-—H_‘

0

200 400 600 800

samples

1000

0.00016

CPCS360b, n=360, |C|=21, |E|=36

—e— Cutset —m— Gibbs

0.00012

|

0.00008

0.00004

RS

0

1

2

3

5 10 20 30 40 50 60

Time(sec)

MSE vs. #samples (left) and time (right)

Ergodic, |X| = 360, D(X)=2, |C| = 21, |E| = 36

Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination

i Coding Networks, MSE vs. w

MSE

coding, 50x50, N=200, P=3, |[LC|F26, w'=19

1.BE-04

1.4E-04 = = = = = =

1.2E-04 05— |EP

1 0E-04 —&— cutset =9sec
—a— cutset =168sec

8.0E-05

5.0E-05 —
4.0E-05 ‘\f’/r‘\‘f/*;

2.0E-05 W

0.0E+HIO

Note:
1-cutset=All Code Bits

LCS, #samples=450

1-cutset,#sam
2-cutset, #sam
3-cutset, #sam
4-cutset,#sam
5-cutset, #sam

D

D
D
D
D

es=800
es=600
es=250
es=150
es=100

:-| SampleSearch

s Combining importance sampling with
backtracking search.

!-| Road Map

Software

:-| Software & Competitions

= How to use the software

= http://graphmod.ics.uci.edu/group/Software
= http://mulcyber.toulouse.inra.fr/projects/toulbar2

= Reports on competitions
= UAI-2006, 2008, 2010 Competitions
= PE, MAR, MPE tasks

= CP-2006 Competition
= WCSP task

!-| Road Map

= Modeling and learning

Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network variables and their values. \

@ A query variable is one which we need to ask questions about, such
as compute its posterior marginal.

@ An evidence variable is one which we may need to assert evidence
about.

@ An intermediary variable is neither query nor evidence and is meant
to aid the modeling process by detailing the relationship between
evidence and query variables.

The distinction between query, evidence and intermediary variables
is not a property of the Bayesian network, but of the task at hand.

Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network structure (edges).

We will be guided by a causal interpretation of network structure.

The determination of network structure will be reduced to
answering the following question about each network variable X:
what set of variables we regard as the direct causes of X7

What about the boundary strata?

Modeling with Bayesian Networks

Define the network CPTs. \

@ CPTs can sometimes be determined completely from the
problem statement by objective considerations.

@ CPTs can be a reflection of subjective beliefs.

@ CPTs can be estimated from data.

Diagnosis |: Model from Expert

The flu is an acute disease characterized by fever, body aches and
pains, and can be associated with chilling and a sore throat. The
cold is a bodily disorder popularly associated with chilling and can
cause a sore throat. Tonsillitis is inflammation of the tonsils which
leads to a sore throat and can be associated with fever.

Our goal here is to develop a Bayesian network to capture this
knowledge and then use it to diagnose the condition of a patient
suffering from some of the symptoms mentioned above.

Variables? Arcs? Try it.

Diagnosis |: Model from Expert

5 A naive Bayes structure
(condiion) What about? pas the following edges C -> Al, ..., C -> Am, where C is called

-

PN the class variable and Al; : : : ;Am are called the attributes.
-
-
-~) " -
y // \ \\\
e A h J— N o
fgnilling_?§= :@de Ache?) (Sore Throat?) 'i__l_?_e_\:e_r_?__:; '(C ﬁ|d?> (\M Flu? >' 'i Tonsillitis?)
.___I — : e — __II\-"'__ —
x A
I."I I \"'..
||I ‘l".|
I|II .I".
|II I".Il
) -'\I"
'III { II\.
_r o -~y %

Chittng?) (Body Ache?) (Sore Throar?) (Fever?)

Variables are binary: values are either true or false. More refined
information may suggest different degrees of body ache. J

Diagnosis I:

CPTs can be obtained from medical experts, who supply this
information based on known medical statistics or subjective beliefs

gained through practical experience.

CPTs can also be estimated from medical records of previous patients

Case Cold? Flu? Tonsillitis? Chilling? Bodyache? Sorethroat? Fever?

1 true false ? true false false false
2 false true false true true false true
3 7 7 true false 7 true false

7 indicates the unavailability of corresponding data for that patient.

Diagnosis |:

@ Tools for Bayesian network inference can generate a network
parameterization ©, which tries to maximize the probability of
seeing the given cases.

@ If each case is represented by event d;, such tools will
generate a parametrization © which leads to a probability
distribution Pr that attempts to maximize:

N
[]Pr(d).
=1

@ Term Pr(d;) represents the probability of seeing the case i.

@ [he product represents the probability of seeing all N cases
(assuming the cases are independent).

!-| Learning Bayesian networks
$a1‘a : |:> .q
rior information .

The Learning Problem

Known Structure

Unknown Structure

Complete Data

Statistical
parametric

estimation
(closed-form eq.)

Discrete optimization

over structures
(discrete search)

Incomplete Data

Parametric

optimization

(EM, gradient
descent...)

Combined
(Structural EM, mixture
models...)

Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B A
<Y,N,N>
<Y,Y,Y>

<N,N,Y>
<N,Y,Y> ﬁ

<N,Y,Y>

Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B A
<Y,N,N>
<Y,?,Y>

<N,N,Y>
<N,Y,?> ﬁ

<?,Y,Y>

Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B A
<Y,N,N>
<Y,Y, Y>
<N,N,Y>
<N,Y, Y> ﬁ
<N,Y, Y>

Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B A
<Y,N,N>
<Y,?,Y>
<N,N,Y>
<?Y,Y> ﬁ
<N,Y, ?>

* Learning Parameters: complete data
s ML-estimate: maxlogP(Dl@)) decomposable!
P
- a Multlnomlal counts
i)

= MAP-estimate max logP(D | ®)P(6)

(Bayesian statistics)

Conjugate priors - Dirichlet Dir(6, [o ...,)

Equivalent sample size
(prior knowledge)

Learning Parameters: incomplete data

Non-decomposable marginal likelihood (hidden nodes)

Initial parameters . e
7 Expectation <1120 1>
Inference: :9 .9 (()) 5 15

Curl‘ent mOdel P(S|X=O,D=1,C=O,B—) S

(G,0)

Expected
Ccounts >

Maximization o

_ Update parameters (1) (1) (1) 8 é
EM-algorithm: (ML, MAP) (1000 1/

iterate until convergence

!-| Learning graph structure

Ve

Find G=argmax Score(G) = NP-hard
© ~._ optimization

s Heuristic search:

> Greedy local search Add C->B
> Best-first search &=
~ Simulated annealing Delete <
Complete data — local computations S->B
Reverse
Incomplete data (score S->B

-d ble):
nor decomposabl) © ®
» Constrained-based methods <

» Data impose independence
relations (constrains)

Scoring runctions:
Minimum Description Length (MDL)

m Learning <~ data compression

4 log N\
MDL(BN |D) = —logP(D | ®,G) + k)
DL(Data|model) DL(Model)

= Other: MDL = -BIC (Bayesian Information Criterion)
= Bayesian score (BDe) - asymptotically equivalent to MDL

!'_ Thank you

