
Systematic vs non-systematic algorithms

for constraint optimization

Rina Dechter
University of California

Irvine
Collaborators:
Kalev Kask
Radu Marinescu,
Robert mateescu

Overview

! Introduction and background:
! Combinatorial optimization tasks: CSP, Max-

CSP, belief updating, MPE

! Bounded inference: mini-bucket and mini-
clustering

! Heuristic generation for Brunch and Bound
! BBMB(i), BBBT(i)

! Empirical evaluation on Max-CSPs, MPE, CSP
! Conclusions

Probabilistic Networks

= P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

P(S, C, B, X, D)

P(S|d)= ?
MPE: argmax P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Θ) (G,BN =

CPD:
C B D=0 D=1
0 0 0.1 0.9
0 1 0.7 0.3
1 0 0.8 0.2
1 1 0.9 0.1

! The belief updating problem is the task of computing
the posterior probability P(X|e) of query node X given
evidence e.
.

y tables)probabilit al(condition
 CPTs are)|(},,...,{

over graph) acyclic (directedDAG a is
domains their ofset theis },...,{
 variablesrandom ofset a is },...,{

: where,,,
quadruple a is A

1

1

1

iiin

n

n

paXPpppP
XG

DDD
XXX
PGDXBN

network belief

==

=
=

>=<

Belief networks
A

B C

D F

G

P(A)

P(B|A) P(C|A)

P(F|B,C)P(D|A,B)

P(G|D,F)

A B
red green
red yellow
green red
green yellow
yellow green
yellow red

Constraint Satisfaction
Example: map coloring

Variables (X) - countries (A,B,C,etc.)
Values (D) - colors (e.g., red, green, yellow)

Constraints (C): etc. ,ED D, AB,A ≠≠≠

C

A

B

D
E

F
G

Semantics: set of all solutions
Primary task: find a solution

Belief and constraint networks
A

B C

D F

G

A

B C

D F

G

a) Belief network b) Constraint network

c) Dual graph

A

AB AC

ABD BCF

DFG

A

AB

A

A

A
B

C

B

D F

A

P(A)

P(B|A)

P(C|A)

P(D|A,B)

P(F|B,C)

P(G|D,F)

R(A)

R(A,B)

R(A,C)

R(A,B,D)

R(B,C,F)

R(D,F,G)

Belief and constraint networks
A

B C

D F

G

A

B C

D F

G

a) Belief network b) Constraint network

c) Dual graph

A

AB AC

ABD BCF

DFG

A

AB

A

A

A
B

C

B

D F

A

P(A)

P(B|A)

P(C|A)

P(D|A,B)

P(F|B,C)

P(G|D,F)

R(A)

R(A,B)

R(A,C)

R(A,B,D)

R(B,C,F)

R(D,F,G)

"Belief updating: ΣX-y ∏j Pj

"MPE: maxX ∏j Pj

"CSP: ∏X ×j Cj

"Max-CSP: minX Σj Fj

all are np-hard,
Also hard to approximate

Solution Techniques

Search: Conditioning

Inference: Elimination

Hybrids

Complete
Branch-and-Bound

Depth-First (Backtracking)

Breadth-First

Iterative Deepening

A*

Incomplete
Simulated Annealing

Gradient Descent
SLS

Complete

Incomplete

Adaptive Consistency
Tree Clustering

Dynamic Programming
Resolution

Local Consistency

Unit Resolution
mini-bucket(i)

Time: exp(n)
Space: linear

Time: exp(w*)
Space:exp(w*)

Overview

! Introduction and Background
! Bounded inference:

! mini-bucket and mini-clustering

! Belief propagation: IJGP(i)

! Heuristic generation for Brunch and Bound
! BBMB(i), BBBT(i)

! Empirical evaluation on Max-CSPs, MPE, CSP
! Conclusions

Tree decomposition

! Each function in
a cluster

! Satisfy running
intersection
property

G

E

F

C D

B

A

A B C
p(a), p(b|a), p(c|a,b)

B C D F
p(d|b), p(f|c,d)

B E F
p(e|b,f)

E F G
p(g|e,f)

EF

BF

BC

u v

x1

x2

xn

∑ ∏ −∈
=

),()},({)(
),(

:message theCompute

vu uvhuclusterf
fvuh

elim

Belief Propagation

h(u,v)

)},(),,(),...,,(),,({)(21 uvhuxhuxhuxhu n∪ψ

),|()|()(),()2,1(bacpabpapcbh
a

⋅⋅= ∑

),(),|()|(),()2,3(
,

)1,2(fbhdcfpbdpcbh
fd

⋅⋅= ∑

),(),|()|(),()2,1(
,

)3,2(cbhdcfpbdpfbh
dc

⋅⋅= ∑

),(),|(),()3,4()2,3(fehfbepfbh
e

⋅= ∑

),(),|(),()3,2()4,3(fbhfbepfeh
b

⋅= ∑

),|(),()3,4(fegGpfeh e==G

E

F

C D

B

A
ABC

2

4

1

3 BEF

EFG

EF

BF

BC

BCDF

Time: O (exp(w*+1))
Space: O (exp(sep))

CTE: Cluster Tree Elimination

For each cluster P(X|e) is computed

Bucket elimination
Algorithm Elim-MPE (Dechter 1996)

Πbmax Elimination operator

mpe

W*=4
�induced width�
(max clique size)

bucket B:

P(a)

P(c|a)

P(b|a) P(d|b,a) P(e|b,c)

bucket C:

bucket D:

bucket E:

bucket A:

e=0

B

C

D

E

A

e)(a,h D

(a)h E

e)c,d,(a,h B

e)d,(a,h C

Two Principles for Bounded Inference
! Bounded-Partitioning

! mini-bucket(i), MC(i)
! Computes a bound
! Exp(i) time space

XX gh ≤

Approx-mpe(i)
Algorithm Approx-MPE (Dechter&Rish 1997)

! Input: i � max number of variables allowed in a mini-bucket
! Output: [lower bound (P of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

2* =w 4* =w

Mini-Clustering idea

),|()|()(),(1
)2,1(bacpabpapcbh

a
⋅⋅= ∑

sep(2,3)={B,F}

elim(2,3)={C,D}),|(max)(
,

2
)3,2(dcfpfh

dc
=

),()|()(1
)2,1(

,

1
)3,2(cbhbdpbh

dc
⋅= ∑

2

4

1

3

A B C
p(a), p(b|a), p(c|a,b)

B C D F
p(d|b), h(1,2)(b,c)

p(f|c,d)

B E F
p(e|b,f),

h1
(2,3)(b), h2

(2,3)(f)

E F G
p(g|e,f)

EF

BC

BF

EF

BF

BC

),|()|()(:),(1
)2,1(bacpabpapcbh

a
⋅⋅= ∑

)2,1(H

∑

∑
=

⋅=

fd

fd

dcfpch

fbhbdpbh

,

2
)1,2(

,

1
)2,3(

1
)1,2(

),|(:)(

),()|(:)(

)1,2(H

∑

∑
=

⋅=

dc

dc

dcfpfh

cbhbdpbh

,

2
)3,2(

,

1
)2,1(

1
)3,2(

),|(:)(

),()|(:)(
)3,2(H

),(),|(:),(1
)3,4(

1
)2,3(fehfbepfbh

e
⋅= ∑)2,3(H

)()(),|(:),(2
)3,2(

1
)3,2(

1
)4,3(fhbhfbepfeh

b
⋅⋅= ∑)4,3(H

),|(:),(1
)3,4(fegGpfeh e==)3,4(H

ABC

2

4

1

3 BEF

EFG

BCDF

Mini-Clustering � MCTE(i)

Properties of MC(i)

! MCTE(i) computes a bound on the exact value
: ⊗f∈M(u,v)

f is an approximation of m(u,v).

! Time & space complexity: O(N × hw* × di)

! Approximation improves with i but takes more
time

Two Principles for Bounded Inference
! Bounded-Partitioning

! mini-bucket(i), MC(i)
! Computes a bound
! Exp(i) time space

! Belief propagation on
join-graphs
! IBP, IJGP(i)
! No guuarantees
! Each iteration is exp(i)

XX gh ≤

)(11
uXλ

1U 2U 3U

2X1X

)(12
xUπ

)(12
uXλ

)(13
xUπ

A

D

I

B

E

J

F
G

C

H

A

ABD

FGI

ABC

BCDE

GHIJ

ACDEF

FGH

C

H

A

A C

A AB BC

BD

C

C
AD CDE

F H

F
FG GH H

GI

a) Belief network a) The graph IBP works on

Iterative Join-Graph Propagation

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity

Join-graphs

Empirical results showed:

! Mini-bucket(i) and MC(i)
! Accuracy/time increase with i-bound
! Compute bounds.
! demonstrate impressive performance for

many problem classes for both
optimization and belief updating.

! IJGP(i) is generally superior to MC
for belief updating. But no bound.

BnB for Constraint Optimization

! Max-CSP
! MPE
! CSP

Overview

! Introduction and background:
! Combinatorial optimization tasks: CSP, Max-

CSP, belief updating, MPE

! Bounded inference: mini-bucket and mini-
clustering

! Heuristic generation for Brunch and Bound
! BBMB(i), BBBT(i)

! Empirical evaluation on Max-CSPs, MPE, CSP
! Conclusions

BnB with inferred heuristics

B

Guiding heuristic evaluation function,
Upper-bound h(x).
If h < L search is pruned.

A

B C

D
E …

A

E

D

C

L

a

e

Two BnB schemes

a

…

B

A

E

D

C

A

B C

D
E

BBMB(i): h(x) computed by MB(i),
before search, static ordering

BBBT(i): h(x), computed via
MCTE(i) at every node for every
un-instantiated variable

Lower Bound

Optimization Task

! The Most Probable scenario
problem is to find a most
probably complete
assignment that is consistent
with the evidence e.

A

B C

D

E

evidence

! Systematic Search (BnB)
! Non-Systematic Search (SLS, BP)

The main idea

! BnB with exact heuristic:
! h(x1,�,xi) if equals max-cost extenion of partial

solution, (x1,�,xi) will yield backtrack-free search

! Idea:
! mini-bucket(i) compiles an upper bound h(x1,�,xi)

for max-cost extensions of (x1,�.,x_i) for every
partial solution along the fixed ordering.

! # Run MB(i), then run BnB in reverse order
using the mini-bucket heuristics

BBMB

…

B

A

E

D

C

L

BBMB(i): h(x) computed by MB(i),
before search, static ordering

B: P(E|B,C) P(D|A,B) P(B|A)

A:

E:

D:

C: P(C|A) hB(E,C)

hB(D,A)

hC(E,A)

P(A) hE(A) hD(A)

f(a,e,D) = P(a)·hB(D,a)· hC(e,a)

A

B C

D
E

a

e

maxB P(e|b,c) P(d|a,b) P(b|a)

maxC P(c|a) hB(e,c)

maxD hB(d,a)

maxE hC(e,a)

maxA P(a) hE(a) hD (a)

Heuristic Function

The evaluation function f(xp) can be computed using function

recorded by the Mini-Bucket scheme and can be used to estimate

the probability of the best extension of partial assignment xp={x1, …, xp},
f(xp)=g(xp) • H(xp)

For example,

H(a,e,d) =
hB(d,a) • hC (e,a)

g(a,e,d) =
P(a)

Properties

! Heuristic is monotone, admissible
! Heuristic is computed in linear time
! IMPORTANT:

! Mini-buckets generate heuristics of varying
strength using i.

! Higher i-bound ⇒ more pre-processing ⇒
stronger heuristic ⇒ less search.

! Allows controlled trade-off between
preprocessing and search

Experimental Methodology

Test networks:
! Random Coding (Bayesian)
! CPCS (Bayesian)
! Random (CSP)

Measures of performance
! Compare in terms of accuracy given a fixed amount of time - how

close is the probability/cost of the assignment they find to the
probability/cost of the optimal solution

! Compare trade-off performance as a function of time

Empirical Evaluation
of mini-bucket heuristics

Time [sec]

0 10 20 30

%
 S

ol
ve

d
Ex

ac
tly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BFMB i=2
BBMB i=6
BFMB i=6
BBMB i=10
BFMB i=10
BBMB i=14
BFMB i=14

Random Coding, K=100, noise=0.28 Random Coding, K=100, noise 0.32

Time [sec]

0 10 20 30

%
 S

ol
ve

d
Ex

ac
tly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=6
BFMB i=6
BBMB i=10
BFMB i=10
BBMB i=14
BFMB i=14

Random Coding, K=100, noise=0.32

34

Max-CSP experiments
(Kask and Dechter, 2000)

BBBT(i) � Search Space

! Branch-and-Bound
search where MCTE(i)
is executed at each
visited node

! Domain pruning
! Dynamic variable

ordering
! Dynamic value ordering

…

B

A

E

D

C

L

MCTE(i) computes h(x), at every
Node for every uninstantiated
variable.

BBBT and the singleton optimality
task

! Computes for each variable and each
value the max-cost extension for the
rest of the free variable given the
instantiated ones.

ABC

2

4

),()2,1(cbh1

3 BEF

EFG

),()1,2(cbh

),()3,2(fbh

),()2,3(fbh

),()4,3(feh

),()3,4(feh
EF

B
F

BC

BCDF

),(1
)2,1(cbh

)(

)(
2

)1,2(

1
)1,2(

ch

bh

)(

)(
2

)3,2(

1
)3,2(

fh

bh

),(1
)2,3(fbh

),(1
)4,3(feh

),(1
)3,4(feh

)2,1(H

)1,2(H

)3,2(H

)2,3(H

)4,3(H

)3,4(H

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

BCDF

Cluster Tree Elimination vs. Mini Clustering

Compute bounds to singleton optimality task
for every var-val

BBBT � Search Space

…

B

A

E

D

C

L

BBBT(i): h(x), computed via
MC(i) at every Node for every
uninstantiated variable.
Dynamic, Variable and value
ordering

BCDEA

DEA

EA

CDEA

A

{P(E|B,C), P(D|A,B), P(B|A)}

{P(C|A)}

{P(A)}

1

2

3

4

5

BBBT: BnB Search with MBTE(i) Heuristics

! Main Idea:
! During search, maintain Lower Bound L (the best

MPE cost so far).
! When processing variable Xp:

! Compute heuristic estimates mZi for all un-
instantiated variables (using MBTE(i)).

! Use the costs to prune the domains of un-
instantiated variables.

! Backtrack when an empty domain occurs, otherwise
expand the current assignment (smallest domain
variable).

BnB with Lower Bound Heuristics

! BBMB(i), the earlier algorithm:
! Heuristic, computed by MB(i), is static,

variable ordering fixed.

! BBBT(i), the new algorithm:
! Lower bound is computed at each node of the

search by MCTE(i).
! Used for dynamic variable and value ordering.
! Domain pruning.

Non-Systematic Algorithms

! Stochastic Local Search [Park, 2002]
! Guided Local Search (GLS) [Mills and Tsang,2000]

! Discrete Lagrange Multipliers (DLM) [Wah and
Shang,1997]

! Stochastic Local Search (SLS) [Kask and Dechter,1999]

! Iterative Belief Propagation
! Iterative Join Graph Propagation (max-IJGP)

Stochastic Local Search (I)

! Discrete Lagrange Multipliers (DLM) [Wah and
Shang,1997]
! For each clause C: weight wc , Lagrange multiplier λc

Cost function: sum(wc+ λc).
! At local maxima, increase λs of all unsatisfied clauses.

! Guided Local Search (GLS) [Mills and
Tsang,2000]
! For each clause C: weight wc , Lagrange multiplier λc
! Cost function: sum(λc).
! At local maxima, increase λs of the unsatisfied

clauses with maximum utility.

Stochastic Local Search (II)

! Stochastic Local Search (SLS) [Kask and
Dechter, 1999]

! At each step performs either a hill climbing or a
stochastic variable change.

! Periodically, the search is restarted in order to escape
local maxima.

Experimental Results
! Algorithms:

! Complete
! BBBT(i)
! BBMB(i)

! Incomplete, competing methods
! DLM
! GLS
! SLS
! IJGP
! IBP (coding)

! Benchmarks:
! Coding networks
! Bayesian Network Repository
! Grid networks (N-by-N)
! Random noisy-OR networks
! Random networks

! Measures:
! Time
! Accuracy (% exact)
! #Backtracks
! Bit Error Rate (coding)

Random Networks � Average Accuracy

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Time [sec]

%
 S

ol
ve

d
E

xa
ct

ly

BBBT-2

BBBT-4

BBBT-10

GLS

(a)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Time [sec]

%
 S

ol
ve

d
E

xa
ct

ly

BBBT-2
GLS
BBMB-2
BBMB-6

(b)

Average Accuracy. Random Bayesian (N=100, C=90, P=2), w* = 17
100 samples, 10 observations

(a) K = 2, (b) K = 3.

We see: GLS is good for small domains,
GLS is poor for large domains
BBMB is best for strong heuristics
BBBT exploit better weak heuristics

Average Accuracy and Time. Random Grid (N=100), w*=15,
100 samples, 10 observations

Grid Networks � Accuracy and Time

Average BER. Random Coding (N=200, P=4), w*=22,
100 samples, 60 seconds

Random Coding Networks � Bit Error Rate

Real World Benchmarks

Average Accuracy and Time. 30 samples, 10 observations, 30 seconds

Empirical Results: Max-CSP

! Random Binary Problems: <N, K, C, T>
! N: number of variables
! K: domain size
! C: number of constraints
! T: Tightness

! Task: Max-CSP

BBBT(i) vs. BBMB(i)

BBBT(i) vs BBMB(i), N=50

i=2 i=3 i=4 i=5 i=6 i=2

BBBT(i) vs. BBMB(i).

BBBT(i) vs BBMB(i), N=100

i=2 i=3 i=4 i=5 i=6 i=7 i=2

A new BnB search algorithm for
solving CSPs

! Method
! Solution Counting heuristic is computed by Iterative Join Graph

Propagation (IJGP)

! Hypothesis
! Better scalability that competing BnB for CSP

! Results
! Competitive with CSP, best algorithm in practice for random CSPs;

SLS is incomplete, our new algorithm is complete.

! Strength: quickly finding a solution if one exists

Min-Conflict Heuristic

! Each constraint C(Xi) is represented by a cost function:
! fC(Xi)=0, iff C(Xi) not violated, 1 otherwise
! Solution is when ∑fj =0

! Basic function of interest used to guide BnB
! MC = min (∑fj | E, Xi) = lowest cost over assignments that agree

with evidence E and assignment Xi

! BnB Search: Compute mc heuristic, lower bound on MC
! Prune nodes Si whose mc(Si)>0
! Allows dynamic variable ordering
! Does not allow value ordering (all legal nodes have mc=0)

Solution-Count Heuristic

! Each constraint C(Xi) is represented by a solution count
function:
! fC(Xi)=1, iff C(Xi) not violated, 0 otherwise
! Solution is when ∏fj = 1

! Basic function of interest used to guide BnB
! SC = sum (∏fj | E, Xi) = number of solutions that agree with

evidence E and assignment Xi

! BnB Search
! Compute sc heuristic, lower bound on SC
! Prune nodes Si whose mc(Si)=0
! Allows dynamic variable and value ordering

Example

A=1
B=2

C

D

E

F

Computation
bound is 2

C

D��

E

FD�

MC:
SC:

E=1 E=2 E=3

0 1 0
1 0 2

mc:
sc:

E=1 E=2 E=3

0 0 0
.4 .2 .4

A=1
B=2

Heuristics & Algorithms

! Need lower bounds for BnB

! Compute
! min (∑fj | E, Xi) � min conflicts
! sum (∏fj | E, Xi) � solution count

! Using
! MC(i)
! IJGP(i)

BnB Search

! IJGP [MC, SC] + MBTE [MC, SC]
! IJGP-SC
! IJGP-MC
! MBTE-SC
! MBTE-MC
! MBTE-MC + IJGP-SC
! etc.

N=200,K=4,C=760,T=4, 5 min

N=200,K=4,C=765,T=4, 5 min

IJGP-SC

MBTE-MC

MBTE-SC

N=300,K=4,C=1125,T=4 10 min

w* time solved nodes
IJGP-SC 2 112 24 4
IJGP-SC 3 112 30 3
SLS 112 28 4 450K

Summary

! A new algorithm for solving CSP, based on Solution
Counting heuristic computed by IJGP

! Competitive with CSP, best algorithm in practice for
random CSPs; SLS is incomplete, our new algorithm
is complete

! Strength: good for consistent problems

! Weakness: not as good for inconsistent problem

Conclusions

! We introduce two general BnB schemes that generate bounding
heurisics automatically.

! BBBT and BBMB do not dominate each other.
! When large i-bounds are effective, BBMB is more powerful.
! However, when space is at issue, BBBT with small i-bound is often

more powerful.

! BBBT/BBMB together are often superior to stochastic local search,
except in cases when the domain size is small, in which case they
are competitive.

! BBBT/BBMB as complete algorithms can prove optimality if given
enough time, unlike SLS.

! BBBT can be extended to CSPs: heuristics based on approximate
counting are very promising.

