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Overview

! Introduction  and background:
! Combinatorial optimization tasks: CSP, Max-

CSP, belief updating, MPE

! Bounded inference: mini-bucket and mini-
clustering

! Heuristic generation for Brunch and Bound
! BBMB(i), BBBT(i)

! Empirical evaluation on Max-CSPs, MPE, CSP
! Conclusions



Probabilistic Networks 
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! The belief updating problem is the task of computing 
the posterior probability P(X|e) of query node X given 
evidence e.
.
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Constraint Satisfaction
Example: map coloring

Variables (X) - countries (A,B,C,etc.)
Values  (D)   - colors (e.g., red, green, yellow)

Constraints (C): etc.  ,ED  D,  AB,A ≠≠≠
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G

Semantics: set of all solutions
Primary task: find a solution



Belief and constraint networks
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Belief and constraint networks
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"Belief updating: ΣX-y ∏j Pj

"MPE: maxX ∏j Pj

"CSP: ∏X ×j Cj

"Max-CSP: minX Σj Fj

all are np-hard,
Also hard to approximate



Solution Techniques

Search: Conditioning

Inference: Elimination

Hybrids

Complete
Branch-and-Bound

Depth-First (Backtracking)

Breadth-First

Iterative Deepening

A*

Incomplete
Simulated Annealing

Gradient Descent
SLS

Complete

Incomplete

Adaptive Consistency
Tree Clustering

Dynamic Programming
Resolution

Local Consistency

Unit Resolution
mini-bucket(i)

Time: exp(n)
Space: linear

Time: exp(w*)
Space:exp(w*)



Overview

! Introduction and Background
! Bounded inference:

! mini-bucket and mini-clustering

! Belief propagation: IJGP(i)

! Heuristic generation for Brunch and Bound
! BBMB(i), BBBT(i)

! Empirical evaluation on Max-CSPs, MPE, CSP
! Conclusions



Tree decomposition

! Each function in 
a cluster

! Satisfy running 
intersection 
property
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Time: O ( exp(w*+1 ))
Space: O ( exp(sep))

CTE: Cluster Tree Elimination

For each cluster P(X|e) is computed



Bucket elimination 
Algorithm Elim-MPE (Dechter 1996)

Πbmax Elimination operator

mpe

W*=4
�induced width� 
(max clique size)

bucket  B: 
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Two Principles for Bounded Inference
! Bounded-Partitioning

! mini-bucket(i), MC(i)
! Computes a bound
! Exp(i) time space

XX gh ≤



Approx-mpe(i) 
Algorithm Approx-MPE (Dechter&Rish 1997)

! Input: i � max number of variables allowed in a mini-bucket
! Output: [lower bound (P of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

2* =w 4* =w



Mini-Clustering idea
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Mini-Clustering � MCTE(i)



Properties of MC(i)

! MCTE(i) computes a bound on the exact value 
: ⊗f∈M(u,v)

f is an approximation of m(u,v).

! Time & space complexity: O(N × hw* × di)

! Approximation improves with i but takes more 
time



Two Principles for Bounded Inference
! Bounded-Partitioning

! mini-bucket(i), MC(i)
! Computes a bound
! Exp(i) time space

! Belief propagation on  
join-graphs
! IBP, IJGP(i)
! No guuarantees
! Each iteration is  exp(i)

XX gh ≤

)( 11
uXλ

1U 2U 3U

2X1X

)( 12
xUπ

)( 12
uXλ

)( 13
xUπ



A

D

I

B

E

J

F
G

C

H

A

ABD

FGI

ABC

BCDE

GHIJ

ACDEF

FGH

C

H

A

A C

A AB BC

BD

C

C
AD CDE

F H

F
FG GH H

GI

a) Belief network a) The graph IBP works on

Iterative Join-Graph Propagation



A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity

Join-graphs



Empirical results showed:

! Mini-bucket(i) and MC(i)
! Accuracy/time increase with i-bound
! Compute bounds.
! demonstrate impressive performance for 

many problem classes for both 
optimization and belief updating.

! IJGP(i) is generally superior to MC 
for belief updating.  But no bound.



BnB for Constraint Optimization

! Max-CSP
! MPE
! CSP



Overview

! Introduction  and background:
! Combinatorial optimization tasks: CSP, Max-

CSP, belief updating, MPE

! Bounded inference: mini-bucket and mini-
clustering

! Heuristic generation for Brunch and Bound
! BBMB(i), BBBT(i)

! Empirical evaluation on Max-CSPs, MPE, CSP
! Conclusions



BnB  with inferred heuristics
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Guiding heuristic evaluation function,
Upper-bound h(x).
If h  <  L search is pruned.
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Two BnB schemes

a

…
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C
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B C

D
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BBMB(i): h(x) computed by MB(i),
before search, static ordering

BBBT(i): h(x), computed via 
MCTE(i) at every node for every 
un-instantiated variable

Lower Bound



Optimization Task

! The Most Probable scenario
problem is to find a most 
probably complete 
assignment that is consistent 
with the evidence e.

A

B C

D

E

evidence

! Systematic Search (BnB)
! Non-Systematic Search (SLS, BP)



The main idea

! BnB with exact heuristic: 
! h(x1,�,xi)  if equals max-cost extenion of partial 

solution, (x1,�,xi) will yield  backtrack-free search

! Idea: 
! mini-bucket(i) compiles an upper bound h(x1,�,xi) 

for max-cost extensions of (x1,�.,x_i) for every 
partial solution along the fixed ordering.

! # Run MB(i), then run BnB in reverse order 
using the mini-bucket heuristics



BBMB 
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BBMB(i): h(x) computed by MB(i),
before search, static ordering
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maxB P(e|b,c)          P(d|a,b) P(b|a)

maxC P(c|a) hB(e,c)

maxD hB(d,a)

maxE hC(e,a)

maxA P(a) hE(a) hD (a) 

Heuristic Function

The evaluation function f(xp) can be computed using function

recorded by the Mini-Bucket scheme and can be used to estimate 

the probability of the best extension of partial assignment xp={x1, …, xp},
f(xp)=g(xp) • H(xp )

For example,

H(a,e,d) =
hB(d,a) • hC (e,a)

g(a,e,d) =
P(a)



Properties

! Heuristic is monotone, admissible
! Heuristic is computed in linear time
! IMPORTANT:

! Mini-buckets generate heuristics of varying 
strength using  i.

! Higher i-bound ⇒ more pre-processing ⇒
stronger heuristic ⇒ less search.

! Allows controlled trade-off between 
preprocessing and search



Experimental Methodology

Test networks:
! Random Coding (Bayesian)
! CPCS (Bayesian)
! Random (CSP)

Measures of performance
! Compare in terms of accuracy given a fixed amount of time - how 

close is the probability/cost of the assignment they find to the
probability/cost of the optimal solution

! Compare trade-off performance as a function of time



Empirical Evaluation 
of mini-bucket heuristics
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34

Max-CSP experiments
(Kask and Dechter, 2000)



BBBT(i) � Search Space

! Branch-and-Bound 
search where MCTE(i) 
is executed at each 
visited node

! Domain pruning
! Dynamic variable 

ordering
! Dynamic value ordering

…

B

A

E

D

C

L

MCTE(i) computes h(x), at every 
Node for every uninstantiated
variable. 



BBBT and the singleton optimality 
task

! Computes for each variable and each 
value the max-cost extension for the 
rest of the free variable given the 
instantiated ones.
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Cluster Tree Elimination vs. Mini Clustering

Compute bounds to singleton optimality task
for every var-val



BBBT � Search Space

…
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BBBT(i): h(x), computed via 
MC(i) at every Node for every 
uninstantiated variable. 
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BBBT: BnB Search with MBTE(i) Heuristics

! Main Idea:
! During search, maintain Lower Bound L (the best 

MPE cost so far).
! When processing variable Xp:

! Compute heuristic estimates mZi for all un-
instantiated variables (using MBTE(i)).

! Use the costs to prune the domains of un-
instantiated variables.

! Backtrack when an empty domain occurs, otherwise 
expand the current assignment (smallest domain 
variable).



BnB with Lower Bound Heuristics

! BBMB(i), the earlier algorithm: 
! Heuristic, computed by MB(i), is static, 

variable ordering fixed.

! BBBT(i), the new algorithm:  
! Lower bound is computed at each node of the 

search by MCTE(i). 
! Used for dynamic variable and value ordering. 
! Domain pruning.



Non-Systematic Algorithms

! Stochastic Local Search [Park, 2002]
! Guided Local Search (GLS) [Mills and Tsang,2000]

! Discrete Lagrange Multipliers (DLM) [Wah and 
Shang,1997]

! Stochastic Local Search (SLS) [Kask and Dechter,1999]

! Iterative Belief Propagation
! Iterative Join Graph Propagation (max-IJGP)



Stochastic Local Search (I)

! Discrete Lagrange Multipliers (DLM) [Wah and 
Shang,1997]
! For each clause C: weight wc , Lagrange multiplier λc

Cost function: sum(wc+ λc).
! At local maxima, increase λs of all unsatisfied clauses.

! Guided Local Search (GLS) [Mills and 
Tsang,2000]
! For each clause C: weight wc , Lagrange multiplier λc
! Cost function: sum(λc).
! At local maxima, increase λs of the unsatisfied 

clauses  with maximum utility.



Stochastic Local Search (II)

! Stochastic Local Search (SLS) [Kask and 
Dechter, 1999]

! At each step performs either a hill climbing or a 
stochastic variable change.

! Periodically, the search is restarted in order to escape 
local maxima.



Experimental Results
! Algorithms:

! Complete
! BBBT(i)
! BBMB(i)

! Incomplete, competing methods
! DLM
! GLS
! SLS
! IJGP
! IBP (coding)

! Benchmarks:
! Coding networks
! Bayesian Network Repository
! Grid networks (N-by-N)
! Random noisy-OR networks
! Random networks

! Measures:
! Time
! Accuracy (% exact)
! #Backtracks
! Bit Error Rate (coding)



Random Networks � Average Accuracy
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Average Accuracy. Random Bayesian (N=100, C=90, P=2), w* = 17
100 samples, 10 observations

(a) K = 2, (b) K = 3.

We see: GLS is good for small domains,
GLS is poor for large domains 
BBMB is best for strong heuristics
BBBT exploit better weak heuristics



Average Accuracy and Time. Random Grid (N=100), w*=15,
100 samples, 10 observations

Grid Networks � Accuracy and Time



Average BER. Random Coding (N=200, P=4), w*=22,
100 samples, 60 seconds

Random Coding Networks � Bit Error Rate



Real World Benchmarks

Average Accuracy and Time. 30 samples, 10 observations, 30 seconds



Empirical Results: Max-CSP

! Random Binary Problems: <N, K, C, T>
! N: number of variables
! K: domain size
! C: number of constraints
! T: Tightness

! Task: Max-CSP



BBBT(i) vs. BBMB(i)

BBBT(i) vs BBMB(i), N=50

i=2 i=3 i=4 i=5 i=6 i=2



BBBT(i) vs. BBMB(i).

BBBT(i) vs BBMB(i), N=100

i=2 i=3 i=4 i=5 i=6 i=7 i=2



A new BnB search algorithm for 
solving CSPs

! Method
! Solution Counting heuristic is computed by Iterative Join Graph 

Propagation (IJGP)

! Hypothesis
! Better scalability that competing BnB for CSP

! Results
! Competitive with CSP, best algorithm in practice for random CSPs; 

SLS is incomplete, our new algorithm is complete.

! Strength: quickly finding a solution if one exists



Min-Conflict Heuristic

! Each constraint C(Xi) is represented by a cost function:
! fC(Xi)=0, iff C(Xi) not violated, 1 otherwise
! Solution is when ∑fj =0

! Basic function of interest used to guide BnB
! MC = min (∑fj | E, Xi) = lowest cost over assignments that agree 

with evidence E and assignment Xi

! BnB Search: Compute mc heuristic, lower bound on MC
! Prune nodes Si whose mc(Si)>0
! Allows dynamic variable ordering
! Does not allow value ordering (all legal nodes have mc=0)



Solution-Count Heuristic

! Each constraint C(Xi) is represented by a solution count 
function:
! fC(Xi)=1, iff C(Xi) not violated, 0 otherwise
! Solution is when ∏fj = 1

! Basic function of interest used to guide BnB
! SC = sum (∏fj | E, Xi) = number of solutions that agree with 

evidence E and assignment Xi

! BnB Search
! Compute sc heuristic, lower bound on SC
! Prune nodes Si whose mc(Si)=0
! Allows dynamic variable and value ordering



Example
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E=1   E=2   E=3
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Heuristics & Algorithms

! Need lower bounds for BnB

! Compute 
! min (∑fj | E, Xi) � min conflicts
! sum (∏fj | E, Xi) � solution count

! Using 
! MC(i)
! IJGP(i)



BnB Search

! IJGP [MC, SC] + MBTE [MC, SC]
! IJGP-SC
! IJGP-MC
! MBTE-SC
! MBTE-MC
! MBTE-MC + IJGP-SC
! etc.



N=200,K=4,C=760,T=4, 5 min



N=200,K=4,C=765,T=4, 5 min

IJGP-SC

MBTE-MC

MBTE-SC



N=300,K=4,C=1125,T=4 10 min

w* time solved nodes
IJGP-SC 2 112 24 4
IJGP-SC 3 112 30 3
SLS 112 28 4 450K



Summary

! A new algorithm for solving CSP, based on Solution 
Counting heuristic computed by IJGP

! Competitive with CSP, best algorithm in practice for 
random CSPs; SLS is incomplete, our new algorithm 
is complete

! Strength: good for consistent problems

! Weakness: not as good for inconsistent problem



Conclusions

! We introduce two general BnB schemes that generate bounding 
heurisics automatically.

! BBBT and BBMB do not dominate each other. 
! When large i-bounds are effective, BBMB is more powerful.
! However, when space is at issue, BBBT with small i-bound is often 

more powerful.

! BBBT/BBMB together are often superior to stochastic local search, 
except in cases when the domain size is small, in which case they 
are competitive.

! BBBT/BBMB as complete algorithms can prove optimality if given 
enough time, unlike SLS.

! BBBT can be extended to CSPs: heuristics based on approximate 
counting are very promising.


