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What is a Delaunay triangulation?



Definition from Voronoi diagram

Connect two sites if their Voronoi cells share an edge

For sites in general position, resulting “Delaunay triangulation” subdivides convex hull
into triangles



Definition from empty circles

Two vertices form an edge ⇐⇒ ∃ circle only containing them

Three vertices form triangle face ⇐⇒ ∃ circle only containing them



Equivalence of definitions

Center of circle through two sites
⇐⇒

point on Voronoi edge between two cells



Why is this a triangulation?

Edges cannot cross because (to allow endpoints to be in only one circle)
their circles would have to cross each other four times, impossible

Outer face is convex hull because its edges all have huge near-halfplane empty circles

Other edges all belong to two triangles: continuously vary two-circle triangle until
hitting 3rd point on either side of the edge



Application in scientific computing

Commonly used in finite element mesh generation to generate a mesh after some other
method (e.g. quadtrees, week 3) has been used to place points for vertices



Application in geographic information systems

Triangulation of points with elevations ⇒ surface in 3d

Given irregularly placed measurements of ground elevation, connect to form 3d model
of ground surface

Called a “triangulated irregular net”



Application in face recognition

“DeepFace”: used by Facebook to
recognize people in photos from 2014
to 2021 (stopped for legal reasons, not
technical problems)

Uses six points (2× eyes, nose,
3×mouth) to fit 3d generic model

Map 67 “fiducial marks” on 3d model
back to 2d image; Delaunay triangulate

Linearly map each triangle to warp to
symmetric “frontal” appearance

Result is passed to a deep neural net [Taigman et al. 2014]



Optimality

Among all triangulations of a given set of points, Delaunay is optimal for many
measures of triangle quality:

▶ It avoids sharp angles: it makes the smallest angle as large as possible

▶ It finds small triangles: it makes the smallest circle around any triangle as small as
possible (either for the circle through three vertices, or the smallest circle
containing the triangle)

▶ For 3d surfaces from ground elevation, it finds a surface that avoids steep slopes:
define “energy” of a triangle = squared gradient times projected area, then it
minimizes the sum of energy of all triangles

Proof idea: Later this lecture



Delaunay triangulation algorithms



Algorithm by Voronoi dual

Construct Voronoi diagram using Fortune’s algorithm

Make a graph of adjacent Voronoi cells

Time: O(n log n)



Algorithm by flipping

Start with any triangulation (for instance, the plane sweep triangulation we used for
visibility in Week 3)

Bad = collection of edges pq such that, for its two triangles pqr and pqs, the
Delaunay triangulation of quadrilateral prqs uses the other diagonal, rs
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while Bad is not empty:

▶ Find an edge pq in Bad, and remove it from Bad

▶ Replace the two triangles pqr and pqs by prs and qrs

▶ Check whether any of the four edges of quadrilateral prqs become bad or stop
being bad

Correctness and analysis: Not yet



Algorithm by random incremental flipping

Add three artificial points whose convex hull surrounds whole input; start with
one-triangle triangulation

For each given point p, in random order:

▶ Use a history DAG to find the triangle containing p
▶ Subdivide it into three triangles meeting at p
▶ Repeatedly flip non-Delaunay quadrilaterals involving p

remembering history of all flips in history DAG

Correctness and analysis: Not yet



Algorithm by 3d convex hulls

“Lift” 2d points (x , y) to 3d
points (x , y , x2 + y2)

Compute lower convex hull

Project back down to 2d

Time O(n log n) (Week 4)

Correctness: Next slide



Lifting and empty circles

“Lift” 2d points (x , y) to 3d
points (x , y , x2 + y2)

Circles in the plane lift to
intersections of plane in 3d
with the surface z = x2 + y2

Circle is empty ⇐⇒ halfspace
below 3d plane is empty

Therefore, lower hull faces (sets of points touched by boundaries of empty lower
halfspaces ⇐⇒ Delaunay edges and triangles (sets of points touched by empty circles



Correctness of flipping

Flipping a non-Delaunay quadrilateral to its Delaunay triangulation corresponds, in the
3d hull, to gluing a tetrahedron below a non-convex edge of a triangulated surface,
making the surface convex downwards at the new edge

Once we glue a tetrahedron below a non-convex edge, the triangulated surface only
moves downward, never back up ⇒ we will never see that edge again ⇒ there can be
at most

(n
2

)
flips

If the triangulated surface is not already the lower convex hull, it must have a
non-convex edge, onto which we can glue a tetrahedron

Therefore, the flipping algorithms cannot run out of flips until they reach the Delaunay
triangulation



Analysis of flipping algorithms

Basic flipping: O(1) time per flip, at most
(n
2

)
flips ⇒ O(n2) time

Randomized incremental: When using the history DAG for point location of a point p,
probability that after inserting i random points, the triangle containing p has the last
point as one of its vertices = 3/(i + 3) ⇒ sum over i is a harmonic series ⇒ total
expected time to locate p is O(log n)

Probability that after inserting i random points, a given triangle in the current
Delaunay triangulation was just added = 3/(i + 3) ⇒ expected number of new
triangles is O(1) ⇒ expected number of flips per added point is O(1)

O(n log n) total time for point location, O(n) for flipping
O(n) triangles and flips in history DAG

O(n log n) expected time, O(n) expected space



Optimality revisited

Among all triangulations of a given set of point, Delaunay is optimal for many
measures of triangle quality:

▶ It makes the smallest angle as large as possible

▶ It makes the smallest circle around any triangle as small as possible (either for the
circle through three vertices, or the smallest circle containing the triangle)

▶ For 3d surfaces from ground elevation, define “energy” of a triangle = squared
gradient times projected area, then it minimizes the sum of energy of all triangles

Proof idea: Show that Delaunay flips improve each of these

Flipping cannot get stuck in any local optima ⇒ always finds optimal triangulation



Minimum spanning trees



Euclidean minimum spanning tree

Connect given points by a tree of minimum total edge length



Applications of minimum spanning tree

Original application: making physical connections between geographic locations (power
grid) with low construction cost

Clustering: delete longest edge ⇒ two clusters as far from each other as possible

Generating a one-dimensional approximation to the shape of a cloud of points

Approximating traveling salesperson tour
(tree traversal order gives tour of length ≤ 2× optimal length)

Speed up nearest neighbor classification by removing points when it cannot change any
classification [Eppstein 2022]



Minimum spanning tree property

Every edge of the minimum spanning tree is in the DT



The empty circle for an MST edge

For an edge pq, consider the circle with pq as its diameter
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If circle contains a point r , we get a better tree by removing pq and reconnecting using
pr or qr (both shorter than pq)

So it’s an empty circle ⇒ pq is in the Delaunay triangulation



To construct MST in time O(n log n):

▶ Find the Delaunay triangulation, a graph with m = O(n) edges

▶ Use any algorithm for finding minimum spanning trees in graphs in time
O(m log n) or faster (for example, the Prim–Dijkstra–Jarńık algorithm, Bor̊uvka’s
algorithm, or Kruskal’s algorithm)

Because the Delaunay triangulation is a planar graph (it has no crossings), Bor̊uvka’s
algorithm can be made to run in O(n), but this doesn’t help because constructing the
Delaunay triangulation still takes O(n log n) time
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