
CS 164 & CS 266:
Computational Geometry

Lecture 15

Range counting, kD-trees, and quadtrees

David Eppstein
University of California, Irvine

Fall Quarter, 2023

This work is licensed under a Creative Commons Attribution 4.0 International License



Range counting and range search



Range query data structures

Input: a set of points

Example: a database of people listing them by age and
weight, with these numbers interpreted as coordinates

Preprocessing stage: Build a data structure representing them

Preferably linear or near-linear space

Query stage: Handle queries that ask for a list of all points in some shape, or that ask
for aggregate information about those points

Example: How many points are in the shape?

Goal: query time ≪ time to re-scan whole set

The shapes used for the queries are called ranges



Example: Rectangle range counting

Query: How many points are inside a given rectangle?

Scanning all data per query would give O(n) time

We want faster, e.g. O(log n + output size)



Warmup: 1d range searching

Data structure for n points on a line, to count points in an interval

Use a sorted array

Answer queries by binary search for interval endpoints then subtract their positions

Preprocessing time O(n log n) by sorting

Space O(n) to store sorted array

Query time O(log n)



KD-trees



What is a kD-tree?

The name stands for k-dimensional

but we’ll mainly be covering only k = 2 (still called kD-tree)

Each node of tree is a (possibly infinite) rectangle)

Root = whole plane

Children = smaller rectangles, split by vertical or horizontal line

Alternate vertical/horizontal, split at median data point

Stop splitting at empty rectangles



Example



Representation

Each rectangle = an object

Instance variables:

▶ Whether split line is vertical or horizontal

▶ Coordinate of split line (x for vertical, y for horizontal)

▶ Pointers to two child rectangles, if they are nonempty

▶ Array of points on split line, sorted by other coordinate

▶ Aggregate information about all points in the rectangle (for instance, how many
points are in the rectangle)



Preprocessing (construction)

Initialize an object for the root rectangle (the whole plane), split vertically, with a list
of all its points, not yet sorted

Each time we create an object for a rectangle and a list of points:

▶ Find the median point for the split direction

▶ Partition the points into the subsets whose coordinate is smaller than median,
equal to median, or greater than median

▶ Recursively create child rectangles for the smaller and larger subsets

▶ Sort the points equal to the median and store them in a sorted array

Time for everything except the sorting: T (n) = O(n) + 2T (n/2) = O(n log n)

Time for sorting:
∑

O(ni log ni ) = O(n log n)



Alternative method for preprocessing

Sort all the points twice:
Once by their x-coordinate and once by their y -coordinate

When we create each child rectangle,
pass in its two sorted lists of its points

To find the median coordinate, use one of the sorted lists

When partitioning the points into subsets,
preserve their sorted order

so they don’t need to be sorted again

Still O(n log n) total



To handle range counting queries

Define rectangle by L,R,T ,B: left, right, top, bottom coords

Within recursion, can change to ±∞: boundary no longer relevant

Define query(node, L,R,T ,B):

If L = B = −∞ and R = T = +∞:

Return number of points stored for current node

Else if it’s an x-splitting node

If split coordinate < L:

Recurse into right child

Else if split coordinate > R:

Recurse into left child

Else

Recurse left with R = +∞
Recurse right with L = −∞
Add results to # points on split line

Else handle symmetric cases for y -splitting node



Key lemma for analysis

Every horizontal or vertical line in the plane (including the sides of any query
rectangle) is crossed by O(

√
n) split lines

Proof idea: Only splits perpendicular to the line can cross it

The whole tree has height log2 n, but the number of rectangles crossed by the line is
doubled only at alternating levels

If we double 1
2 log n times, we get 2(log2n)/2 =

√
n



Query analysis

Because of the replacement of range boundaries by ±∞, we never recurse into children
of rectangles that are entirely covered by the query range

For each rectangle that we recurse into, its parent crosses the range boundary or
entirely covers the whole range

Only O(log n) rectangles can entirely cover the whole range, because they form a path
in the tree down from the root to the first one that doesn’t

Only O(
√
n) rectangles can cross the range boundary by the lemma

Range counting: O(
√
n); range reporting: O(

√
n + k)

Generalizes to n(d−1)/d + k in d dimensions



Quadtrees



Problem with kD-trees

They can be bad for ranges
that are not axis-parallel
rectangles

Range boundary can cross all
of the k-D tree nodes

Gives query time Θ(n)
even when output size is O(1)

Part of the problem:
many long thin rectangles



Two ideas for improvement

Approximate ranges: when we do a query, the result

▶ Counts or includes all points inside query range

▶ Does not include points farther than ε× diameter from range

▶ Might or might not include points between range and ε× diam

diameter

query shape

expanded by
16% of diam

Also, use a different recursive partition with better shapes



Quadtree

(More precisely, “point quadtree”; there are other kinds)

Recursively divide squares into four smaller squares

Simplifying assumptions:

▶ Point coordinates are
integers in range
0 . . . 2b − 1 for some b

▶ Squares have side lengths
2k for 0 ≤ k ≤ b

▶ Coordinates of square
sides are integer + 1

2 so
points avoid square sides



Representation and construction

Each square stores:

▶ Its square

▶ Whether it is empty, has
one point, or has multiple
points

▶ If one point, what is that
point?

▶ If multiple points, four
child squares

▶ Aggregate info for points
(for instance how many)

Start with a big
power-of-two-size square
containing all of the points,
and a list of all its points

Test whether list is empty, one
point, or more than one

If more than one, partition
points into four quadrants and
recursively construct four child
squares



Approximate range counting

To query a quadtree square for
given approximate range:

▶ If square is empty or
avoids inner range, return
zero

▶ If square is inside outer
range, return its # points

▶ If square has one point,
check it against range

▶ Otherwise, recurse into
children and sum results



Query analysis lemma

Say that a square crosses the range when it contains parts of both inner and outer
range boundaries, but none of its children do

Then O(1/ε) quadtree squares cross the range

Reason: Each square has side length at least d/
√
2,

where d = diam · ε is the distance between inner
and outer boundaries (otherwise it would be too
small to reach both boundaries)

Shell between inner and outer has area O(diam2ε);
this square covers area Ω(diam2ε2) of the shell

Squares are disjoint, and each has Ω(ε) fraction
of whole area, so # squares is O(1/ε)



Query analysis

Query time is dominated by two terms:

▶ How many steps to get from the root to the crossing squares

▶ How many crossing squares

First term covers time in recursion above level of crossing squares

As soon as recursion reaches a child of a crossing square, it stops

Time for recursion O(b + 1/ε)

where b is number of bits in integer coordinates of given points

Generalizes to b + 1/εd−1 in d dimensions



Two improvements to quadtree



Problem: Too much space

Construction can perform
many levels of recursion
without splitting anything

(like on lower left of example)

So space is not linear!

It is O(nb)

where b = numerical precision



Solution: Compressed quadtree

When constructing a quadtree
node, shrink its square to
smallest power-of-two square
containing its points

Every non-leaf square has more
than one non-empty child

Total # squares is O(n)

Also improves time to recursively list all points within a square to O(# points),
needed for fast range reporting queries

Construction time O(n log n), from mesh generation lecture



Problem: Time depending on numerical precision

Solution: “Skip quadtree”. Randomly sample half the points, build recursive structure
on sample, and link its compressed quadtree squares to same squares of compressed

quadtree of larger point set [Eppstein et al. 2008]

Start query in quadtree for smallest sample; when reaching a leaf in a sampled
quadtree, step to same square in next larger sample

Query time O(log n + 1/ε) or O(log n + 1/ε+ k)



References

David Eppstein, Michael T. Goodrich, and Jonathan Zheng Sun. Skip quadtrees:
dynamic data structures for multidimensional data. Int. J. Comput. Geom. Appl., 18
(1–2):131–160, 2008. doi: 10.1142/S0218195908002568.


	References

