
CS 164 & CS 266:
Computational Geometry

Lecture 3

Line segment intersection

David Eppstein
University of California, Irvine

Fall Quarter, 2023

This work is licensed under a Creative Commons Attribution 4.0 International License



Intersection detection
and crossing listing



Intersection detection problem

Input: A list of line segments (each one: 4 coords of 2 endpoints)

Output: Do any two cross? If so report a crossing (or maybe all)

Application: Test validity of geographic data or circuit designs



Näıve solution

For each pair of input segments:

test whether they cross
O(n2)

Last time:

▶ Test for crossing using four left-right tests
on triples of points

▶ Find line through two points, and point
where lines cross, via projective geometry

O(1)

But can we do better?



(Unrealistic) general position assumptions

▶ No two segment endpoints have the same x-coordinate

(Implies: No vertical segments)

▶ No endpoint lies on another segment

▶ No three segments cross at a single point

likely to occur
probably ok

should be reported
as being crossings



Plane sweep algorithms



Plane sweep

General approach for designing geometric algorithms

processed
input

unprocessed
input

sweep vertical line left-to-right

The combinatorial structure of the result will only change at a finite set of discrete
“event points” — process these in left-to-right order



Crossed segment data structure

As sweep line sweeps left-to-right across the input, maintain:

▶ Set of line segments that cross it

▶ Vertical ordering of these line segments in a binary search tree

Vertical ordering will help us find crossings when we sweep over them, because it
changes at those points

We can maintain it efficiently using a balanced binary search tree

Search tree operations only need to know the ordering of the segments, not the precise
coordinates of the points where they cross the sweep line



How the vertical ordering can change

cross left endpoint
of segment —
add to set of segments
crossed by sweep line

cross right endpoint
of segment —
remove from segments
crossed by sweep line

sweep over
crossing point —
swap in vertical order
of crossed segments



Event queue data structure

Keep track of future event points (where vertical ordering changes) in a priority queue,
prioritized by x-coordinate (position in the left-to-right ordering used by the sweep line)

For crossing detection, we only need sorted list of segment endpoints

For listing all crossings, we also include the crossings we have found so far

In some algorithms we may also include “potential” events that we think might
happen, but that can be removed from the event queue before they actually happen



Crossing detection pseudocode

▶ Initialize T to an empty binary search tree

▶ Initialize Q to be a sorted list of segment endpoints
▶ For each point p in Q:

▶ If p is a left endpoint of a segment S : Add S to T , and check for crossings between
S and its neighbors above and below it in the vertical crossing order (found using T )

▶ Else p is a right endpoint of a segment S ; remove S from T , and check for crossings
between the two segments that were above and below it in the vertical crossing order

If we ever find a crossing, stop the whole algorithm and report it

If any two segments cross, they will be adjacent just before the sweep line sweeps over
the crossing, and this algorithm will check them and discover the crossing



Listing all crossings

▶ Initialize T to an empty binary search tree

▶ Initialize Q to a priority queue of points, prioritized by x-coordinate, initially
containing all segment endpoints

▶ While Q is non-empty:
▶ Find the minimum-priority point p in Q and remove it from Q
▶ If p is a left endpoint of a segment S : Add S to T , and check for crossings between

S and its neighbors above and below it in the vertical crossing order (found using T )
▶ Else if p is a right endpoint of a segment S ; remove S from T , and check for

crossings between the two segments that were above and below it in the vertical
crossing order

▶ Else p is a crossing point of two segments; swap the segments in T , and check for
crossings between them and the two segments above and below them in T

Whenever we find a new crossing point, just insert it into Q



Analysis (of both algorithms)

Let n be the number of segments (so there are 2n endpoints) Let k be the number of

crossing points; 0 ≤ k ≤
(n
2

)
.

The detection algorithm has 2n events; the crossing listing algorithm has 2n + k

Each event is performed using a constant number of operations in binary search trees
and priority queues

Total time: O(n log n) for detection, O((n + k) log n) for crossing listing



Arrangements and their representation



Arrangement

Think of any system of segments or curves as barriers to motion

“Face”: 2d region within which you can get between any two points

How to find and represent this system of faces and their boundaries?



Some terminology

Face
2d connected region

Edge
1d boundary of two faces,
separated by part of a segment

Same face can be on both sides

Vertex
An endpoint of a segment, or
crossing point of segments

At an intersection point, multiple
edges come together

Flag
A vertex, edge, and face that all
touch each other

vertex

face

edge



Representation issues

Most representations are centered on the edges of an arrangement

Each edge touches two vertices at its ends,
and two faces on its two sides

There are representations with:

one object per edge (pointing to all four of these things)

two objects per edge (one for each of its two sides)

four objects per edge (one per flag)

Structure from our text: two objects per edge



Half-edges

Represent each edge of the arrangement by two directed edges (“half-edges”), like the
two directions of a two-way road

(But like in England or Japan where they drive on the left)



Doubly-connected edge list

Object-oriented, with objects for vertices, half-edges, and faces

half-
edge

twin

from

face

next

previous
Each half-edge stores:

▶ Pointer to twin half-edge
from same edge

▶ The vertex it comes from
(Can find other vertex
from twin)

▶ The face on its side of
the edge

▶ The next and previous
half-edges in the cycle
around its face

Each vertex stores:

▶ Its coordinates

▶ One of the
half-edges it touches

Each face stores:

▶ A half-edge on its
outer boundary

▶ A list of half-edges,
one for each internal
boundary



Constructing the arrangement of line segments

Same plane sweep algorithm, maintaining DCEL of the part of the arrangement to the
left of the sweep line

Updates to DCEL at sweep events:
▶ When we sweep over an endpoint of one or more line segments:

▶ Use search tree of segments crossed by sweep line to find its face(s)
▶ If it is not a right endpoint, start new internal boundary in current face; otherwise,

close off half-edges for which it is a right endpoint, and faces between them
▶ If it is not a left endpoint, merge two faces or close off internal boundary; otherwise,

start new half-edges for which it is a left endpoint, and faces between them

▶ When we sweep over a crossing, split its segments at that point and treat it as an
endpoint of four line segments



Handling inputs that are not in general position

likely to occur
probably ok

should be reported
as being crossings

Event points have the
same x-coordinate

▶ Break ties by
y -coordinate

▶ Treat bottom
endpoint of a vertical
segment as left, and
top endpoint as right

Endpoints on
segments

▶ Report as a
crossing?

▶ More cases
for how to
update
DCEL

Multiple segments cross at one
point

▶ Use only one event point,
labeled by all the segments
that cross there

▶ When processing event,
reorder crossing segments in
search tree


