CS 164 & CS 266: Computational Geometry

Lecture 9

Low-dimensional linear programming

David Eppstein

University of California, Irvine

Fall Quarter, 2023

Linear programs

Find values for some variables

Obey linear inequalities, called "constraints"

$$x \ge 0$$

$$y \ge 0$$

$$x + y \ge 1$$

$$x + y \le 4$$

Minimize or maximize a linear "objective function"

$$\max 2x + y$$

Think of variables as coordinates

"Feasible region": convex set, points obeying constraints

Min or max is a vertex

Geometric linear programs

For the problems we will be considering:

- \triangleright Dimension (number of variables) will be O(1)
- ▶ Size of problem (number of constraints, *n*) can be large
- Algorithms search among small subsets of constraints and their optimal solution points ("dual simplex method")

```
(If you haven't seen this phrase, don't worry about it)
```

- ▶ Time $O_d(n)$: linear in the number of constraints, but with a constant factor that depends badly on the dimension
 - Unlike algorithms for high-dimensional LP, time does not depend on numerical precision
- ▶ If we just want to test whether there exists a feasible point, can choose objective arbitrarily

Background about more general types of LP

More generally, for linear programs:

- ► Might have a large number of variables
- Duality: there is an equivalent LP with a variable for each constraint and vice versa
- Can be solved in time polynomial in number of variables, number of constraints, and number of bits needed to represent the numerical coefficients in the linear functions
 - Interior point methods: Follow a curve interior to the feasible region, improving objective, until reaching solution
 - ► Ellipsoid method: Enclose feasible region by an ellipsoid, bisect it to get a smaller feasible region, and repeat until converging to a solution
- We will give up this added generality in order to obtain linear time and no dependence on number of bits

Examples of geometric LPs

Art gallery with one guard

Input: A polygon without holes

Output: A point inside it from which entire polygon is visible

LP feasibility with a constraint for each polygon side

A polygon that can be guarded by one guard is "star-shaped"; the feasible region of its LP is the "kernel" of the polygon

Biggest circle inside a convex polygon

Variables: x, y, r

Constraint for each polygon edge: x and y are on correct side of the edge, and their distance from the side (a linear function in x and y with coefficients determined from the side) is at least r

Maximize r

Linear separation

Given red points and blue points with coordinates (x_i, y_i)

Variables: m, b representing the line y = mx + b

Constraints:

 $y_i \ge mx_i + b$ (for red points) $y_i \le mx_i + b$ (for blue points)

With one more variable, can maximize vertical distance to line ⇒ idea behind support vector machine learning

L_{∞} linear regression

Regression: Fit a line y = mx + b to a set of data points x_i, y_i minimizing some combination of errors $|(mx_i + b) - y_i|$

 L_{∞} : Minimize max error; variables m, b, e, constraints $-e \leq (mx_i + b) - y_i \leq e$, objective min e

More useful in metrology (how close to flat is this set of measurements of a surface) than statistics, because L_2 regression (least squares) is easier, less sensitive to outliers

How quickly can we solve low-dimensional LP?

Non-random

```
O_d(n) – Time is function of d times O(n)
          (Simplifies to O(n) if we assume d is constant)
          Originally O(2^{2^d}n), later improved to O(3^{d^2}n)
          [Megiddo 1984; Clarkson 1986]
Random
          O(d^2n) + 2^{O(\sqrt{d\log d})}
          [Matoušek et al. 1996]
  Today
          Simpler randomized algorithm with time O(d! n)
          [Seidel 1991]
```

Warm-up: Randomized incremental max

Given an array A of n numbers:

```
Randomly permute A

Result = -\infty

For i = 0, \dots, n-1:

If A[i] > \text{result}:

\text{result} = A[i]
```

Obviously, this takes O(n) time, and the randomization is completely unnecessary More interesting question: how many times do we change result?

An equivalent geometric problem in 2d

Given *n* random points in a unit square How many have empty quadrant below and to the left of them?

(x-coordinate = order of random permutation, y-coordinate = values we are finding the minimum among, empty quadrant = result changes when we get to that point)

Backwards analysis

Suppose we have just looped through the *i*th value What is the probability that we just changed the result?

Happens when ith value is minimum among first i values Random permutation \Rightarrow minimum equally likely to be anywhere Probability that it is last is exactly 1/i

To compute expected number of times we changed the result, sum for each step the probability that we changed result in that step

$$\sum_{i=1}^n \frac{1}{i} = \ln n + O(1)$$

Seidel's algorithm

To solve a *d*-dimensional linear program:

Randomly permute the constraints

Choose coordinates $\pm \infty$ for an optimal solution point (whichever of $+\infty$ or $-\infty$ is better for objective function)

For each constraint $\sum a_i x_i \le b$, in a random order:

Check whether solution point obeys the constraint

If not, solve recursively a d-1-dimensional LP and replace solution point by the result

The recursive problem works in the (d-1)-dimensional subspace of points $\sum a_i x_i = b$, and uses the constraints that have already been added, restricted to that subspace, in a new random order

Backwards analysis of Seidel's algorithm

After processing the *i*th constraint, what is the probability that you had to make a recursive call for it?

In any d-dimensional LP, some subset of d constraints is exactly satisfied, and determine the solution

- ► Solution is solution to *d* linear equations in *d* variables
- ► Fewer constraints ⇒ can move solution in a linear subspace and get better in some direction
- More constraints ⇒ some of them are redundant and not needed to determine solution

If you just made a recursive call, the last constraint you processed was one of these d constraints

```
Random permutation \Rightarrow Happens with probability \leq d/i
(Can be < d/i if d > i or for multiple sets of d right constraints)
```

Expected time for Seidel's algorithm

Let T(d, n) denote the expected time to solve a d-dimensional LP with n constraints

Expected time for *i*th constraint: O(d) to check constraint, plus (probability of making a recursive call) \times (time if we make the call)

Sum this time over all constraints:

$$T(d,n) \leq O(dn) + \sum_{i=1}^{n} \frac{d}{i} T(d-1,i-1)$$

Prove by induction that T(d, n) = O(d!n)Induction hypothesis \Rightarrow sum becomes $\sum d(d-1)!(i-1)/i < d!n$

References

- Kenneth L. Clarkson. Linear programming in $O(n \times 3^{d^2})$ time. *Information Processing Letters*, 22(1):21–24, 1986. doi: 10.1016/0020-0190(86)90037-2.
- Jiří Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming. *Algorithmica*, 16(4–5):498–516, 1996. doi: 10.1007/BF01940877.
- Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. *Journal of the ACM*, 31(1):114-127, 1984. doi: 10.1145/2422.322418.
- Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete & Computational Geometry, 6(5):423–434, 1991. doi: 10.1007/BF02574699.