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1 Introduction

A mesh is a discretization of a geometric domain into small simple shapes, such as tri-
angles or quadrilaterals in two dimensions and tetrahedra or hexahedra in three. Meshes
find use in many application areas. In geography and cartography, meshes give compact
representations of terrain data. In computer graphics, most objects are ultimately reduced
to meshes before rendering. Finally, meshes are almost essential in the numerical solution
of differential equations arising in physical simulation. In this chapter, we concentrate on
algorithms for this last application, assuming an audience including both practitioners such
as engineers and theoreticians such as computational geometers and numerical analysts.

1.1 Types of Geometric Domains

We divide the possible inputs first according to dimension—two or three. We distinguish
four types of planar domains, as shown in Figure 1. For us, a simple polygon includes both
boundary and interior. A polygon with holes is a simple polygon minus the interiors of some
other simple polygons; its boundary has more than one connected component. A multiple
domain is more general still, allowing internal boundaries; in fact, such a domain may be any
planar straight-line graph in which the infinite face is bounded by a simple cycle. Multiple
domains model objects made from more than one material. Curved domains allow sides
that are algebraic curves such as splines. As in the first three cases, collectively known as
polygonal domains, curved domains may or may not include holes and internal boundaries.

Three-dimensional inputs have analogous types. A simple polyhedron is topologically
equivalent to a ball. A general polyhedron may be multiply connected, meaning that it
is topologically equivalent to a solid torus or some other higher genus solid; it may also
have cavities, meaning that its boundary may have more than one connected component.
We do assume, however, that at every point on the boundary of a general polyhedron
a sufficiently small sphere encloses one connected piece of the polyhedron’s interior and
one connected piece of its exterior. Finally, there are multiple polyhedral domains—general
polyhedra with internal boundaries—and three-dimensional curved domains, which typically
have boundaries defined by spline patches.

The construction and modeling of domain geometry lies outside the scope of this chapter,
and we shall simply assume that domains are given in some sort of boundary representa-
tion, without specifying the exact form of this representation. For concreteness, the reader
may imagine a linked list representation for simple polygons and polygons with holes, and
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Figure 1. Types of two-dimensional inputs: simple polygon, polygon with holes, multiple domain,

and curved domain.

a doubly connected edge list [88] or quad-edge data structure [59] for multiple domains.
Curved domains can be defined by adding spline curves [14] to these data structures. For
three-dimensional domains, there are analogous but more complicated boundary represen-
tations such as the winged edge data structure [42, 58]; spline patches can be defined either
over quadrilaterals [14] or triangles [99].

There may be some advantages to domain representations other than boundary repre-
sentations. For example, a constructive solid geometry formula for the domain may help
in mesh generation. Solid modeling and mesh generation are currently separate steps, per-
formed by software from different sources, but we expect greater integration in the future.

1.2 Types of Meshes

A structured mesh is one in which all interior vertices are topologically alike. An unstruc-
tured mesh is one in which vertices may have arbitrarily varying local neighborhoods. A
hybrid mesh is formed by a number of small structured meshes combined in an overall
unstructured pattern.

In general, structured meshes offer simplicity and easy data access, while unstructured
meshes offer more convenient mesh adaptivity and a better fit to complicated domains. (As
might be expected, hybrid meshes fall somewhere in between.) Moreover, certain numerical
methods are more compatible with one type of mesh than another, as we shall explain in
Section 2. We shall discuss unstructured mesh generation at much greater length than struc-
tured mesh generation, both because the unstructured approach seems to gaining ground
and because it is more closely connected to computational geometry.

The division between structured and unstructured meshes usually extends to the shape
of the elements: two-dimensional structured meshes typically use quadrilaterals, while un-
structured meshes use triangles. In three dimensions the analogous element shapes are hez-
ahedra, meaning topological cubes, and tetrahedra. There is, however, no essential reason
for structured and unstructured meshes to use different element shapes. In fact it is possible
to subdivide elements in order to convert between triangles and quadrilaterals and between
tetrahedra and hexahedra. Figure 2 shows the transformations in the two-dimensional case.
The transformation from triangles to quadrilaterals or tetrahedra to hexahedra is related
to barycentric subdivision, which divides each face with its center of mass.



Figure 2. (a) Triangulating quadrilaterals. (b) Subdividing triangles to form quadrilaterals.

1.3 Organization

Section 2 gives a brief survey of numerical methods and their impact on mesh generation.
Sections 3 and 4 cover structured and unstructured two-dimensional meshes. Section 5
discusses three-dimensional hexahedral mesh generation, including structured, hybrid, and
unstructured approaches. Finally, Section 6 describes three-dimensional unstructured tetra-
hedral mesh generation.

We shall explain the fundamental computational geometry results as they arise within a
larger context; however, Section 4 concludes with a separate theoretical discussion, because
unstructured planar mesh generation is especially rich in interesting geometric questions.
Throughout this article, we emphasize practical issues; an earlier survey by Bern and Epp-
stein [21] emphasized theoretical results. Although there is inevitably some overlap between
these two surveys, we intend them to be complementary.

Mesh generation has a huge literature and we cannot hope to cover all of it. There are
excellent references on numerical methods [108, 31], structured mesh generation [32, 57, 113],
and unstructured mesh generation [21, 56]. There are also several nice Web sites [85, 97,
102, 124] on mesh generation.

2 Background on Numerical Methods

Scientific computing seeks accurate discrete models for continuous physical phenomena.
We can divide the process into three interdependent steps: problem formulation, mesh
generation, and equation solution. In this section, we discuss discretization and solution
methods and their impact on mesh generation.

2.1 Discrete Formulation

There are a number of approaches to the discrete approximation of partial differential
equations modeling a physical system. Here we briefly review the standard discretization
methods: finite-difference, finite-element, and finite-volume. Although these methods result
in linear systems of similar structure, the desired characteristics of meshes for these methods
may be quite dissimilar.

Finite-difference methods [112] are the simplest to implement. This approach replaces
continuous differential operators with difference approximations. Consider the partial dif-
ferential equation

Lu=f (1)



where u is a function of position and possibly also of time. We seek an approximate
solution of (1) on some geometric domain §2. A standard finite-difference approach replaces
the differential operator £ with a discrete stencil. Writing ug, = u(zy) for the value of v at
mesh vertex position zj, the action of the stencil at z; can be represented by

Lu(z;) = Z Ajpug
k€ adj(z;)

where adj(z;) is the set of points adjacent to z; in the mesh and A;; is a set of weights.
The right-hand side of (1) can also be discretized yielding a system of linear equations

n
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to be solved for the unknowns wu;. Because the finite-difference stencil gives nonzero weight
only to neighboring vertices, this system will be quite sparse.

It is convenient to use the same stencil throughout the mesh. This restriction simplifies
not only the software but also the mathematics; the convergence properties of a particular
stencil can be analyzed quite easily by Taylor series expansion. A finite-difference stencil
gives a more accurate approximation of a continuous operator when the edges meeting at
vertices are nearly orthogonal. For these two reasons, finite-difference approaches usually
rely on structured meshes topologically equivalent to regular grids.

Finite-element methods [108] have become enormously popular in the engineering and
scientific communities in part because they overcome many of the limitations of the finite-
difference approach. The essential idea is to replace the continuous function u(z) with the
finite-dimensional approximation w(z) = Y ;_, ax¢r(x), where the ¢ are basis functions
with local support. These basis functions are typically low-order polynomials, so that the
action of the differential operator, Loy, can easily be computed. Because the approximation
u(z) is defined everywhere on the domain, an analysis of convergence can be made in a
continuous norm instead of pointwise as in the finite-difference method.

The finite-element method obtains a discrete approximation by demanding that the
differential equations be satisfied for some set of test functions 1;(z) by the relations
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The efficiency of the method depends on the size of the set I;; of elements where both the
basis function ¢; and the test function t; are nonzero. This set is usually quite small,
consisting only of the elements adjacent to the vertex which corresponds to the unknown
coefficient a;. An implementation of the finite-element method reduces to the computation
of the factors
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The contribution from each element in /;; can be computed and summed (or assembled) to
obtain A;. The result of this process is again a sparse linear system of equations, of the
same form as (2), that can be solved for the unknowns ay.



Finite-element methods are typically no more complicated on unstructured meshes than
on structured meshes. Furthermore, there is no real advantage to mesh edges meeting
orthogonally. Elements of poor aspect ratio however, can seriously degrade accuracy. Early
theoretical results [37] showed convergence of finite-element methods as elements shrink,
assuming aspect ratios remain bounded. Babuska and Aziz [4] showed convergence in two
dimensions assuming that angles are bounded away from 180°, a strictly weaker condition.
The generalization of this result to three dimensions assumes dihedrals bounded away from
0°, thereby showing that the needle in Figure 19 is permissible.

In two dimensions, the Delaunay triangulation of a point set has the desirable prop-
erty that it maximizes the minimum angle. Moreover, the Delaunay triangulation gives
an M-matrix—diagonally dominant with negative off-diagonal entries—for Laplacian op-
erators [15, 38]. M-matrices are exactly those matrices that satisfy a discrete maximum
principle; this desirable property rules out oscillation of the numerical method. These re-
sults do not generalize to three dimensions; in this case nonobtuse face angles are a sufficient
but not a necessary condition for an M-matrix.

Finite-volume methods are motivated by the need to conserve certain physical quantities
in a discrete model. The infinitesimal version of a conservation law is of the form

dp

yr +V.-&=0,
where p is the density and ® is the flux of the conserved quantity. In order to maintain the
same physical conservation law on a discrete level, the finite-volume method defines small
volumes called control volumes, and requires that on each control volume €2,
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where n is the normal to the surface of the volume. Cell-centered control volumes are
usually identical to mesh elements, while vertez-centered control volumes form a dual mesh
with one cell for each vertex of the original mesh.

The finite volume method with vertex-centered control volumes matches fluid dynamics
problems well, because pressure and velocity—in some sense dual variables—can be rep-
resented at centers and vertices of volumes, respectively. There are several ways to define
vertex-centered control volumes. Two regular grids may be overlaid, staggered by half an
element. Or, in the case of unstructured meshes, the Delaunay triangulation may be used
as the mesh, and its dual—the Voronoi diagram—used to define control volumes. A two-
dimensional mesh without obtuse angles [7, 24] (or a three-dimensional mesh with fully
self-centered tetrahedra [19]) gives particularly nice control volumes, one in which control
volume edges cross element edges only at right angles.

2.2 Solution Methods

The solution of the sparse linear system is usually the most computationally demanding
phase of the entire modeling process. Solution methods include direct factorization and
preconditioned iterative methods. These methods can vary dramatically in required storage
and computational cost for different problems. Moreover, the discrete formulation and mesh
generation steps can greatly influence the efficacy of a solution method. Higher-order basis
functions in the finite element method allow the use of a coarser mesh, but give a denser



linear system. Poorly shaped mesh elements can give an ill-conditioned linear system, which
will be much harder to solve.

Direct factorization methods, such as sparse Cholesky or LU factorization, can be very
expensive, especially for three-dimensional problems. Direct methods, however, are more
robust than iterative methods, and the computational cost can be amortized when the
factorization is reused to solve for more than one right-hand side. The theoretical efficiency
of certain direct methods depends upon the existence of small graph separators for the
mesh. Any planar graph admits separators of size O(n1/2); reasonable three-dimensional
meshes admit separators of size O(n?/%) [77].

Iterative methods have proved effective in solving the linear systems arising in physical
modeling. There are numerous iterative methods varying in ease of implementation, storage
requirements, existence of software, and theoretical convergence bounds. Most large prob-
lems cannot be effectively solved without the use of preconditioning; a popular approach
involves an incomplete factorization. Rather than computing the exact factors for the ma-
trix A = LU, approximate factors are computed such that A =~ LU and the preconditioned
system

L7YAU Y (Uu) = L' f

is solved iteratively. Ideally, the incomplete factors should be easy to compute and require
a modest amount of storage, and the condition number of the preconditioned system should
be much better than the original system.

Multigrid methods can achieve the ultimate goal of iterative methods, convergence in
O(1) iterations, for certain classes of problems. These methods use a sequence of meshes,
graded from fine (small elements) to coarse (large elements). Mesh generation techniques
such as regular bisection (Section 4.4 below) naturally give a sequence of nested meshes
suitable for multigrid methods.

Domain decomposition methods [105] represent something of a hybrid between iterative
and direct approaches. This approach divides the domain into possibly overlapping small
domains; it solves the subproblems on the small domains directly, but iterates to the global
solution in which neighboring subproblem solutions agree. This approach enjoys some of the
superior convergence properties of multigrid methods, while imposing less stringent require-
ments on the mesh generator. In fact, the domain is often partitioned so that subproblems
admit structured meshes.

3 Structured Two-Dimensional Meshes

Structured meshes offer simplicity and efficiency. A structured mesh requires significantly
less memory—say a factor of three less—than an unstructured mesh with the same number
of elements, because array storage can define neighbor connectivity implicitly. A structured
mesh can also save time: to access neighboring cells when computing a finite-difference
stencil, software simply increments or decrements array indices. Compilers produce quite
efficient code for these operations; in particular, they can optimize the code for vector
machines.

On the other hand, it can be difficult or impossible to compute a structured mesh
for a complicated geometric domain. Furthermore, a structured mesh may require many
more elements than an unstructured mesh for the same problem, because elements cannot
grade in size as rapidly. These two difficulties can often be circumvented by a hybrid
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Figure 3. The conformal mapping f from the domain 2, defined by a boundary discretization, to a
rectangle R. The inverse of the mapping maps a grid on R onto a structured mesh for Q.

structured /unstructured approach, which decomposes a complicated domain into patches
supporting structured grids. Hybrid approaches, however, are typically not fully automatic,
requiring some user guidance in the decomposition step; hence we shall not discuss them at
much length. (See Section 5.2 for an example of a three-dimensional hybrid mesh.)

Structured mesh generation can be roughly classified into hand-generated and other
elementary approaches, algebraic or interpolation methods, and PDE or variational meth-
ods [114]. The PDE approach [32, 67] solves partial differential equations in order to map
the domain € onto another domain with a convenient coordinate system. In this section,
we discuss an elliptic PDE approach with a connection to the classical topic of conformal
mapping.

A mapping of a region Q of the complex plane is conformal if it preserves angles; in
other words, the angle between any two curves intersecting at a point z €  is preserved by
the mapping. The Riemann mapping theorem states that for any topological disk €2, there
exists a conformal mapping f that takes the interior of 2 one-to-one onto the interior of any
other topological disk (such as the unit disk or square). There is an obvious connection to
mesh generation: a conformal mapping of €2 onto a square grid induces a structured mesh
on  with the property that element angles tend towards 90° in the limit of an increasingly
fine discretization.

Unfortunately, the Riemann mapping theorem only proves the existence of a conformal
mapping; it does not give an algorithm. Let us write z = 2 +1y and consider the the complex
function f(z) = &(x,y) + m(z,y). If f is analytic—as a conformal f will be, assuming
J'(2) # 0—then it satisfies the Cauchy-Riemann equations: &, = 7, and &, = —7,. Thus
the functions £ and 1 must each be harmonic and satisfy Laplace’s equation, so that V¢ = 0
and VZnp = 0. If f is conformal, its inverse is as well; therefore, z and y as functions of ¢
and 7 are also harmonic and satisfy V22 = 0 and V?y = 0.

Consider the regions Q and R in Figure 3, and assume we already have a discretization
of the boundary of Q. (Finding a suitable boundary discretization may itself be a difficult
task.) The obvious algorithm is to solve V22 = 0 and V?y = 0, assuming = and y are
given on the boundary of R. However, this approach may not work. One may obtain
poorly shaped or even inverted elements as shown in Figure 4(a). The problem is that the
solutions z and y may be harmonic, but not harmonic conjugate (i.e., satisfy the Cauchy-
Riemann equations).

The algorithm can be partially mended by obtaining a better estimate for M, the rect-
angle height implied by the discretization of the boundary of 2. If we scale the original
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Figure 4. The grid on left was obtained by solving (3) with unit aspect ratio, resulting in a folded-over
mesh. On the right, a more appropriate aspect ratio has been chosen.

coordinates of the rectangle (£, 7n) onto a square with coordinates (u,v) with the mapping
w=¢& and v =n/M we obtain the system

szﬂﬂ —I_ Loy = 0 szup, ‘I’ Yoo = 0. (3)
From the first-order Cauchy-Reimann equations we have
M? = (a3 + )/ (2], + yp)-

Barfield [13] obtained reasonable nonoverlapping meshes by estimating the average value of
the right hand side of the above equation and using this value for M. One can think of M
as an average aspect ratio for the original domain; if ideal aspect ratio varies significantly
over the domain one can also make this number a function of position. This approach can
be successful for many physical problems, and can be improved significantly if the generated
grid is smoothed as a postprocessing step. This approach can also be extended to three
dimensions—where the Riemann mapping theorem no longer holds—by the addition of
another “average aspect ratio” term.

Although the approach just sketched works quite well for some domains, it is does not
guarantee the generation of a valid mesh. It is interesting that the inverse problem, solving
the harmonic equations

Poz + ftyy = 0 (4)
Vpe + Vyy =

does guarantee a solution with no inverted elements and a nonvanishing Jacobian [47, 106].
Solving the problem in this form is more difficult, because it requires a discretization of the
domain for which we want to find a grid. However, the system can be inverted to form the
nonlinear elliptic system [33]

ATy — 28, Y2, =

O‘yuu_Qﬁyuu‘l’Pyyuu = 07
where
a = a,+uy
ﬁ = TuTy +Yulh
vy o= xi—l—yi



Software designed to solve these systems often includes an additional source term on the
right-hand sides of the harmonic systems in (4) to control the local point spacing in the
domain [114].

In the case that € is a simple polygon, the Schwarz-Christoffel formula provides an
explicit form for the conformal mappings from the unit disk D to €2. Such a mapping can
in turn be used to find conformal mappings from €2 to a square or rectangle. The Schwarz-
Christoffel formula, however, does not seem to be widely used in mesh generation, perhaps
because true conformal mapping does not allow local control of point spacing.

Let the points in the complex plane defining the polygon (in counterclockwise order)
be z,...,2,, the interior angles at these points be aq,...,a,, and define the normalized
angles as O = ap /7 — 1. Using wy, ...,w, as the preimages of z,..., z, on the edge of the
disk, the Schwarz-Christoffel formula gives the form of the conformal mapping as

Fe) = A+ B [T (1 - fwn)™ de. (5)

0 k=1

There are several programs available to solve for the unknown wy, values: SCPACK by Tre-
fethen [115], the SC Toolbox by Driscoll [46], and CRDT by Driscoll and Vavasis [45]. One
difficulty in the numerical solution is “crowding”, enormous variation in spacing between
the wy points. The latest, and apparently best, Schwarz-Christoffel algorithm, CRDT, over-
comes this difficulty by repeatedly remapping so that no crowding occurs near the points
being evaluated.

4 Unstructured Two-Dimensional Meshes

We have already mentioned the advantages of unstructured meshes: flexibility in fitting
complicated domains, rapid grading from small to large elements, and relatively easy re-
finement and derefinement.

Unlike structured mesh generation, unstructured mesh generation has been part of main-
stream computational geometry for some years. Well-studied geometric constructions such
as Delaunay triangulation are central to unstructured mesh generation. We consider three
principled approaches to unstructured mesh generation in some detail; these approaches
use the Delaunay triangulation, constrained Delaunay triangulation, and quadtrees. In the
fourth and fifth sections we discuss mesh refinement and improvement. In the final section,
we describe some geometric problems abstracted from unstructured mesh generation.

4.1 Delaunay Triangulation

Our first approach to unstructured mesh generation partitions the task into two phases:
placement of Steiner points, followed by triangulation. If the placement phase is smart
enough, the triangulation phase can be especially simple, considering only the input vertices
and Steiner points and ignoring the input edges.

The placement phase typically places points along the domain boundary before placing
points in the interior. The boundary should be lined with enough Steiner points that the
Delaunay triangulation of all vertices will conform to the domain. For a polygonal domain
Q, this means that each edge of  must be the union of edges in the Delaunay triangulation.
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Figure 5. Delaunay triangulation of points placed by an advancing front. (T. Barth)

For applications such as aerodynamics, this subproblem—called conforming Delaunay
triangulation—usually takes care of itself, because other spacing constraints, such as ap-
proximating a spline boundary or resolving small details in the air flow, predominate. Appli-
cations that involve oddly shaped domains—for example, stress analysis of machine parts—
require an explicit solution. A solution due to Saalfeld [96] lines the edges of Q with a large
number of Steiner points, uniformly spaced except near the endpoints. A more efficient
solution [83] covers the edges of 2 by disks that do not overlap other edges. Edelsbrunner
and Tan [50] gave the best theoretical result, an algorithm that uses O(n®) Steiner points
for an n-vertex multiple domain.

There are several approaches to placing interior Steiner points. One approach combines
the vertices from a number of structured meshes [74]. This method offers local control over
element shapes and orientations, enabling, for example, highly stretched, “anisotropic”
elements in laminar regions of a viscous flow simulation. On the other hand, this method
has some difficulties with complicated geometries, and points may end up poorly spaced
where two blocks meet. Spacing can be improved by filtering unwanted points and by mesh
smoothing.

Another approach to point placement, called advancing front, adds Steiner points in
successive layers, working in from the domain boundary [8, 82]. This approach can also
achieve anisotropy, either by setting the spacing between close-in layers much smaller than
the spacing between points within layers, or by computing the Delaunay triangulation in a
stretched space [41, 34]. The advancing front approach may space points improperly where
fronts collide, but as in the first method, poorly shaped elements can usually be corrected
by smoothing. Before moving on to our last placement approach, we remark that many
advancing front mesh generators [60] place the triangles themselves, rather than just the
Steiner points. Such an approach gives more direct control over the triangles near the
boundary, at the cost of reduced flexibility where fronts collide.

The last placement approach is the most robust, but gives the least control. In this
approach, interior points are chosen at random according to some distribution [76, 119],
which can be interpolated from a (possibly very coarse and nonconforming) quadtree or
“background” triangulation. The distribution may also include user-defined point sources
at regions of special interest An independent random sample is likely to force some badly
shaped triangles [23], so the generator should oversample and then filter out points too close
to previously chosen points. There are also deterministic methods that achieve essentially
the same effect as random sampling with filtering; these methods [26, 104] define birth and
death rules that depend on the density of neighboring points.
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The triangulation phase uses the well-known Delaunay triangulation. The Delaunay
triangulation of a point set S = {sy, s9,...,5s,} is defined by the empty circle condition: a
triangle s;s;s;, appears in the Delaunay triangulation DT(S) if and only if its circumcircle
encloses no other points of S. There is an exception for points in special position: if an
empty circle passes through four or more points of 5, we may triangulate these points—
complete the triangulation—arbitrarily. So defined, DT'(S) is a triangulation of the convex
hull of S. For our purposes, however, we can discard all triangles that fall outside the
original domain €.

There are a number of practical Delaunay triangulation algorithms [54]. We describe
only one, called the edge flipping algorithm, because it is most relevant to our subsequent
discussion. Its worst-case running time of O(n?) is suboptimal, but it performs quite well
in practice. The edge flipping algorithm starts from any triangulation of S and then locally
optimizes each edge. Let e be an internal (non-convex-hull) edge and . be the triangulated
quadrilateral formed by the triangles sharing e. Quadrilateral (). is reversed if the two angles
without the diagonal sum to more than 180°, or equivalently, if each triangle circumcircle
contains the opposite vertex. If @), is reversed, we “flip” it by exchanging e for the other
diagonal.

compute an initial triangulation of S
place all internal edges onto a queue
while the queue is not empty do
remove the first edge e
if quadrilateral (). is reversed then
flip it and add the outside edges of Q). to the queue endif
endwhile

An initial triangulation can be computed by a sweep-line algorithm. This algorithm adds
the points of S by z-coordinate order. Upon each addition, the algorithm walks around
the convex hull of the already-added points, starting from the rightmost previous point and
adding edges until the slope reverses. The following theorem [43] guarantees the success of
edge flipping: a triangulation in which no quadrilateral is reversed must be a completion of
the Delaunay triangulation.

4.2 Constrained Delaunay triangulation

There is another way, besides conforming Delaunay triangulation, to extend Delaunay tri-
angulation to polygonal domains. The constrained Delaunay triangulation of a (possibly
multiple) domain € does not use Steiner points, but instead redefines Delaunay triangula-
tion in order to force the edges of {2 into the triangulation.

A point pis visible to a point ¢ in Q if the relatively open line segment pq lies within
and does not intersect any edges or vertices of 2. The constrained Delaunay triangulation
CDT(Q) contains each triangle with an empty circumcircle, where empty now means that
the circle does not contain any vertices of €2 visible to points interior to the triangle. The
visibility requirement means that external proximities, where 2 wraps around to nearly
touch itself, have no effect. Figure 6 provides an example; here vertex v is not visible to
any point in the interior of triangle abc.

The edge flipping algorithm can be generalized to compute the constrained Delaunay
triangulation, only this time we do not allow edges of €2 onto the queue. Obtaining an
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Figure 6. The constrained Delaunay triangulation of a polygon with holes.

Figure 7. A mesh computed by Ruppert’s algorithm. (J. Ruppert)

initial triangulation is somewhat more difficult for polygonal domains than for point sets.
The textbook by Preparata and Shamos [88] describes an O(nlogn)-time algorithm for
computing an initial triangulation. This algorithm first adds edges to € to subdivide it into
easy-to-triangulate “monotone” faces.

Ruppert [95], building on work of Chew [36], gave a mesh-generation algorithm based on
constrained Delaunay triangulation. (Shewchuk [102, 103] has subsequently made further
improvements to this algorithm and made an implementation available on the Web.) This
algorithm computes the constrained Delaunay triangulation at the outset and then adds
Steiner points to improve the mesh, thus uniting the two phases of the approach described
in the last section. In choosing Ruppert’s approach, the user gives up some control over
point placement, but obtains a more efficient mesh with fewer and rounder triangles.

The first step of Ruppert’s mesh generator cuts off all vertices of the domain €2 at which
the interior angle measures less than 45°. The cutting line at such a vertex v should not
introduce a new small feature to €2; it is best to cut off an isosceles triangle whose base is
about halfway from v to its closest visible neighbor. If v has degree greater than two, as
might be the case in a multiple domain, then the bases of the isosceles triangles around v
should match up so that no isosceles triangle receives a Steiner point on one of its legs.

Next the algorithm computes the constrained Delaunay triangulation of the modified
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domain. The algorithm then goes through the loop given below. The last line of the
loop repairs a constrained Delaunay triangulation after the addition of a new Steiner point
c. To accomplish this step, there is no need to recompute the entire triangulation. The
removed old triangles are exactly those with circumcircles containing ¢, which can be found
by searching outwards from the triangle that contains ¢, and the new triangles that replace
the removed triangles must all be incident to the new vertex c.

while there exists a triangle ¢ with an angle smaller than 20° do
let ¢ be the center of ¢’s circumcircle
if ¢ lies within the diameter semicircle of a boundary edge e then
add the midpoint m of e
else add ¢ endif
recompute the constrained Delaunay triangulation
endwhile

The loop is guaranteed to halt with all angles larger than 20°. At this point, the cut-
off isosceles triangles are returned to the domain, and the mesh is complete. Ruppert’s
algorithm comes with a strong theoretical guaranty: all new angles (not present in the
input) are greater than 20°, and the total number of triangles in the mesh is at most a
constant times the minimum number of triangles in any such no-small-angle mesh. To
prove this efficiency result, Ruppert shows that each triangle in the final mesh is within a
constant factor of the local feature size at its vertices. The local feature size at point p € Q
is defined to be the radius of the smallest circle centered at p that contains two connected
components of the boundary; this is a spacing function intrinsic to the domain.

4.3 Quadtrees

A quadtree mesh generator [6, 22, 122] starts by enclosing the entire domain  inside an
axis-aligned square. It splits this root square into four congruent squares, and continues
splitting squares recursively until each minimal—or leaf—square intersects €2 in a simple
way. Further splits may be dictated by a user-defined spacing function or balance condition.
Quadtree squares are then warped and cut to conform to the boundary. A final triangulation
step gives an unstructured triangular mesh.

We now describe a particular quadtree mesh generator due to Bern, Eppstein, and
Gilbert [22]. As first presented, the algorithm assumes that Q is a polygon with holes;
however, the algorithm can be extended to multiple and even to curved domains. In fact,
the quadtree approach handles curved domains more gracefully than the Delaunay and
constrained Delaunay approaches, because the splitting phase can automatically adapt to
the curvature of enclosed boundary pieces.

The algorithm of Bern et al. splits each quadtree square b until each connected com-
ponent of b N D has only one connected piece of ’s boundary, with at most one vertex.
It “clones” squares that intersect €2 in more than one connected component—an idea due
to Mitchell and Vavasis [80])—and assigns one connected component to each of the clones,
which are superimposed in the sense of Riemann sheets. The algorithm then splits squares
near vertices of €2 a couple more times, so that each vertex lies within a buffer zone of equal
size squares.

Next the mesh generator imposes a balance condition: no square should be adjacent to
one less than one-half its size. This causes more splits to propagate across the quadtree,
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Figure 8. A mesh computed by a quadtree-based algorithm. (S. Mitchell)

increasing the total number of leaf squares by a constant factor (at most 8). Squares are
then warped to conform to the domain €. Various warping rules work; we give just one
possibility. In the following pseudocode, |b| denotes the side length of square b.

for each vertex v of 2 do
let y be the closest quadtree vertex
move y to v
endfor
for each leaf square b still crossed by an edge e do
move the vertices of b that are closer than |b|/4 to e to their closest points on e
endfor
discard faces of the warped quadtree that lie outside 2

Finally, the cells of the warped quadtree are triangulated so that all angles are bounded
away from 0°. Figure 8 gives a mesh computed by a variant of the quadtree algorithm. This
figure shows that cloning ensures appropriate element sizes around holes and “almost holes”.
Notice that a quadtree-based mesh exhibits preferred directions—horizontal and vertical. If
this artifact poses a problem, mesh improvement steps can be used to redistribute element
orientations.

The quadtree algorithm enjoys the same efficiency guaranty as Ruppert’s algorithm. In
fact, the quadtree algorithm was the first to be analyzed in this way [22].

4.4 Mesh Refinement and Derefinement

Adaptive mesh refinement places more grid points in areas where the error in the solution is
known or suspected to be large. Local error estimates based on a solution computed on an
initial mesh are known as a posteriori error estimates [5] and can be used to determine which
elements should be refined. For elliptic problems these estimators asymptotically bound the
true error and can be computed locally using only the information on an element [120].
One approach to mesh refinement [34] iteratively inserts extra vertices into the triangu-
lation, typically at edge bisectors or triangle circumcenters as in Section 4.2. New vertices
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Figure 9. A triangle divided by (a) bisection, and (b) regular refinement.

along the boundaries of curved domains should be computed using the curved boundary
rather than the current straight edge, thereby giving a truer approximation of the domain
as the mesh refines. Insertion may be followed by edge flipping (Section 4.1) and mesh
smoothing (Section 4.5).

This approach gives a finer mesh, but not an edge conforming refinement of the original
mesh, meaning a mesh that includes the boundaries of the original triangles. Edge con-
forming refinements are especially convenient for the multigrid method (Section 2.2). To
compute such a refinement, we turn to another approach. This approach splits triangles
in need of refinement, by adding the midpoints of sides. The pseudocode below gives the
overall approach.

k=0

solve the differential equation on the initial mesh Ty

estimate the error on each triangle

while the maximum error on a triangle is larger than the given tolerance do
based on error estimates, mark a set of triangles Sy to refine
* divide the triangles in S%, and any other triangles necessary to form Tyyq
solve the differential equation on Tyyq
estimate the error on each triangle
k=k+1

endwhile

There are a number of popular alternatives for step x, in which the current mesh T}
is adaptively refined. In regular refinement [9, 10], the midpoints of the sides of a marked
triangle are connected, as in Figure 9(b), to form four similar triangles. Unmarked triangles
that received two or three midpoints are split in the same way. Unmarked triangles that
received only one midpoint are bisected by connecting the midpoint to the opposite vertex
as in Figure”9(a). Before the next iteration of x, bisected triangles are glued back together
and marked for refinement; this precaution guarantees that each triangle in Ty, will either
be similar to a triangle in Ty or be the bisection of a triangle similar to a triangle in Tp.
Hence regular refinement, regardless of the number of times through the refinement loop,
produces a mesh with minimum angle at least half the minimum angle in Ty, and the angles
in Ty41 are bounded away from 0 and 7.

Rivara [91, 92, 93] proposed several alternatives for step x based on triangle bisection.
One method refines each marked triangle by cutting from the opposite vertex to the mid-
point of the longest edge. Neighboring triangles are now invalid, meaning that one side
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Figure 10. The bisection algorithm bisects marked triangles before invalid triangles. Invalid children
of refined triangles are split to their subdivision points

contains an extra vertex; these triangles are then bisected in the same way. Bisections
continue until there are no remaining invalid triangles. Refinement can propagate quite
far from marked triangles; however, propagation cannot fall into an infinite loop, because
along a propagation path each bisected edge is longer than its predecessor. This approach,
like the previous one, produces triangles that fall into only a finite number of similarity
classes, and the minimum angle is again at least half the smallest angle in Ty. Quite often
longest-edge refinement actually improves angles.

A second Rivara refinement method is given in the pseudocode below and illustrated
in Figure 10. This method does not always bisect the longest edge, so bisections tend
to propagate less, yet the method retains the same final angle bound as the first Rivara
method.

=0
Qi =Sk { Q always denotes triangles not yet refined}
R, =0 { R always denotes children of refined triangles}

while (Q; UR;) # 0 do
bisect each triangle in (); across its longest edge
bisect each triangle in R; across its subdivided edge
add all invalid triangles in Uéonj to it
add all other invalid triangles to (J;11
t=1+1

endwhile

We now discuss the reverse process: coarsening or derefinement of a mesh. This process
helps reduce the total number of elements when tracking solutions to time-varying differ-
ential equations. Coarsening can also be used to turn a single highly refined mesh into a
sequence of meshes for use in the multigrid method [84].

Figure 11 shows a sequence of meshes computed by a coarsening algorithm. The algo-
rithm marks a set of vertices to deleted from the fine mesh, eliminates all marked vertices,
and then retriangulates the mesh. The resulting mesh is node conforming, meaning that
every vertex of the coarse mesh appears in the fine mesh, but not edge conforming. One dif-
ficulty is that the shapes of the triangles degrade as the mesh is coarsened due to increasing
disparity between the interior and boundary point densities. Meshes produced by refine-
ment methods, such as regular refinement, are typically much easier to coarsen than are less
hierarchical meshes such as Delaunay triangulations. Teng, Talmor, and Miller [75] have
recently devised a coarsening algorithm that produces a sequence of bounded-aspect-ratio,
node-conforming meshes of approximately minimum depth.
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Figure 11. A sequence of meshes used by the multigrid method for solving the linear systems arising

in modeling airflow over an airfoil. (C. Ollivier-Gooch)

4.5 Mesh Smoothing

Mesh smoothing adjusts the locations of mesh vertices in order to improve element shapes
and overall mesh quality [2, 30, 53, 86]. Mesh smoothing has a certain advantage over
other mesh improvement methods such as edge flipping: the topology of the mesh remains
invariant, thus preserving important data structures such as the nonzero pattern of the
associated sparse linear system.

Laplacian smoothing [53, 71] is the most commonly used smoothing technique. This
method sweeps over the entire mesh several times, repeatedly moving each adjustable vertex
to the arithmetic average of the vertices adjacent to it. A variation weights each adjacent
vertex by the total area of the elements around it. Laplacian smoothing is computationally
inexpensive, but it does not in general guarantee improvement in element quality. In fact,
Laplacian smoothing can even invert an element, unless the algorithm performs an explicit
check before moving a vertex.

Another class of smoothing algorithms uses optimization techniques to determine new
vertex locations. Both global and local optimization-based smoothing offer guaranteed mesh
improvement and validity. Global techniques simultaneously adjust all unconstrained ver-
tices; such an approach involves an optimization problem as large as the number of uncon-
strained vertices, and consequently, is computationally expensive [30, 86]. Local techniques
adjusts vertices one by one—or an independent set of vertices in parallel [55]—resulting in
a cost more comparable to Laplacian smoothing.

Figure 12 shows the results of a local optimization-based smoothing algorithm [55] ap-
plied to a mesh generated adaptively during the finite element solution of the linear elasticity
equations on a two-dimensional rectangular domain with a hole. The mesh on the left was
generated using the bisection algorithm for refinement; the edges from the coarse mesh are
still evident after many levels of refinement. The mesh on the right was generated by a
similar algorithm, only with vertex locations optimized after each refinement step. Over-
all, the global minimum angle has improved from 11.3° to 21.7° and the average minimum
element angle from 35.7° to 41.1°. Only two to three optimization steps were necessary to
find approximately optimal vertex positions.

4.6 Theoretical Questions

We have mentioned some theoretical results—conforming Delaunay triangulation, no-small-
angle triangulation—in context. In this section, we describe some other theoretical work
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Figure 12. (a) A mesh resulting from bisection refinement without smoothing. (b) The same mesh
after local optimization-based smoothing.

related to mesh generation.

4.6.1 Optimal Triangulation

Computational geometers have studied a number of problems of the following form: given
a planar point set or polygonal domain, find a best triangulation, where “best” is judged
according to some specific quality measure. Quality measures relevant to mesh generation
include maxmin angle, minmax angle, minmax edge length, and minimum total edge length.
If the input is a simple polygon, most optimal triangulation problems are solvable by dy-
namic programming, but if the input is a point set, polygon with holes, or multiple domain,
these problems become much harder.

The Delaunay triangulation—constrained Delaunay triangulation in the case of polygo-
nal domains—optimizes any quality measure that is improved by flipping a reversed quadri-
lateral; this statement follows from the theorem that a triangulation without reversed
quadrilaterals must be Delaunay. Quality criteria in this category include the first one men-
tioned above—maxmin angle—along with a number of more esoteric optimizations, such as
minmax circumcircle radius, minmax enclosing circle radius, and minimum “roughness” of
a piecewise-linear interpolating surface [90].

Edge flipping can also be used as a general optimization heuristic. For example, we
can flip quadrilaterals to minimize the maximum angle instead of maximizing the minimum
angle. For this quality measure, edge flipping works reasonably well [51], but it does not
always find an exact optimum. A more general local improvement method called edge
insertion [20, 51] exactly solves the minmax angle problem, as well as several other minmax
optimization problems.

Edge insertion starts from an arbitrary triangulation and repeatedly inserts candidate
edges. If minmax angle is the goal, the candidate edge e subdivides the maximum angle;
in general the candidate edge is always incident to a “worst vertex” of a worst triangle.
The algorithm then removes the edges that are crossed by e, forming two polygonal holes
alongside e. Holes are retriangulated by repeatedly removing ears (triangles with two sides
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Figure 13. Edge insertion retriangulates holes by removing sufficiently good ears.

on the boundary, as shown in Figure 13) with maximum angle smaller than the old worst
angle /cab. If retriangulation runs to completion, then the overall triangulation improves
and edge bc is eliminated as a future candidate. If retriangulation gets stuck, then the
overall triangulation is returned to its state before the insertion of e, and e is eliminated as
a future candidate. Each candidate insertion takes time O(n), giving a total running time

of O(n?).

compute an initial triangulation with all (}) edge slots unmarked
while 3 an unmarked edge e cutting the worst vertex a of worst triangle abe do
add e and remove all edges crossed by e
try to retriangulate by removing ears better than abe
if retriangulation succeeds then mark be
else mark e and undo e’s insertion endif
endwhile

Edge insertion can compute the minmax “eccentricity” triangulation or the minmax
slope interpolating surface [20] in time O(n®). By inserting candidate edges in a certain
order and saving old partial triangulations, the running time can be improved to O(n? log n)
for minmax angle [51] and maxmin triangle height.

We close with some results for the other two optimization criteria mentioned in the
introductory paragraph: minmax edge length and minimum total length. Edelsbrunner
and Tan [49] showed that a triangulation of a point set that minimizes the maximum edge
must contain the edges of a minimum spanning tree. The tree divides the input into simple
polygons, which can be filled in by dynamic programming, giving an O(n>)-time algorithm
(improvable to O(n?) with more work). Whether a triangulation minimizing total edge
length—“minimum weight triangulation”—can be solved in polynomial time is still open.
The most promising approach [44] incrementally computes a set of edges that must appear
in the triangulation. If the required edges form a connected spanning graph, then the
triangulation can be completed with dynamic programming as in the minmax problem.

4.6.2 Steiner Triangulation

The optimal triangulation problems just discussed have limited applicability to mesh gen-
eration, since they address only triangulation and not Steiner point placement. Because
exact Steiner triangulation problems seem to be intractable, typical theoretical results on
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Steiner triangulation prove either an approximation bound such as the guaranties provided
by the mesh generators in Sections 4.2 and 4.3, or an order of complexity bound such as
Edelsbrunner and Tan’s O(n?) algorithm for conforming Delaunay triangulation.

The mesh generators in Sections 4.2 and 4.3 give constant-factor approximation algo-
rithms for what we may call the no-small-angle problem: triangulate a domain €2 using a
minimum number of triangles, such that all new angles are bounded away from 0°. The
provable constants tend to quite large—in the hundreds—although the actual performance
seems to be much better. The number of triangles in a no-small-angle triangulation depends
on the geometry of the domain, not just on the number of vertices n; an upper bound is
given by the sum of the aspect ratios of triangles in the constrained Delaunay triangulation.

We can also consider the no-large-angle problem: triangulate 2 using a minimum num-
ber of triangles, such that all new angles are bounded away from 180°. The strictest bound
on large angles that does not imply a bound on small angles is nonobtuse triangulation:
triangulate a domain € such that the maximum angle measures at most 90°. Moreover,
a nonobtuse mesh has some desirable numerical and geometric properties [7, 117]. Bern,
Mitchell, and Ruppert [24] recently developed a circle-based algorithm for nonobtuse tri-
angulation of polygons with holes; this algorithm gives a triangulation with O(n) triangles,
regardless of the domain geometry. Figure 14 shows the steps of this algorithm: the domain
is packed with nonoverlapping disks until each uncovered region has either 3 or 4 sides; radii
to tangencies are added in order to split the domain into small polygons; and finally small
polygons are triangulated with right triangles, without adding any new subdivision points.

Figure 14. Steps in circle-based nonobtuse triangulation.

It is currently unknown whether multiple domains admit polynomial-size nonobtuse
triangulations. Mitchell [78], however, gave an algorithm for triangulating multiple domains
using O(n%logn) triangles with maximum angle 157.5°. Tan [109] improved the maximum
angle bound to 132° and the complexity to the optimal O(n?).

5 Hexahedral Meshes

Mesh generation in three dimensions is not as well developed as in two. There are a number
of reasons for this lag: lack of standard data representations for three-dimensional domains,
greater software complexity, and—most relevant to this article—some theoretical difficulties.
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Figure 15. A two-dimensional Cartesian mesh for a biplane wing. (W. Coirier)

This section and the next one survey approaches to three-dimensional mesh generation. We
have divided this material according to element shape, hexahedral or tetrahedral. This
classification is not completely strict, as many hexahedral mesh generators use triangular
prisms and tetrahedra in a pinch. (Careful implementations of numerical methods can in
fact handle degenerate hexahedra such as prisms [62, 63].) In this section, we describe three
approaches to hexahedral mesh generation that vary in their degree of strictness and in the
amount of structure in their outputs.

5.1 Cartesian Meshes

We start with a recently developed “quick and dirty” approach to hexahedral mesh gener-
ation. The Cartesian approach offers simple data structures, explicit orthogonality of mesh
edges, and robust and straightforward mesh generation. The disadvantage of this approach
is that it uses non-hexahedral elements around the domain boundary, which require special
handling.

A Cartesian mesh is formed by cutting a rectangular box into eight congruent boxes,
each of which is split recursively until each minimal box intersects the domain € in a simple
way or has reached some small target size. (This construction is essentially the same as an
octree, described in Section 6.2.) Requiring neighboring boxes to differ in size by at most a
factor of two ensures appropriate mesh grading.

Boxes cut by the boundary are classified into a number of patterns by determining
which of their vertices lie interior and exterior to £2. Each pattern corresponds to a different
type of non-hexahedral element. Boxes adjacent to ones half their own size can similarly be
classified as non-hexahedral elements, or alternatively the solution value at their subdivision
vertices can be treated as implicit variables using Lagrange multipliers [1].

Recent fluid dynamics simulations have used Cartesian meshes quite successfully in both
finite element and finite volume formulations [40, 39, 123]. The approach can be adapted
even to very difficult meshing problems. For example, Berger and Oliger [18] and Berger
and Colella [17] have developed adaptive Cartesian-based methods for rotational flows and
flows with strong shocks.
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Figure 16. A multiblock hexahedral mesh of a submarine, showing (a) block structure, and (b) a
vertical slice through the mesh. (ICEM CFD)

5.2 Multiblock Meshes

A multiblock mesh contains a number of small structured meshes that together form a
large unstructured mesh. Typically, a user must supply the topology of the unstructured
mesh, but the rest of the process is automated. Figure 16 shows a multiblock mesh created
by ICEM Hexa, a system developed by ICEM CFD Engineering. In this system the user
controls the placement of the block corners, and then the mesh generator projects the
implied block edges onto domain curves and surfaces automatically.

5.3 Unstructured Hexahedral Meshes

Hexahedral elements retain some advantages over tetrahedral elements even in unstruc-
tured meshes. Hexahedra fit man-made objects well, especially objects produced by CAD
systems. The edge directions in a box-shaped hexahedron often have physical significance;
for example, hexahedra show a clear advantage over tetrahedra for a stress analysis of a
beam [16]. The face normals of a box meet at the center of the element; this property can
be used to define control volumes for finite volume methods. Observe, however, that these
advantages are not inherent to hexahedra, but rather are properties of box-shaped elements,
which degrade as the element grows less rectangular. Thus it will not suffice to generate an
unstructured hexahedral mesh by transforming a tetrahedral mesh.

Armstrong et al. [3] are currently developing an unstructured hexahedral mesh generator
based on the medial axis transform. The medial azis of a domain is the locus of centers of
spheres that touch the boundary in two or more faces. This construction is closely related
to the Voronoi diagram of the faces of the domain; Srinivasan et al. [107] have previously
applied this construction to two-dimensional unstructured mesh generation. The medial
axis is a natural tool for mesh generation, as advancing fronts started from faces meet at
the medial axis in the limit of small, equal-sized elements, By precomputing this locus, a
mesh generator can more gracefully handle the junctures between sections of the mesh.

Tautges and Mitchell [110, 111] are currently developing an all-hexahedral mesh gen-
erator based on an algorithm called whisker weaving. The basic strategy is an advancing
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Figure 17. A hexahedral mesh computed by the whisker weaving algorithm.

front approach that fixes the topology of the mesh before the geometry. The dual of the
mesh, which has one vertex per hexahedron and one edge per quadrilateral face, provides a
convenient way to represent the mesh topology.

Whisker weaving starts from a quadrilateral surface mesh, which can itself be generated
by an advancing-front generator within each face [25]. The algorithm forms the planar
dual of the surface mesh, and then finds closed loops in the planar dual around the surface
of the polyhedron. Each loop will represent the boundary of a sheet of hexahedra in the
eventual mesh. As the algorithm runs, it fills each sheet from the boundary inwards with a
quadrilateral mesh.

A whisker is an “open” edge in the planar dual of a sheet’s mesh; in other words, a
whisker is dual to a segment along the sheet’s advancing front. Whisker weaving repeatedly
joins the open ends of a triple of whiskers that have the property that each pair is dual
to adjacent edges on some sheet’s front. This step advances the front on three sheets
simultaneously; it corresponds to filling a corner formed by three quadrilaterals with a new
hexahedron. Weaving three whiskers may produce invalid connectivity, such as neighboring
hexahedra sharing two faces, but the algorithm detects and repairs these problems as they
arise.

The advancing front approach to hexahedral meshing raises an interesting theoretical
question: which quadrilateral surface meshes can be extended to hexahedral volume meshes?
Mitchell [79] and Thurston answered this question in a topological sense by showing that any
simple-polyhdron surface mesh with an even number of quadrilaterals can be extended to a
volume mesh formed by (possibly curved) topological cubes. In follow-on work, Eppstein [52]
showed that O(n) curved cubes suffice for a simple polyhedron with n vertices, and made
substantial progress towards the corresponding geometric result in which hexahedra must
have straight sides.

6 Tetrahedral Meshes

Tetrahedra claim several important advantages over hexahedra: unique interpolation from
vertices to interior, greater flexibility in fitting complicated domains, and greater conve-
nience for refinement and derefinement. In order to realize the last two of these advantages,
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tetrahedral meshes are almost always unstructured.

Most of the approaches to unstructured triangular mesh generation that we surveyed
in Section 4 can be generalized to tetrahedral mesh generation, but not without some new
difficulties. Before describing mesh generators based on octrees and Delaunay triangulation,
we discuss three theoretical obstacles to unstructured tetrahedral meshing—ways in which
IR? differs from IRZ.

First, not all polyhedral domains can be triangulated without Steiner points. Fig-
ure 18(a) gives an example of a non-tetrahedralizable polyhedron, a twisted triangular
prism in which rectangular face has been triangulated so that it pokes in towards the inte-
rior. None of the top three vertices is visible through the interior to all three of the bottom
vertices; hence no tetrahedron formed by the vertices of this polyhedron can include the
bottom face. Chazelle [35] gave a quantitative bad example, shown in Figure 18(b). This
polyhedron includes €(n) cuts that nearly meet at a doubly-ruled curved surface; any tri-
angulation of this polyhedron must include Q(n?) Steiner points and Q(n?) tetrahedra.

Bad examples such as these appear to rule out the possibility of generalizing constrained
Delaunay triangulation to three dimensions.

Figure 18. (a) Schoenhardt’s twisted prism cannot be tetrahedralized without Steiner points. (b)
Chazelle’s polyhedron requires Q(n?) Steiner points.

Second, the very same domain may be tetrahedralized with different numbers of tetra-
hedra. For example, the cube can be triangulated with either 5 or 6 tetrahedra. As we shall
see below, the generalization of the edge flip to three dimensions exchanges two tetrahedra
for three or vice versa. This variability does not usually pose a problem, except in the
extreme cases. For example, n points in IR? can have a Delaunay triangulation with Q(n?)
tetrahedra, even though some other triangulation will have only O(n).

Finally, tetrahedra can be poorly shaped in more ways than triangles. In two dimensions,
there are only two types of failure, angles close to 0° and angles close to 180°, and no failures
of the first kind implies no failures of the second. In three dimensions, we can classify poorly
shaped tetrahedra according to both dihedral and solid angles [19]. There are then five types
of bad tetrahedra, as shown in Figure 19. A needle permits arbitrarily small solid angles,
but not large solid angles and neither large nor small dihedral angles. A wedge permits
both small solid and dihedral angles, but neither large solid nor large dihedral angles, and
so forth. Notice that a sliver or a cap can have all face angles bounded away from both
0° and 180°, although the tetrahedron itself may have arbitrarily small solid angles and
interior volume. An example is the sliver with vertex coordinates (0,0, 0), (0,1,0),(1,0,¢€),
and (1,1,¢€), where ¢ — 0.
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Figure 19. The five types of bad tetrahedra.

Many measures of tetrahedron quality have been proposed [69], most of which have
a maximum value for an equilateral tetrahedron and a minimum value for a degenerate
tetrahedron. One suitable measure, which forbids all five types of bad tetrahedra, is the
minimum solid angle; this measure is essentially equivalent to the aspect ratio, usually
defined to be the ratio of the radii of the inscribed and circumscribed spheres. A weaker
measure, which forbids all types except slivers, is the ratio of the minimum edge length to
the radius of the circumsphere [76].

6.1 Delaunay triangulation

As in two dimensions, point placement followed by Delaunay triangulation is a popular ap-
proach to mesh generation, especially in aerodynamics. The same point placement methods
work fairly well: combining structured meshes [64], advancing front [8, 72, 73], and random
scattering with filtering [119]. (There are also successful advancing front generators that
place tetrahedra directly [61].) As in two dimensions, the placement phase must put suf-
ficiently many points on the domain boundary to ensure that the Delaunay triangulation
will be conforming. Although this problem is not intractable for most domains of practical
interest, we do not know of any provably correct published solutions.

The first two point placement methods suffer from the same liability in three dimensions
as in two: points may be improperly spaced at junctures between fronts or patches. All three
methods suffer from a new sort of problem: even a well spaced point set may include sliver
tetrahedra in its Delaunay triangulation, because a sliver does not have an unusually large
circumsphere compared to the lengths of its edges. For this reason, some Delaunay mesh
generators [8] include a special postprocessing step that finds and removes slivers. (Miller
et al. [76] have recently shown that Voronoi cells of bounded aspect ratio suffice for the
convergence of a finite volume formulation of Poisson’s equation—slivers in the Delaunay
triangulation are in fact acceptable. This result contrasts with empirical studies showing
poor convergence for a finite element method on a sliver-filled mesh. The disparity between
the two formulations is somewhat surprising, because they give the very same matrix in
two dimensions.)

The triangulation phase of mesh generation also becomes somewhat more difficult in
three dimensions. The generalization of the edge flip exchanges the two possible triangula-
tions of five points in convex position, as shown in Figure 20. We call a flip a Delaunay flip
if, after the flip, the triangulation of the five points satisfies the empty sphere condition—no
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Figure 20. In three dimensions, an edge flip exchanges two tetrahedra sharing a triangle for three
tetrahedra sharing an edge, or vice versa.

circumsphere encloses a point. In three dimensions, it is no longer true that any tetrahe-
dralization can be transformed into the Delaunay triangulation by a sequence of Delaunay
flips [65], and it is currently unknown whether any tetrahedralization can be tranformed
into the Delaunay triangulation by arbitrary flips. Nevertheless, there are incremental De-
launay triangulation algorithms based on edge flipping [48, 66, 89]. These algorithms add
one point at a time, splitting the tetrahedron receiving the new point into four by starring
from the new point, and then flip to the new Delaunay triangulation. It is convenient to use
four dummy points defining an initial bounding tetrahedron; these points and their incident
tetrahedra are removed at the end.

There are other practical three-dimensional Delaunay triangulation algorithms as well.
Bowyer [27] and Watson [118] gave incremental algorithms that add vertices according
to a-coordinate order. Barber [12] implemented a randomized algorithm for computing
convex hulls in arbitrary dimension. This algorithm can be used to compute Delaunay
triangulations through a well-known reduction [28] which “lifts” the Delaunay triangulation
of points in IR? to the lower convex hull of points in IR*H.

6.2 Octrees

An octree is the natural generalization of a quadtree. An initial bounding cube is split into
eight congruent cubes, each of which is split recursively until each minimal cube intersects
the domain € in a simple way. As in two dimensions, a balance condition ensures that
no cube is next to one very much smaller than itself; balancing an unbalanced quadtree
or octree expands the number of boxes by a constant multiplicative factor. The balance
condition need not be explicit, but rather it may be a consequence of an intrinsic local
spacing function [116].

Shephard and his collaborators [98, 100, 101, 121] have developed several octree-based
mesh generators for polyhedral domains. Their original generator [121] tetrahedralizes leaf
cubes using a collection of predefined patterns. To keep the number of patterns manageable,
the generator makes the simplifying assumption that each cube is cut by at most three facets
of the input polyhedron. Perucchio et al. [87] give a more sophisticated way to conform
to boundaries. Buratynski [29] uses rectangular octrees and a hierarchical set of warping
rules. Boxes are first warped to domain vertices, then edges, and finally faces. The warping
rules are somewhat simplified by the fact that the octree is initially refined so that domain
edges intersect boxes of only one size.
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Figure 21. The surface of a tetrahedral mesh derived from an octree. (M. Yerry and M. Shephard)

Mitchell and Vavasis [80] generalized the quadtree mesh generator of Bern et al. [22] to
three dimensions. The generalization is not straightforward, primarily because vertices of
polyhedra may have very complicated local neighborhoods. This algorithm is guaranteed
to avoid all five types of bad tetrahedra, while producing a mesh with only a constant times
the minimum number of tetrahedra in any such bounded-aspect-ratio tetrahedralization.
So far this is the only three-dimensional mesh generation algorithm with such a strong
theoretical guaranty. Vavasis [116] has recently released a modified version of this algorithm
as a Matlab software package, including a simple geometric modeler and equation solver to
boot. The modified algorithm includes a more systematic set of warping rules; in particular,
the new warping method for an octree cube cut by a single facet generalizes to any fixed
dimension [81].

6.3 Refinement of Tetrahedral Meshes

In this section we discuss two different refinement algorithms based upon the natural gen-
eralization of bisection to three dimensions. To bisect tetrahedron wvguvivyvs across edge
vouy, we add the triangle vgivavs, where vgy is the midpoint of vguvy, as shown in Figure 22.
This operation creates two child tetrahedra, vgvgivaus and vgrvivevs, and bisects the faces
vov1vy and wvouyvs, which, unless they lie on the domain boundary, are each shared with
an adjacent tetrahedron. Two tetrahedra that share a face must agree on how it is to be
bisected; otherwise an invalid mesh will be constructed.

A single bisection of a tetrahedron can approximately square the minimum solid angle,
unlike in two dimensions where the minimum angle of a triangle is decreased by no more
than a factor of two. Consider the wedge tetrahedron with vertex coordinates (0,¢,0),
(0, —¢,0), (1,0,¢), and (1,0, —¢). Bisection of the longest edge of this tetrahedron creates a
new tetrahedron with minimum solid angle about €2.

Rivara and Levin [94] suggested an extension of longest-edge Rivara refinement (Sec-
tion 4.4) to three dimensions. Notice that splitting the longest edge in a tetrahedron also
splits the longest edge on the two subdivided faces, and thus the bisection of shared faces is
uniquely defined. (Ties can be broken by vertex labels.) Neighboring invalid tetrahedra, all
those sharing the subdivided longest edge, are refined recursively. Rivara and Levin provide
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experimental evidence suggesting that repeated rounds of longest-edge refinement cannot
reduce the minimum solid angle below a fixed threshold, but this reassurance has not been
proved, nor has a bound on any weaker quality measure such as minimum dihedral angle.

The major obstacle to proving that longest-edge refinement cannot degrade mesh qual-
ity arbitrarily is that it is not known whether the algorithm generates only a finite num-
ber of tetrahedron similarity classes. However, a bisection algorithm first introduced by
Béansch [11] does have this property. Before describing the algorithm, we sketch the argu-
ment of Liu and Joe [68] which motivates the algorithm.

The key observation is that there exists an affine transformation that maps any tetrahe-
dron to a canonical tetrahedron for which longest-edge bisection generates only a finite num-
ber of similarity classes. Consider the canonical tetrahedron ¢. with coordinates (—1,0,0),
(1,0,0), (0,1/4/2,0), and (0,0, 1). In Figure 23 we illustrate the first three levels of longest-
edge bisection of t. = vgvivaus. It can be shown that all the tetrahedra generated at each
level of refinement are similar and that the eight tetrahedra generated after three levels of
refinement are similar to ¢..

The inverse of the affine mapping does not map similar tetrahedra in the canonical
space into similar tetrahedra in the original space, unless the similar tetrahedra have the
same orientation. Hence, Liu and Joe redefine similarity classes in the canonical space to
include only tetrahedra that can be mapped onto each other by a combination of scaling
and translation. They then show by direct calculation that longest-edge refinement of ¢,
produces only a finite number of these similarity classes. Therefore, the refinement in the
canonical space induces a refinement in the original space with only a finite number of
different tetrahedron shapes.

Béansch [11] and Liu and Joe [70] give essentially equivalent algorithms for generating
the bisection order; we follow Bansch’s presentation. Each face in each tetrahedron elects
one of its edges to be its refinement edge, so that two conditions hold: the choice for
a face is consistent between the two tetrahedra that share it, and exactly one edge in
each tetrahedon—the global refinement edge—is chosen by two faces of the tetrahedron.
These conditions hold initially if each face picks its longest edge and ties are broken in any
consistent manner, for example, by vertex or edge label order. In the pseudocode below, a
child face is a triangle like vgivovy in Figure 22, and a new face is one like vgyvqvs.

mark the refinement edge of every face in the current mesh

let Ty be the set of marked tetrahedra; ¢ =0

while (T; # 0) do
bisect each tetrahedron in T; across its global refinement edge
pick the old edge in each child face as its refinement edge
pick the longest edge in each new face as its refinement edge
let T; be the set of invalid tetrahedra; ¢+ =17+ 1

enddo

7 Conclusions

We have described the current state of the art in mesh generation for finite element meth-
ods. Practical issues in mesh generation are—roughly in order of importance—algorithm
robustness, fit with underlying physics, element quality, and mesh efficiency.
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Unstructured triangular and tetrahedral mesh generation already makes frequent use
of data structures and algorithms familiar in computational geometry. We expect this
trend to continue. Open problems abound in unstructured tetrahedral mesh generation.
Is the flip graph for a point set connected? Is there a smoothing algorithm guaranteed to
remove slivers? Is there an algorithm guaranteed to compute a Delaunay triangulation that
conforms to a polyhedron?

We also expect—and recommend—computational geometers to focus some attention on
structured meshes and hexahedral meshes. There are a number of interesting open questions
in these areas as well. For example, is the new CRDT conformal mapping algorithm provably
correct? Can any quadrilateral surface mesh with an even number of quadrilaterals be
extended to a hexahedral volume mesh?
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Figure 22. The tetrahedron on the left is bisected to form two new tetrahedra
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Figure 23. The first three levels of longest-edge bisection of the canonical tetrahedron. Note that
the tetrahedra generated at each level are similar. For the final level of refinement we show only the
four tetrahedra obtained from vgviviavs. Four similar tetrahedra are obtained from wvgvisvavs.
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