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Abstract

We develop data structures for dynamic closest pair problems
with arbitrary (not necessarily geometric) distance functions,
based on a technique previously used by the author for Eu-
clidean closest pairs. We show how to insert and delete ob-
jects from an n-object set, maintaining the closest pair, in
O(n log2 n) time per update and O(n) space. With quadratic
space, we can instead use a quadtree-like structure to achieve
an optimal time bound, O(n) per update. We apply these
data structures to hierarchical clustering, greedy matching,
and TSP heuristics, and discuss other potential applications
in machine learning, Gröbner bases, and local improvement
algorithms for partition and placement problems. Experi-
ments show our new methods to be faster in practice than pre-
viously used heuristics.

1 Introduction

Clustering has long been a mainstay of statistical analy-
sis, and clustering-based methods have attracted attention in
other fields: computational biology (reconstruction of evolu-
tionary trees; tree-based multiple sequence alignment), sci-
entific simulation (n-body problems), theoretical computer
science (network design and nearest neighbor searching) and
of course the web (hierarchical indices such as Yahoo). Many
clustering methods have been devised and used in these ap-
plications, but less effort has gone into algorithmic speedups
of these methods.

In this paper we identify and demonstrate speedups for a
key subroutine used in several clustering algorithms, that of
maintaining closest pairs in a dynamic set of objects. We also
describe several other applications or potential applications
of the same subroutine, to TSP heuristics, greedy matching,
machine learning, Gröbner basis computation, and local op-
timization methods.

Although dynamic closest pair data structures have been
studied in low-dimensional geometric spaces [12, 14, 19, 23,
27,28,30], there has been little work on analogous structures
in non-geometric spaces, or in spaces where the dimension
is so high as to make taking advantage of the geometry dif-
ficult. However, there are several obvious approaches to this
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dynamic closest pair problem. It can be solved by brute force
(trivial recomputation) in time O(n2) per update with space
O(n), or by a priority queue of distances in time O(n log n)

per update and space O(n2). If we maintain the closest dis-
tance itself, and recompute all distances when we delete one
of the two objects forming this distance, we can even achieve
average-case time O(n) per update, in a model in which any
deletion is equally likely. However, the applications we de-
scribe typically repeatedly delete the closest pair, making the
performance of this naive algorithm much worse than its av-
erage case.

Of these naive methods, brute force recomputation may
be most commonly used, due to its low space requirements
and ease of implementation. Three hierarchical clustering
codes we examined, Zupan’s [33], CLUSTAL W [31], and
PHYLIP [16] use brute force. (Indeed, they do not even
save space by doing so, since they all store the distance
matrix.) Pazzani’s learning code [24] also uses brute force
(M. Pazzani, personal communication), as does Mathemat-
ica’s Gröbner basis code (D. Lichtblau, personal communi-
cation). The clustering code listed by Anderberg [4] is per-
haps more interesting: he uses a “nearest neighbor heuris-
tic” in which one stores the index of each row minimum of
the distance matrix (the nearest neighbor to each point), and
only updates these indices when these minima change. How-
ever, this method may still require O(n2) time per update
in the worst case. Hartigan [21] describes the same nearest-
neighbor heuristic, but resorts to brute force in the associated
code listing.

The purpose of this paper is to show that much better
bounds are possible, using data structures that are simple and
likely to be practical. We adapt and simplify a geometric
closest pair data structure of the author [14] to apply in our
non-geometric setting, and show that it achieves nearly the
best time and space bounds above: O(n log2 n) time per up-
date and space O(n). If linear space is required, this repre-
sents an order-of-magnitude speedup over known solutions.
Further, with quadratic space, we can also improve signif-
icantly on the priority queue; we give an algorithm based
on a quadtree-like structure in the distance matrix, with time
O(n) per update. This last bound is optimal, since in our
model any algorithm needs to examine all n−1 distances in-
volving each newly inserted object. It remains open whether
quadratic space is required to achieve linear time per update.
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Along with these theoretical results, we present experi-
mental results on these data structures and some simple mod-
ifications of them. In all our experiments, all our new data
structures are preferable to brute force, and one (“FastPair”)
is always preferable to the nearest-neighbor heuristic. The
choice between it and the other new data structures depends
on problem type and available memory.

For recent geometric applications of similar closest pair
data structures, in problems of dynamic collision detection,
offset curve construction, and skeletonization, see the com-
panion paper [15].

2 Model of Computation

We assume a model in which we maintain a set of objects
subject to insertions or deletions. We are also given a bivari-
ate function d(s, t) measuring the distance between objects.
This function need not satisfy the triangle inequality or other
common properties of distances; indeed, in the Gröbner ba-
sis application below distances are not numbers. We assume
only that function values are totally ordered. The task of our
data structures is to maintain the pair s, t having the minimum
value d(s, t) among all objects in the set. If two pairs have the
same minimum value, our algorithms may return either pair.

We assume that each object is stored in constant space,
that the distance function can be evaluated in constant time,
and that any two distances can be compared in constant time.
These assumptions are not necessarily valid for all applica-
tions; for instance Cheng and Wallace [8] describe an ap-
plication of clustering to meteorology, in which the objects
consist of very high dimensional vectors. In computational
biology applications, objects may consist of long sequences
of symbols, and distance evaluations may consist of compli-
cated dynamic programming routines. In these cases our time
bounds can be interpreted as numbers of evaluations; alter-
nately, with an additional O(n2) space, we can precompute
and store the entire distance matrix.

For the clustering applications we describe, we also as-
sume some means of treating clusters (sets of objects) as ob-
jects themselves, and of computing distances between clus-
ters. There is much freedom in determining distances be-
tween clusters. These distances need not be the same as the
distances between objects, even for clusters consisting of sin-
gle objects. Zupan [33] describes seven different definitions
of distance between clusters, each of which applies to arbi-
trary objects and distance functions, and each of which can
be computed in constant time (with quadratic space to store
all cluster distances) by a formula combining the distances
between pairs of subclusters. For biological sequence data,
distances between clusters may be computed by a multiple
sequence alignment that respects previously computed align-
ments within each cluster [10, 20]. Alternately, distances
may be defined by selecting a cluster member as a represen-
tative object or by combining objects to form a representa-

tive in some application-specific way (e.g., centroids for vec-
tor data; consensus sequences for biological sequence data).
The distance between clusters would then be defined to be
the distance between their representative objects. The mul-
tiple fragment heuristic for traveling salesman tours involves
a similar idea in which each cluster is represented by two ob-
jects (at either end of the fragment) with the distance between
clusters equal to the minimum of four distances between rep-
resentative objects.

3 Conga Line Data Structure

We now describe the dynamic closest pair data structure from
[14], simplified somewhat by maintaining one set of objects
instead of two sets, using a naive nearest neighbor searching
technique in place of geometric range searching data struc-
tures, and relaxing size restrictions on subsets in a partition
of the input.

Our data structure consists of a partition of the dynamic
set S into k ≤ log n subsets S1, S2, . . . , Sk, together with a
digraph Gi for each set Si (a union of directed paths). Initially
all points will be in S1 and G1 will have n−1 edges. Gi may
contain edges with neither endpoint in Si ; if the number of
edges in all graphs grows to 2n we rebuild the data structure
by moving all points to S1 and recomputing G1. The closest
pair will be represented by an edge in some Gi , so we can find
this pair by scanning the edges in all graphs. As we modify S,
we create and merge these subsets Si and associated graphs
Gi . This involves the following steps:

Create Gi for a new partition Si . Initially, Gi will consist
of a single path. Choose the first vertex of the path to
be any object in Si . Then, extend the path one edge at a
time. When the last vertex in the path P is in Si , choose
the next vertex to be its nearest neighbor in S\ P, and
when the last vertex is in S\ Si , choose the next vertex
to be its nearest neighbor in Si \ P. Continue until the
path can no longer be extended because S\ P or Si \ P
is empty.

Merge partitions. The update operations described below
can cause k to be too large relative to n. If so, choose
subsets Si and Sj as close to equal in size as possible:
|Si | ≤ |Sj | and |Sj |/|Si | minimized. Merge these two
subsets into one and create graph Gi for the merged
subset as above.

The construction of Gi is essentially the nearest neigh-
bor TSP heuristic, however we are using it for a different pur-
pose. The nearest neighbor searches performed when creat-
ing Gi can be done by a naive algorithm that tests all objects
in S or in Si . Improvements can be made in geometric ap-
plications by applying more sophisticated range search tech-
niques [14,15]. We are now ready to describe the update op-
erations in this data structure.
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To insert x create a new subset Sk+1 = {x} in the partition
of S, create Gk+1, and merge partitions as necessary
until k ≤ log n.

To delete x create a new subset Sk+1 consisting of all objects
y such that (y, x) is a directed edge in some Gi . Remove
x and all its adjacent edges from all the graphs Gi . Cre-
ate the graph Gk+1 for Sk+1, and merge partitions as nec-
essary until k ≤ log n.

LEMMA 3.1. The data structure described above correctly
maintains the closest pair in S.

Proof. Let (s, t) be a closest pair, where sbelongs to a subset
Si created more recently than the subset containing t . Then
when Gi was created, it contained s, so it contained at least
one of (s, t). Then if s was the first of two vertices added
to the path, it must have chosen as its neighbor either t or a
vertex x at least as close to s. If it chose t , edge (s, t) exists in
Gi . If it chose some x, then x can not have been deleted, since
that would have caused s to move to a newer Sj , so (s, x) is
at least as good as (s, t) and still exists in Gi . Similarly if
t were chosen first then it would have formed edge (t, s) in
Gi or (t, x) for some vertex x at least as close to t . Again,
x could not have been deleted because that would cause t to
move to a subset Sj created more recently than Si . So in all
cases Gi contains a closest pair. 2

THEOREM 3.1. The data structure above maintains the
closest pair in S in O(n) space, amortized time O(n log n)

per insertion, and amortized time O(n log2 n) per deletion.

Proof. We use a potential function argument. Define the
potential of set Si to be n|Si | log |Si |, and the potential of the
whole data structure to be the sum of the potentials of each
subset. The amortized time per operation is T + B − 1,
where T is the actual time used, B is the increase in the upper
bound O(n2 log n) on the potential, and 1 is the increase in
the potential. Each time we merge two subsets Si and Sj , the
potential increases by

1 = n|Si | log
|Si | + |Sj |

|Si | + n|Sj | log
|Si | + |Sj |

|Sj | .

Since |Si | and |Sj | must be within a factor of two of each
other, the two logarithmic terms are constant and this sim-
plifies to 2(n(|Si | + |Sj |)). Since the path constructed from
the merged subsets has size O(|Si | + |Sj |), and each edge
in the path can be found in linear time, the total time for the
merge is O(n(|Si | + |Sj |)). Therefore any time spent per-
forming merges can be balanced against an increase in the
potential function. Each insertion incurs an O(n log n) in-
crease in B. Each time we perform a deletion, we perform
O(n log n) work creating a new subset of at most log n ob-
jects. This work is balanced by a decrease of O(n log n)

in the upper bound on the total potential. When we move
these log n objects to a new set, the potential of each set Si

decreases by 2(n log |Si |) per object, and this potential de-
crease dominates the amortized time bound for each deletion,
which is therefore O(n log2 n).

To complete this analysis, we estimate the time spent re-
building the data structure. Define the excess of graph Gi to
be |Gi |−2|Si |. Initially, all points are in S1 with a total excess
of −n. Each time we merge two subsets, the merged graph’s
excess becomes nonpositive. The only way to create a pos-
itive excess is to move a point out of some Si , by deleting
some other point sharing an edge with the moved point. Each
deletion moves O(log n) points and thus increases the total
excess by O(log n). Therefore, O(n/ log n) deletions need
to be performed before each rebuild and the amortized time
per rebuild step is O(n log n). 2

4 Quadtree Data Structure

We now describe a simple technique for maintaining the clos-
est pair efficiently, if quadratic space is available. Group the
points arbitrarily into pairs; define the distance between two
pairs to be the minimum of the four distances between objects
in the pairs. Then these pairs define a closest pair problem
with half as many points, which we solve recursively; the so-
lution to the original problem can be found in constant time
from the solution to this subproblem. Each insertion or dele-
tion causes O(n) changes to the distance matrix of the points,
and leads to a single update in the recursive subproblem.

THEOREM 4.1. We can maintain the closest pair among a
set of n objects in time O(n) per insertion or deletion, and
O(n2) space.

Proof. The times for all operations can be represented by the
recurrence T(n) = O(n) + T(n/2) = O(n). 2

We refer to this as the quadtree method, as it can be
viewed as forming a quadtree structure on the distance matrix
of the points.

5 Hierarchical Clustering Application

Hierarchical clustering is the process of forming a maxi-
mal collection of subsets of objects (called clusters), with the
property that any two clusters are either disjoint or nested.
Equivalently, it can be viewed as forming a rooted binary tree
having the objects as its leaves; the clusters then correspond
to the leaves of subtrees. See [4, 13, 21, 33] for surveys of
the extensive clustering literature. Although top-down [32],
incremental [33], and numerical [2] hierarchical clustering
methods are known, hierarchical clustering is generally per-
formed by a bottom up agglomerative approach. In agglom-
erative clustering, one defines a distance between pairs of
clusters based on the distance between objects; then, starting



  

4

with n single-object clusters, one repeatedly forms new clus-
ters by merging the closest pair of clusters.

Many variants of agglomerative clustering are known,
largely differing in the definition of cluster distances. This
issue was discussed in more detail in our section on mod-
els of computation. For single-linkage distance, in which
the distance between clusters is formed by the closest pair of
objects, agglomerative clustering reduces to Kruskal’s mini-
mum spanning tree algorithm, and can be performed in O(n2)

time and O(n) space by instead applying Prim’s or Boruvka’s
algorithm and sorting the MST edges. There has been some
recent work on clustering in low-dimensional spaces [22] or
with Hamming distances on binary data [3]. But for clus-
ter distances other than single linkage in more general data
sets, no such speedups are known to the merging process de-
fined above. Our data structures improve these clustering al-
gorithms by allowing the nearest pair of clusters to be found
quickly.

THEOREM 5.1. We can perform bottom-up hierarchical
clustering, for any cluster distance function computable in
constant time from the distances between subclusters, in
total time O(n2). We can perform median, centroid, Ward’s,
or other bottom-up clustering methods in which clusters
are represented by objects, in time O(n2 log2 n) and space
O(n).

Proof. Each step in these clustering algorithms can be per-
formed by finding the closest pair of clusters, deleting these
two clusters from the set of objects represented by our clos-
est pair data structure, and inserting a new object representing
the new merged cluster. 2

6 Traveling Salesman Heuristic Application

Since the traveling salesman problem is NP-complete, but
has many applications, a number of heuristics have been
devised to approximately solve it. Some, such as the
nearest neighbor heuristic (discussed above in connection
with our low-space closest pair data structure) and the dou-
ble minimum spanning tree heuristic, can be solved eas-
ily in quadratic time and linear space (optimal in our non-
geometric model of computation). However, Bentley [6]
has shown that these simple techniques are outperformed by
other, seemingly harder to compute methods, such as the mul-
tiple fragment heuristic: consider all edges one at a time in
sorted order, and include an edge if it connects the endpoints
of two fragments of tours (connected components of previ-
ously added edges).

THEOREM 6.1. We can implement the multiple-fragment
heuristic in time O(n2) or in time O(n2 log2 n) and space
O(n).

Proof. This can be seen as a type of hierarchical clustering,
in which clusters correspond to fragments, and the distance

between two clusters is the length of the shortest edge con-
necting their endpoints. The sequence of edges added by the
hierarchical clustering algorithm of Theorem 5.1 is then ex-
actly the same as the sequence added in the multiple fragment
method.

Alternately, instead of maintaining the closest pair
among a set of clusters, maintain the set of fragment end-
points, with distance +∞ between endpoints of the same
fragment. Each step of the algorithm then consists of select-
ing the closest pair, deleting one or both of these endpoints (if
they belong to nontrivial fragments) and modifying the dis-
tance between the endpoints of the combined fragment. 2

Another TSP heuristic, cheapest insertion [26], main-
tains a tour of a subset of the sites, and at each step adds a
site by replacing an edge of the tour by two edges through
the new site. Each successive insertion is chosen as the one
causing the least additional length in the augmented tour.

THEOREM 6.2. We can implement the cheapest insertion
heuristic in time O(n2) or in time O(n2 log2 n) and space
O(n).

Proof. We use our data structures to maintain a set of n
objects: the k edges in the tour after the kth insertion, and
the n − k remaining uninserted sites. The distance between
an edge and a site is defined to be the increase in length that
would be caused by the corresponding insertion; all other
distances are +∞. In this way each successive insertion can
be found as the closest pair in this set. 2

For sites in a vector space or other set for which the dis-
tance between sites and edges is well defined, we can simi-
larly implement nearest insertion [26], which inserts the ob-
ject closest to the current tour. How efficiently we can imple-
ment the farthest insertion heuristic remains unclear.

7 Greedy Matching Application

The greedy matching of a set of points, with some distance
function, is found by repeatedly selecting and removing the
pair of points with minimum or maximum distance, depend-
ing on whether one wants a minimum- or maximum-weight
matching. This technique was introduced by Reingold and
Tarjan [25], who noted that greedy matchings could be con-
structed in O(n2 log n) time by sorting the set of distances.
Since that paper there has been no improvement in the time
bounds for greedy matching.

Greedy matching is not a particularly good approxima-
tion to the minimum weight matching [25], even in the aver-
age case for one-dimensional points [17]. However, for max-
imum weight matching with non-negative inter-object dis-
tances, greedy matching comes within a factor of two of op-
timal, and may provide a good starting point for augmenting-
path based techniques for finding optimal matchings.
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Greedy matching may also be appropriate for non-
numeric distances for which addition is undefined, since it
lexicographically minimizes or maximizes the set of edge
weights in the matching.

THEOREM 7.1. We can perform greedy matching in time
O(n2 log2 n) and space O(n), or in time O(n2).

Proof. We use the data structures defined above to repeat-
edly find and delete the closest pair. 2

8 Other Applications

We now discuss some other potential applications of our data
structures, in which the savings they achieve are less easy to
quantify.

8.1 Gröbner Bases. We first consider the problem of com-
puting Gröbner bases for polynomial ideals. Buchberger’s
Gröbner basis algorithm is a key component of many sym-
bolic algebra systems and has found a large number of ap-
plications including computational geometry and robotics
[7], automated deduction [9], and combinatorial enumeration
[29]. This algorithm takes as input a set B = { f1, f2, . . .}
of polynomials and a term ordering for comparing mono-
mials, and proceeds to modify B in a sequence of steps, in
which S-polynomials S( fi , f j ) are constructed and added to
B, and polynomials in B are simplified by subtracting mul-
tiples of each other. As the algorithm proceeds, B can grow
very large, so space efficiency is crucial. Further, the choice
of which S-polynomial to form can make a large difference in
the algorithm’s efficiency. For this reason, many implemen-
tations follow a suggestion of Buchberger to use the normal
selection strategy (e.g. see [1, p. 130]): select fi and f j for
which the least common multiple of the leading terms of fi
and f j is as small as possible in the term ordering. (Other
selection strategies have also been proposed [11, 18] and it
seems likely that our methods apply as well to them.)

We can easily apply our closest pair data structures to
maintain the set B and select the appropriate pair fi , f j . Dis-
tances between members of B can be measured by least com-
mon multiples of leading terms; these values, although non-
numeric, can be compared by the term ordering. One com-
plication arises, however: once we have processed S( fi , f j ),
we do not want to select the same pair again. So, some data
structure such as a hash table should be used so we can test
whether this S( fi , f j ) has already been computed, and if so
modify the distance between fi and f j to +∞. Such a mod-
ification can performed as efficiently as an insertion in our
linear-space data structure: simply move fi and f j to a new
subset in the partition of the objects maintained by the data
structure. In our quadtree data structure, no hash table is
needed and modification of a single distance is even easier,
taking time O(log n).

However, pair selection forms a small part of the runtime
of Buchberger’s algorithm (D. Lichtblau, personal communi-
cation) so improvements would likely have to be made else-
where to make it worthwhile to implement our data structures
for this application.

It may also be of interest to consider applying our tech-
niques to other pair-combination methods of automated de-
duction such as resolution-based theorem proving.

8.2 Constructive Induction. A second potential applica-
tion arises in machine learning. Constructive induction is a
technique for synthesizing new attributes for multi-attribute
data, by combining pairs of attributes. This method can
be used to enhance learning methods that can not represent
such combinations directly, or that are based on an assump-
tion of attribute independence that may not hold in the ac-
tual input. For example, Pazzani [24] forms new attributes
from Cartesian products of pairs of discrete-valued attributes,
and demonstrates improvements to the learning abilities of
Bayesian and nearest-neighbor classification systems. In
Pazzani’s experiments, each new product attribute is chosen
greedily, as the one that leads to the biggest improvement
as measured by leave-one-out cross-validation. Such greedy
pairwise combination again seems a natural application for
our data structures, but we can only apply them if the qual-
ity of an attribute combination stays stable while we insert or
delete unrelated attributes. According to Pazzani (personal
communication), this stability does hold in practice.

8.3 Non-Hierarchical Clustering. Duran and Odell [13,
p. 23] describe a non-hierarchical clustering procedure due to
Ball and Hall [5], to which our methods may also apply. In
this procedure, a clustering is improved by repeatedly merg-
ing the closest pair of clusters (measured by average squared
distance) and splitting the cluster with the highest variance.
Clearly, our data structures can be used for the merge step,
but it is not clear whether this is a significant part of the
overall complexity of the algorithm, which also includes “K -
means”-like phases in which clusters are reconstructed by
moving objects to the nearest cluster centroid.

8.4 Local Optimization. Local search procedures such
as two-optimization are a common method for improve-
ment of heuristic solutions to optimization problems such as
parts placement, traveling salesman tours, or graph partition-
ing. In these procedures, one modifies a suboptimal solu-
tion by moving a small number of objects; the “two-” in two-
optimization refers to the number of objects moved. So, for
instance, in graph partitioning, one maintains a correct parti-
tion while improving the number of crossing edges, by swap-
ping one vertex on one side of the partition for a vertex on
the other side; in the traveling salesman problem, one main-
tains a correct tour while improving its length by removing
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two edges and replacing them by two other edges connect-
ing the same four vertices. Our methods can likely be used
in some of these problems, to maintain the pair of objects the
replacement of which leads to the greatest improvement in
the objective function.

However, in practice, local optimization is often com-
bined with techniques such as simulated annealing, which
randomly selects local changes and allows the objective func-
tion to become worse in an attempt to escape local minima. It
is not clear how techniques for maintaining the best local im-
provement should be combined with this simulated anneal-
ing approach. Further, application of our ideas to e.g. TSP
two-optimization is complicated by the fact that only one of
the two ways of replacing a pair of edges will lead to another
valid tour; it is not clear whether our data structure can be
modified to deal with this additional complication, or with
similar complications arising in other problems.

9 Implementation and Experiments

9.1 Algorithms Implemented. In order to test our data
structures, we implemented them in a testbed of four algo-
rithms: greedy matching, the multi-fragment TSP heuristic,
the cheapest insertion TSP heuristic, and hierarchical cluster-
ing by unweighted medians (UPGMA).

We implemented several methods for generating random
objects: uniformly distributed vectors with various distance
functions (including dot product as well as the more famil-
iar L1, L2, and L∞ metrics), hierarchically clustered points
(via a generalization of the Sierpinski tetrahedron fractal),
random leaves of a large binary tree, and random distance
matrices. Each object generator allowed all distances to be
negated, forming a maximization rather than minimization
problem.

The data structures we implemented included our own
conga line and quadtree methods, brute force , and the “near-
est neighbor heuristic” suggested by authors including An-
derberg [4]. In this method, we store each point’s nearest
neighbor; closest pairs can be found by scanning this list of
neighbors. Insertions can be performed in O(n) time by com-
puting the nearest neighbor to the inserted point and testing
whether it should become the nearest neighbor of any other
point. However, when a point is deleted, any other point for
which it is nearest neighbor must find a new neighbor; if the
deleted point was neighbor to k other points, the neighbor
heuristic takes time O(kn). If deletions are random or the
points belong to a low dimensional metric space, k = O(1)

and the time per update is O(n), but it is not hard to find ex-
amples in which the worst case time per update is 2(n2). We
did not implement the priority queue method due to its com-
plexity, high space usage and expected poor performance.

In all the methods we implemented, nearest neighbors
were computed by a naive sequential scan through all points.
In many applications, nearest neighbors can be computed
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Figure 1: Hierarchical clustering in R20. Points were placed
uniformly at random in the unit hypercube and clustered by
unweighted medians.

more quickly by heuristics such as spiral search; however
we did not implement this due to its complexity. We be-
lieve that faster searching would equally speed up brute force,
the neighbor heuristic, and our conga line based methods, so
adding such heuristics should not change our overall experi-
mental conclusions except possibly by making the quadtree
method (which can not use fast neighbor-finding methods)
appear worse.

9.2 Simplified Conga Lines. Our conga line implemen-
tation includes a parameter k for the number of subsets into
which to partition the objects. For best results in our theo-
retical analysis, k should be 2(log n); our implementation’s
default is k = log2 n. Our initial expectation was that mul-
tiplying this default by a small constant might lead to small
improvements, but that non-logarithmic values would cause
the time to blow up. To our surprise, the data structure be-
came faster as k grew very large, until the number of dis-
tance computations stabilized but the overhead of maintain-
ing many subsets slowed down the structure.

Heuristically, this can be explained: if k is large, we do
few merges of existing subsets, reducing the amortized time
per insertion. In the expected case, the number of points
moved to a new subset by each deletion is O(1) regardless
of the number of subsets, so increasing this number is not
harmful.

With this experience and heuristic justification, we de-
cided to try a modified version of the conga line structure,
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Figure 2: Hierarchical clustering in a 31-dimensional fractal.
Points were placed uniformly at random in a generalized Sier-
pinski tetrahedron formed by choosing 5 random binary val-
ues and taking bitwise exclusive ors of each nonempty subset,
and clustered by unweighted medians.

which we call the “multiple-subset conga line” or “Multi-
Conga” for short. In this structure, we simply never merge
subsets Si ; instead, whenever an insertion or deletion creates
a new subset we let the total number of subsets grow. In our
experiments, this was usually faster than the original conga
line data structure, sometimes much faster than the neighbor
heuristic, and only rarely slightly slower than the neighbor
heuristic. We can provide theoretical evidence for its speed:

THEOREM 9.1. The MultiConga method described above
correctly maintains the closest pair in amortized time O(n)

per insertion and O(n3/2) per deletion.

Proof. Correctness follows from the correctness of the conga
line data structure. To prove the time bound, we use a poten-
tial function ϕ = ∑

i |Si |2n1/2. Each insertion changes this
potential by n1/2 and takes time O(n). Each deletion in which
k points are moved to a new subset takes time O(kn), but in-
creases ϕ by k2n1/2 − O(n3/2). For any k, the amortized time
(actual time minus difference in ϕ) is O(kn−k2n1/2+n3/2) =
O(n3/2). 2

Although one can concoct examples in which this worst-
case bound is tight, we did not find any natural problem for
which this method achieved its worst case.

Since the expected number of points moved into a cluster
on each deletion is small, we decided to try a further simplifi-
cation. In the “FastPair” method, like MultiConga, we never
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Figure 3: Greedy matching of points placed uniformly at
random in the unit hypercube in R20.

merge subsets. But further, in the case that a deletion would
cause k points to move from their current subsets to a new
subset, we instead form k singleton subsets.

This FastPair data structure closely resembles the nearest
neighbor heuristic, and can also be described in terms of that
heuristic. Like the neighbor heuristic, each point remembers
a single neighbor, however this neighbor may not always
be nearest. In the initial construction of the data structure,
instead of computing nearest neighbors for each point, we
construct a single conga line. And, when inserting a new
point, we compute its nearest neighbor as before, but we do
not change the stored neighbors of other points even if the
newly inserted point is nearer than these stored neighbors.
Like the nearest neighbor heuristic, the FastPair method takes
linear expected time for random deletions, but has a quadratic
worst case. In our experiments, FastPair was always faster
than the neighbor heuristic.

9.3 Experimental Results. Log-log charts of timing re-
sults from our computational experiments are presented in
Figures 1–9. In the figures, “BF” stands for the brute force
method, “NH” for the neighbor heuristic, “QT” for our quad-
tree method, “CL” for the basic conga line method, “MC”
for MultiConga, and “FP” for FastPair. The times include
only the construction of the closest pair data structure and al-
gorithm execution (not initial point placement) and are av-
erages over ten runs. The algorithms were implemented in
C++, compiled and optimized by Metrowerks Codewarrior
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Figure 4: Greedy matching of points with pseudorandom
distances. The distance between two points was computed by
using their indices to modify the seed for the drand48 random
number generator.

10, and run on a 200MHz PowerPC 603e processor (Apple
Powerbook 3400c). The quadtree data structure was limited
to 1000 points by its high memory requirements; other data
structures were tested up to the point where a larger input
would not fit comfortably into an overnight test run. Fur-
ther details and source code are available from our web site
http://www.ics.uci.edu/∼eppstein/projects/pairs/.

We ran one representative application (greedy match-
ing) using a variety of distance functions, and ran a selec-
tion of other applications on two distance functions for which
our data structures exhibited strikingly different qualitative
behavior (Euclidean closest pairs for uniformly generated
points in R20, and rectilinear farthest pairs for uniformly gen-
erated points in the unit square). For hierarchical clustering,
we also ran a further test on a point set with a fractal struc-
ture, to test whether the behavior we observed on uniform
points could be assumed to hold also for more realistic clus-
tered data.

Each application performed linearly many updates, so
linear time per update translates to quadratic total time in our
tests, and quadratic time per update translates to cubic total
time. Asymptotic runtime can be estimated by examining
the change in running time when doubling the problem size;
if the time increases by a factor of four, it can be estimated
as quadratic or nearly quadratic, while if the time increases
by a factor of eight, it can be estimated as cubic. Due to
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Figure 5: Greedy maximum-weight matching of points
placed uniformly at random in the unit square, with the L1

metric.

caching and other issues, it was common for times to increase
by factors larger than the theoretical worst case bound, but in
general all experiments gave results consistent with cubic or
quadratic runtimes.

As expected, brute force always gave cubic runtimes.
The neighbor heuristic was often quadratic, but on some
problems was cubic, even sometimes slower than brute force.
FastPair was also sometimes quadratic, and sometimes cubic;
however it was the only method to consistently run faster than
the neighbor heuristic (sometimes by a linear factor). The
remaining methods always exhibited quadratic behavior (al-
though MultiConga could theoretically have a slower worst
case) but sometimes differed by factors of three or more in
total runtime. The quadtree method was surprisingly slow;
although it performed few distance computations, it was gen-
erally only faster than other methods for problems with ex-
pensive distance computations. The basic conga line method
was often slower by a factor of three to five than its simpli-
fications, and on some problems this factor seemed to be in-
creasing with n, perhaps showing that the logarithmic factors
in its theoretical time bound were active in practice.

Our conclusion would be to use the quadtree method for
problems with few points and slow distance computations;
to use FastPair for most applications (after testing to ver-
ify that it behaves well for the given application) and to use
MultiConga or occasionally the original Conga Line struc-
ture when FastPair is known to behave poorly or when a more
robustly fast method is required.
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Figure 6: Cheapest insertion heuristic for TSP of points
placed uniformly at random in a 20-dimensional hypercube.

The problem of caching remains interesting. The meth-
ods we tested involve sequential scans through memory, a be-
havior known to reduce the effectiveness of cached memory.
Some effects of this appear in our data; for instance the last
two rows of the brute force data structure for most expensive
rectilinear insertion exhibit a jump in runtime by a factor of
15, much higher than the factor of 8 indicated by the asymp-
totic analysis. We believe that this jump is due to exceeding
the limits of the 32Kbyte level I cache on the 603e proces-
sor; other jumps can be attributed to exceeding the Power-
book 3400’s 256K level II cache. Perhaps the relatively poor
performance of the quadtree method is also due to its high
memory usage. It would be of interest to develop closest pair
data structures which take better advantage of modern com-
puter memory systems.
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