Dynamic Half-Space Reporting,

Geometric Optimization, and Minimum Spanning Trees

Pankaj K. Agarwal*

Abstract

We describe dynamic data structures for half-space
range reporting and for maintaining the minima of a
decomposable function. Using these data structures,
we obtain efficient dynamic algorithms for a num-
ber of geometric problems, including closest/farthest
neighbor searching, fixed dimension linear program-
ming, bi-chromatic closest pair, diameter, and Eu-
clidean minimum spanning tree.

1 Introduction

Dynamic data structures involve updating the so-
lution to a problem (either explicitly or implicitly,
depending on the problem) as the set of input ob-
jects changes dynamically. The study of dynamic al-
gorithms has been motivated by applications in sev-
eral applied areas including optimization, computer
graphics, and VLSI. Also, solutions to several static
problems require efficient dynamic algorithms either
for a similar problem in lower dimensions (e.g. point-
location [31, 30] or computing the area of rectan-
gles [29]), or for a different problem (e.g., convex
layers [6] or hidden surface removal [4]). As a re-
sult, a lot of attention has been paid to studying dy-
namic geometric algorithms. For some examples see
[3, 4, 16, 18, 20, 23, 28, 32, 33, 34], or see [11] for
an excellent survey on this subject. Researchers have
also studied the special cases when objects are only
allowed to be inserted (deletions are not allowed), or
when the sequence of insertions and deletions is known
in advance. If the problem is decomposable (i.e., the
solutions in subsets of the input can be efficiently com-
bined to determine the overall solution) then one can

*Computer Science Department, Duke University, Durham,
NC 27706. Work supported by National Science Foundation
Grant CCR-91-06514.

TDepartment of Information and Computer Science, Univer-
sity of California, Irvine, CA 92717.

fDepartment of Applied Mathematics, Charles University,
Prague, and Freie Universitat Berlin.

David Eppstein'

Jifi Matougek*

obtain fast dynamic algorithms for these special cases
[5, 17]. Recently Dobkin and Suri extended these tech-
niques to a semi-online model in which insertions are
completely arbitrary, but when an object is inserted
we are told its deletion time [16]. However, these tech-
niques do not seem to extend to the general case where
deletions are also arbitrary.

In this paper we present efficient solutions to two
dynamic geometric problems: halfspace range report-
ing and finding the minima of a decomposable func-
tion. Using these results, we develop new algorithms
for a wide variety of fully dynamic geometric optimiza-
tion problems, including maintenance of a minimum
spanning tree of a point set. Our algorithms are ei-
ther the first known solutions to these problems, or
they are significantly faster than previously known al-
gorithms. The following list describes the problems
considered here and Table 1 summarizes the results
presented in this abstract.

Half-space range reporting: The first result of
this paper is a dynamic data structure for half-space
range reporting, which can be formally defined as fol-
lows: Store a set S of points in R? into a data struc-
ture, so that all k£ points of S lying in a query half-
space can be reported quickly.! In several applications
it suffices to determine whether the query half-space
contains any point of §. We will refer to this restricted
version as the empty half-space problem. Half-space
range reporting is a special case of the general sim-
plex range searching problem in which one wants to
report all points of S lying in a query simplex. Using
an algorithm due to Clarkson, one can store S in a
data structure of size O(nl%217¢) so that a half-space
query can be answered in time O(logn + k) [12]. Re-
cently Matousek showed that a half-space query can
be answered in time O(n'~'/L4/2] logo(l)n + k) us-
ing O(nlogn) preprocessing time and O(nloglogn)
space [24]. Combining these two approaches, for a

IThroughout this paper we assume d to be some fixed pos-
itive integer and € to be an arbitrarily small constant. The
constants in the time complexity of the algorithms depend on
d and e.

given parameter m, n < m < nl¥2l one can answer
a half-space query in time O(—{zzr logn + k) using
O(m!*¢) space and preprocessing.

Known simplex range searching data structures
can be dynamized easily. In the plane, dynamic
half-space range searching can be performed using
the dynamic convex hull structure of Overmars and
van Leeuwen [28]. But no efficient algorithm was
known for higher dimensional half-space searching.
We present a data structure that can answer a half-
space range reporting query in time O(W log n+
k), and can insert or delete a point in amortized time
O(m'*¢/n). Tt can also answer an empty half-space
query in time O(——7zzy logn) (cf. Section 2).

Minima of decomposable functions: Our second
result is an algorithm for maintaining the minima of a
decomposable function over a set of points in R%. Let
R be a set of red points and let B be a set of blue
points. For a given distance function é(.,.), we define
8(R, B) = minyep qep 6(p, q). The goal is to maintain
6(R, B) as points are inserted to or deleted from R U
B. This problem can also be viewed as computing a
shortest edge in the complete weighted bipartite graph
R x B. One can also compute maxima with the same
algorithm by negating function 4(.,.).

This problem in its full generality was first studied
by Dobkin and Suri [16]. They showed that the min-
ima can be maintained efficiently in the semi-online
model. But no fully dynamic algorithm was known
for this problem. We show that if we have a dynamic
data structure that can compute a nearest neighbor
for a query point with respect to é(.,.), then §(R, B)
can be maintained in amortized time O(T(n)log®n),
where n = |R| 4 |B| and T'(n) is the query/update
time of the nearest neighbor searching structure (cf.
Section 3).

In [2] several geometric problems have been reduced
to answering empty half-space queries, and in [16] a
number of problems have been reduced to comput-
ing the minima (or maxima) of a decomposable func-
tion. Our algorithms yield efficient dynamic solutions
to these problems too. We mention some of them here.

Ray shooting in a convex polyhedron: Given a
convex polyhedron P in R? defined as the intersection
of n half-spaces, preprocess it, so that the first inter-
section point of P and a query ray can be computed
quickly. Agarwal and Matousek [2] showed that such a
query can be answered using a data structure for the
half-space emptiness queries (satisfying certain mild
requirements, which are satisfied by the data struc-
ture we construct), with some polylogarithmic over-
head in query time. Hence, the above query can be an-

swered in time O((nlog®n)/m!%?]) and a half-space
can be inserted or deleted in time O(m'*/n). They
also showed that dynamic ray shooting procedure can
be used to compute convex layers and higher order
Voronoi diagrams. Combining these reductions with
our results, we can compute the convex layers of n
points in R? in time O(n'*¢), and we can compute the
kth-order Voronoi diagram of n points in the plane in
time O(n'™¢k).

Closest /farthest neighbor queries: Given a set
S of n points in R%, maintain a data structure so that
the closest (or farthest) neighbor of a query point in
S can be computed efficiently. Although there are ef-
ficient dynamic algorithms for maintaining the closest
distance in S, no such procedure was known for com-
puting the closest neighbor of a query point in S. It
is shown in [2] that this problem can be reduced to
answering a ray shooting query in a convex polyhe-
dron in R4*+! defined by n half-spaces, which implies
that the closest/farthest neighbor queries can be an-
swered in time O((nlog® n)/m'/[%/21) and a point can
be inserted to or deleted from S in amortized time
O(m!*€/n). In particular, closest/farthest neighbor
queries in R? can be answered in time O(log®n), and
a point can be inserted to or deleted from S in amor-
tized time O(n®). The previously best known algo-
rithm took time O(y/nlogn) per update or query.

Bi-chromatic closest pair and diameter: Given
a set R red points and a set B of blue points, de-
termine the closest or farthest red-blue pair. The
best known algorithm for computing the bi-chromatic
closest pair, due to Agarwal et al. [1], has time com-
plexity O(n?(1=1/([4/21+1))+2) = Recently Chazelle et
al. [7] showed that a bi-chromatic farthest pair can be
computed in time O(n?(1~1/(Ld/2J+)+€) The diam-
eter can be computed using this algorithm by setting
R=B=S.

Dobkin and Suri [16] gave efficient solutions to these
problems in the semi-online model. Vaidya [34] de-
scribed an algorithm for closest pairs which allows
insertions and deletions to R, but only allows inser-
tions in B. Supowit [33] showed that if we allow only
deletions, then the diameter of a planar point set can
be maintained in O(y/nlogn) amortized time. But
even in two dimensions, no fully dynamic algorithm
was known for these problems. Using our algorithms
for nearest neighbors and for minima of decomposable
functions, we present a data structure that can main-
tain the bi-chromatic closest or farthest pair, or the
diameter, in time O(n!'~2/(14/21+1)+) per update. In
particular, this is O(n®) for planar point sets.

Linear Programming: Store a set of linear con-

Problem

Query time

Update time

Empty half-space

Half-space reporting

Ray shooting in convex polyhedron
Closest /farthest neighbor

Linear programming

O(573577) o(==)
O(1len 4 k) o)
(o) o(m=")
) o)
(") o)

Bi-chromatic closest/farthest pair
Diameter

MST, Li or Ly, metric

EMST, d < 4

EMST, d > 4

O(n—2/(T4/21+1)+<)
O(nl—Z/([d/2] +1)+5)

O(y/log n)

O(y/nlog?n)
O(n1=2/([/21+1)+5)

Table 1: Summary of results

straints (half-spaces) in R? into a data structure, so
that one can find a point that minimizes a query ob-
jective function. This problem had been previously
been solved in O(log? n) time per operation in two di-
mensions [28] and O(y/nlogn) randomized expected
time in three dimensions [19]. If we use Megiddo’s
parametric search, the problem can be solved using
a suitable data structure empty for half-space queries
[25], which implies that we can answer queries in time
O((nlog®® n)/m1/14/2) " and can insert or delete a
constraint in O(m!*¢/n) amortized time.

Smallest enclosing disk maintenance. A corol-
lary of the previous result is that a smallest enclosing
disk for an n point set in R? can be maintained in
amortized O(n'~ Fd/217+1+6)
tion of a point of S [26].

time per insertion or dele-

Euclidean minimum spanning tree: Given a set
S of n points in R?, compute a Euclidean minimum
spanning tree of S. For d = 2, an optimal O(nlogn)
static algorithm has long been known. For d > 3 the
best known algorithm, due to Agarwal et al. [1], has
time complexity O(n?(1~1/(1d/2141)+) " Point inser-
tions are not difficult to handle, and an offline algo-
rithm for the planar EMST with insertions and dele-
tions is described in [18]. But no fully dynamic al-
gorithm was known. We use a reduction to the bi-
chromatic closest pair problem due to Agarwal et al.
together with a modification of the new dynamic graph
MST algorithm of Eppstein et al. [21] to show that
the EMST of S can be maintained in O(y/nlogn)
amortized time for d < 4 and in amortized time
O(n'=2/Ud/21+D+e) for d > 4 (cf. Section 4).

2 Half-Space Range Reporting

In this section we describe an algorithm for dynamic
half-space range reporting. The main result of this
section is

Theorem 2.1 Given a set S of n points in R? (d >
3), the half-space range reporting problem can be solved
with the following performance:

(i) O(nlogn) space and preprocessing time,
O(n'=V/L4/21+ k) time per query, and O(log® n)
amortized update time

(ii) O(nl¥/21+¢) space and preprocessing , O(logn+k)
query time and O(nl¥21=1%2) amortized update
time, and

(iii) For a parameter m between n and nld/2l
O(sy logn) query time, O(m'*¢) space and
preprocessing time, and O(m'*¢/n) amortized
update time.

Due to lack of space, we will prove only the second
(most difficult) part of the above theorem. We will
follow an approach similar to that of Chazelle et al.
[10]. Since the half-space range reporting problem is
decomposable, i.e., the answers for two disjoint point
sets S; and S5 can be combined into an answer for
S1 US> in constant time, it suffices to describe a data
structure that supports only delete operations. Such
a data structure can be modified to handle insertions
as well; e.g., see [27].

We first describe a data structure for the half-space
emptiness problem (i.e., given a query half-space de-
termine whether it contains any point of S), and then

extend it to the half-space reporting problem. Let H
be the set of n hyperplanes dual to the points in S.
Answering an empty half-space query for S reduces
to determining whether a query point p lies above all
hyperplanes of H; we refer to the dual problem as the
upper envelope problem for H. We describe our data
structure in this dual formulation.

We need the following results of [24]. The (< k)-
level of H is the set of points p € R? such that at
most k hyperplanes of H lie (strictly) above p. For a
parameter r < n, we define a (1/r)-cutting of (< k)-
level of H to be a set = of pairwise disjoint simplices
such that = covers the (< k)-level of H and that each
simplex of = intersects at most n/r hyperplanes of H.
We say that a hyperplane h is relevant for a simplex
A if h lies above A or intersects A. Let Hn C H
denote the set of hyperplanes relevant for a simplex
A € E.If |[Ha| > k+n/r, then A cannot contain any
point of (< k)-level of H, so we can drop A from Z.
Henceforth we assume that |Ha| < k+n/r.

Theorem 2.2 (Matousek [24]) Let H, k, and r be
as above, with k = O(n/r). Then there exists a
(1/r)-cutting E for the (< k)-level of H, consisting of
s(r) = O(rl4/2l) simplices. For r <n® (where o > 0
is a constant depending on d), such a cutting can be
computed in O(nlogr) time.

2.1 The data structure

Let 6 be a small positive constant fixed throughout
the construction (the e in the resulting performance
bounds as well as the constants hidden in the asymp-
totic notation will depend on §). The data structure
will be periodically rebuilt from scratch after delet-
ing some of the hyperplanes present at the moment of
the previous global reconstruction. We use m to de-
note the number of hyperplanes in H when the data
structure was constructed last time, and n to denote
the number of hyperplanes in the current H. We set
r = m?; this setting remains valid between global re-
constructions.

We reconstruct the data structure from scratch af-
ter deleting m/2r hyperplanes from H. Thus n >
m(1 — 1/2r). Let P(m) denote the time spent in
preprocessing H. The time spent for these global re-
constructions can be amortized by charging 2rP(m —
5r)/m < 2rP(n)/n time to each delete operation. As
we will see, this contribution to the amortized deletion
time will not affect the asymptotic performance of the
structure.

The data structure for H is a recursively defined
tree, denoted by W(H). The substructures of W(H)

will be periodically reconstructed during the deletions,
but this reconstruction will not change the value of 7.
Let us describe how a subtree for a subset G C H,
denoted by ¥(G), is constructed: If v = |G| < r,
then ¥(G) is a leaf node. We preprocess G in time
O(rl?/21+2) for the upper envelope problem using
Clarkson’s static data structure. Thus, for a leaf node,
the upper envelope problem for G can be solved in
O(logr) time.

Let us now assume v > r. The root of the tree
¥(G) will store the following items:

e A partition of G into disjoint subsets
G1,Go,...,Gy.
e For every i =1,2,...,t, a cutting =; and a point

location structure for =;; see below for details.

e For every ¢ = 1,2,...,t and every simplex A €
E;, a pointer to a subtree of the form U(G;),
where G; A is the subset of hyperplanes of G rel-
evant for A.

e For each hyperplane h € G;, the list L of sim-
plices A € Z; for which h is relevant.

e A counter dcount (used for the deletion algo-
rithm).

After the construction of ¥(G) (before any dele-
tions takes place), these objects will have the following
properties:

1. The counter dcount is set to v/2r.

2. For every i, the simplices of Z; cover all points of
level at most v/r with respect to G.

3. For every i and A € E;, |G, a| < 2v/r.
4. For every hyperplane h € G;, h intersects at most

K = Cl . TLd/2J71+6

simplices of =;, where ¢y is some constant.

Property 3 implies that the depth of ¥(G) is
O(log, v) = O(1/9).

The construction of these objects proceeds by in-
duction. Suppose that the
collections G1,Ga,...,G;—1 C G have already been
constructed. Let G; = G\ (G1U...UG;_1), v; = |G|
Let r; = rv;/v and k = v/r = v;/r;. We compute a
(1/r;)-cutting =; of size O(r}d/%) for the (< k)-level
of G;, as mentioned in Theorem 2.2, and preprocess
=; for point location queries as follows. We extend the
simplices of = to hyperplanes and preprocess the set

of resulting hyperplanes using the algorithm of Clark-
son [14]. The space and preprocessing required by this
structure is 7?1 and the query time is O(logr).

For every A € Z;, let G’@ A denote the collection of
hyperplanes of G; relevant for A (recall that a hyper-
plane is relevant for A if its passes above or through
A). As explained above, we assume

DL T
T T r
A hyperplane h € Gj is called good if it is relevant for
at most & hyperplanes of G;, and bad otherwise. Since

~ ld/2)\ 2vi v Ld/2] -1
i < : C— = Y
> |Gial <O awi (2)

NEE;

(c1 is a constant appearing in the bound on the size of
=;), the number of ‘bad’ hyperplanes in G; is at most

_ i i\ Ld/2]-1 ;
(3 Gual) /o< ()" < 22

ANEE;

Let G; be the set of good hyperplanes in G; and
Giy1 =G, — G,

If |Git1| > v/r, we continue the above described
construction inductively for i+1. Otherwise =41 con-
sists of a sufficiently large simplex and G411 = Gi+1~
This finishes the construction of the objects stored at
the root of ¥(G). The appropriate subtrees ¥(G; A)
are constructed recursively. The above construction
guarantees v;/v; 11 > r® and it finishes when v; <
v/r, therefore t < 1/6. It can be shown that the prop-
erties 14 are guaranteed by the construction.

Let us estimate the space S(v) needed for ¥(G). If
v < r, then the space required is O(rl%/21+¢). Other-
wise, we need O(tr¢) space to store the point location
structures for 2, ... ,Z; and O(twrl?/21=1) space to
store the lists Ly, for each h € G. Since |G; A| < 2v/r,
we get the following recurrence:

O(TLd/zJJFE) v<r

S(v) = O(m“Ld/QJ_l—&—rC)—i— Z 5(2?”) v>T.

i<t, A€E;

Since each Z; consists of O(rl%/2]) simplices and ¢ is
bounded by a constant, the solution of the above re-
currence is S(v) = O((rv)l4/21+¢). By a similar com-
putation, we get P(v) = O((rv)l%/21%¢) for the time
required for building ¥(G).

2.2 Answering a query

We answer an upper envelope query for a query
point p recursively. Suppose we are at the root v of a

subtree U(G). If v is a leaf node, we answer a query in
O(logr) time using Clarkson’s structure stored at v.
Otherwise, p lies in the upper envelope of G if and only
if for each ¢ = 1,2,...,t it lies in the upper envelope
of G;. To test this, first determine the simplex A € =;
that contains p. If there is no such simplex, p does not
lie in the upper envelope of GG;. Otherwise, recursively
answer the query in U(G; a).

The depth of the overall tree ¥(H) is O(1/6) and
the branching degree in this query answering process
is always at most ¢ = O(1), which implies that only
O(1) nodes are visited. Since we spend O(logr) time
at each node, the total query time is O(logn).

2.3 Deleting a hyperplane

Let us describe the algorithm for deleting a hyper-
plane h from H. We visit ¥(H) in a top-down fashion,
and at the root v of each subtree ¥(G) visited, we do
the following: If v is a leaf, we rebuild the structure
stored at v. If v is not a leaf, we first decrement the
counter dcount stored at v by one. If dcount becomes
zero, we rebuild U(G) (for the current G). Otherwise,
we find the i with h € G;. We delete h from G;, and
then recursively delete h from all subtrees of the form
U(G; a) with A € Ly,. By construction, |Lp| < k.

The deletion algorithm guarantees that the proper-
ties 3 and 4 always hold, and 2 is replaced by a weaker
one:

2’. For each i, the simplices of Z; cover all
points of level at most v/2r with respect to
the current set G.

The correctness of the query answering algorithm fol-
lows immediately from 2’ (actually even a weaker ver-
sion of 2/, where all points of level 0 are covered, would
suffice; this stronger form anticipates the extension to
half-space range reporting) and the above discussion.

In order to finish the proof of Theorem 2.1(ii), it
suffices to estimate the amortized deletion time. To
this end, let D(v, k) denote the maximum time needed
for deleting k& hyperplanes from the data structure
¥ (@) with |G| = v, starting at the moment U(G)
was built anew. As noted above, a deletion of one hy-
perplane from G propagates into at most x children of
the root of ¥(G), thus before the next complete recon-
struction of U(G), there are at most (v/2r)x deletions

in the children. We thus get the following recurrences:

O (krld/2]+e) forv<r

v v v
pw,Xy+pw- L k-2
(v, 2r)+ (v 2r’ 27“)+

D(v,k) < { Plv—3), forv>r, k>v/2r
2v
D(—,k; ki <k
max{g (T,j)|gj j_/-@}—&—

j
O(klogv)

forv>r k<v/2r
The solution of the above recurrence is
D(V, k) < Clogr kaLd/QJ*1+5r[d/2J+€ :

for some large enough constant C. In particular, we
get D(m,m) = O(ml4/21+°28) " swhere the constant c,
is independent of 6.

Hence we obtain a data structure that, using
O(nl?/21+2) space and preprocessing, can answer an
empty half-space query in time O(logn) and can delete
a point in O(nl?/21=1+¢) amortized time. In view of
the discussion in the beginning, we obtain

Theorem 2.3 Given a set S of n points in R?, we can
preprocess it in O(nLd/QHs) time and space, so that an
empty half-space query can be answered in O(logn)
time, and a point can be inserted to or deleted from S
in amortized time O(nld/21=1+¢),

2.4 Half-space reporting

We will now briefly describe how to modify the
above procedure for half-space reporting (actually its
dual version — reporting hyperplanes of H lying above
a query point). Let v be a node in the above described
data structure for half-space emptiness queries, and
let G be the corresponding set of hyperplanes. We
preprocess G for half-space reporting using Clarkson’s
static data structure (using space and preprocessing
time O(m!%/21%2)) and store this secondary structure
at v.

When we reconstruct ¥(G), we also reconstruct the
secondary structure with the current G. But when
we delete a hyperplane h we just update the primary
structure as described earlier. The time spent in delet-
ing a hyperplane obviously remains the same. Notice
that we are updating the secondary structure only
when we reconstruct ¥(G), so the secondary struc-
ture will store G, the set of hyperplanes in G when
U(G) was constructed last time.

As for answering a query, if v is a leaf, we report, in
time O(logv + k,,) = O(logr + k), all k, hyperplanes
of G lying above p using the structure stored at v. If

v is not a leaf, we determine in time O(logr) the sim-
plex A\; € Z; (i < t) that contains p. If A; is defined
for all ¢ < ¢, then we recursively search in ¥(G; a,)
with p. Otherwise there is some ¢ such that p does not
lie in any simplex of Z;, which, by condition 2, im-
plies that there are at least v/2r (current) hyperplanes
above p. In this case, we query the secondary struc-
ture stored at v and compute in time O(log v + k,) all
k, hyperplanes of G that lie above p. We then report
the subset of these hyperplanes that have not been
deleted. Since k, < ky + v/2r and k, > v/2r, we have
» < 2k, and the overall query time is thus O(log n+k).
This finishes the proof of Theorem 2.1 (ii).
An immediate corollary of Theorem 2.1 is

Corollary 2.4 Given a set S of n points in R?
and a parameter n < m < nrd/ﬂ, we can pre-
process it in O(m'*e) time and space, so that a
closest neighbor of a query point in S can be com-
puted in O((nlog®n)/m'/14/21) time, and a point can
be inserted to or deleted from S in amortized time
O(m'*¢/n).

3 Minima of Decomposable Functions

We now describe a data structure for maintaining
minima of a decomposable function defined over a set
of points. Let R be a set of m red points and B
a set of n blue points, and let §(.,.) be a distance
function. (Note that 6 need not satisfy the triangle
inequality, so it may not be a metric.) We define
6(R,B) = miné(p, q), where p varies over all points
of R and q varies over all points of B. The goal is to
maintain 6(R, B) as points are inserted to or deleted
from S = RU B. One can maintain maxima instead
of minima by negating 6. We first introduce the no-
tion of ordered nearest neighbors and then describe
our algorithm.

3.1 Ordered nearest neighbors

Let z1, x2, ..., x, be a sequence of points, each
of which is colored red or blue. We define the bi-
chromatic ordered nearest neighbor of ared (resp. blue)
point z; to be a blue (resp. red) point = such that
6(z, x;) is minimized over all blue (resp. red) points in
the set {x; : j > ¢}. If all x4, ..., x, have the same
color, then their ordered bi-chromatic closest neigh-
bors are not defined. The ordered bi-chromatic near-
est neighbor graph is a directed graph in which each
point has an edge directed to its bi-chromatic ordered
nearest neighbor. Suppose we have a dynamic data

structure for answering nearest neighbor queries with
respect to 6(.,.), with preprocessing time P(n) and
query and update time T'(n).

Lemma 3.1 Let S be any bi-chromatic point set with
m red points and n > m blue points. Then the
points of S can be ordered into a sequence, in time
O(P(n) +mT(n)), such that the ordered bi-chromatic
nearest neighbor graph forms a simple path.

Proof: Choose z; arbitrarily. Assume inductively
that we have chosen z; through z; so the nearest
neighbor of each point z; (1 < j < 4), among points
later in the sequence or not yet chosen, is ;1. To
extend this sequence by one more point, choose x;41
to be the nearest neighbor to x; among the unchosen
points. The resulting path will have length at most
2m, after which we can place the remaining n — 2m
points in any order. We maintain a nearest neighbor
searching structure for computing a nearest neighbor
among the unchosen points. When we choose a point
we remove it from the structure. There are at most
2m queries and a similar number of deletions, so the
total time is O(P(n) +mT(n)). O

The O(P(n)) term is a one time start up cost for
building the nearest neighbor searching data struc-
ture. Once we have computed the ordered bi-chrom-
atic nearest neighbor graph, we can add back the
deleted points in time O(mT(n)), matching the time
for constructing the graph. Then we can remember
the data structure and re-use it in later computations,
avoiding the start-up cost. If a point is inserted to or
deleted from S, the nearest neighbor searching struc-
ture can be updated in time O(T'(n)).

3.2 The data structure

We partition the point set S into levels numbered
from 0 to O(logn). The points at each level may be
of either color. Let S; be the set of points at level
i; S; will contain at most 2¢ points. For each S; we
maintain a graph G;.

As we will show below, one of these graphs will con-
tain an edge (p, q) such that 6(p,q) = 6(R, B), and it
can be found by storing all edges of these graphs in
a priority queue. We store the edges of each G; in a
separate priority queue @;, and determine the over-
all minimum length edge by examining the O(logn)
minima from the different queues.

G; is initially constructed as follows. Let R; =
S; N R and B; = S; N B. G; consists of two ordered
nearest neighbor paths, one for R; U B and one for
B; UR. G; can be constructed in time O(|S;|T(n))

by Lemma 3.1 and the discussion following it. As the
algorithm progresses we delete edges from G; and pe-
riodically reconstruct it from scratch. We will also
periodically reconstruct the overall data structure.

If there were m points in S when it was last re-
constructed, we reconstruct it after performing m/2
update operations. This ensures that, n, the num-
ber of points in S is always between m/2 and 3m/2.
The amortized time spent in a global reconstruction is
O(T(n)) per update, which can be charged to each up-
date operation without affecting the asymptotic run-
ning time. The amortized time incurred by this recon-
struction can be made worst case per operation by a
standard trick of keeping two copies of the data struc-
ture, one of which is gradually reconstructed while the
other is in use.

3.3 Inserting and deleting points

Whenever we insert a point p into S, we place p in
level 0. Then, as long as p is in a level ¢ containing
more than 2* points, we move all points of level i to
level i + 1, making level i empty. Once p enters a
level ¢ in which there are at most 2° points, we remove
all graphs G; for j < %, and reconstruct graph G; as
described above. We also discard all priority queues
Qj, for j < i, and reconstruct @); storing the edges of
new Gj;.

Next, we delete a point g from S as follows. We
delete all the edges incident to ¢ from each G;. If
q € S;, then there are at most four edges incident
to g, otherwise there are at most two such edges. If
we deleted a directed edge of the form (p,q), then
we also delete p from its present level, and add p to
level 0 as if it were newly inserted. However we do
not delete any other edges incident to p. Since there
are most two edges of the above form in each G;, only
O(logn) points are moved to level 0. As in the inser-
tion procedure, we then move these points as a group
through successive levels until the level they are in is
large enough to hold them, and then reconstruct the
graph for the level they end up in.

3.4 Correctness

In order to prove the correctness of the algorithm,
we need the following simple lemma.

Lemma 3.2 Let i be some level. Then the level of
all points, which are inserted to S or mowved to level O
after the most recent construction of G;, is less than
7.

The correctness of the algorithm now follows from
the following lemma.

Lemma 3.3 There is an edge (p,q) in one of the
graphs G; such that §(p,q) = 6(R, B).

Proof: Let (p,q) be a bi-chromatic closest pair in
S. Suppose that p € R; and ¢ € Bj, and that j > 4. It
follows from Lemma 3.2 that ¢ € S when G; was con-
structed the last time. First assume that ¢ < p in the
ordering for which we have defined the ordered nearest
neighbor graph for R;UB. Let (g, 7) be the edge in G;
when it was constructed the last time. By definition of
the ordered nearest neighbor graph, 6(¢q,r) < é(q,p)
since ¢ < p. If the edge (gq,r) still exists, then the
lemma is obviously true, so assume that (g, r) has been
deleted. The only way (g,) could be deleted from G;
was that r was deleted from S. In that case, ¢ would
have been moved to level 0, which, by Lemma 3.2,
implies that j < 4, a contradiction. A similar contra-
diction can be obtained if p < gq. Hence, the lemma is
true. U

Thus §(R, B) can be found by maintaing the edges
of each G; in a priority queue.

3.5 Time analysis

We define a potential function of a point p € S; to
be

O(p) = T'(n)(k - 1),

where k = O(logn) is the maximum number of levels
and c is some appropriate constant. We define the
overall potential function ®(S5) = 3° 5 ®(p). First,
let us analyze the time spent in reconstructing G;.
The actual time spent in constructing G; is O (2T (n)).
We also spend an additional O(2%) time to reconstruct
the priority queue Q; [15]. But observe that G; is
constructed only when the the points from S;_; are
moved to S;. Since the points are moved from S;_1
to S; only if [S;_1| > 2071, ®(S) decreases by at least
c2='T(n). The amortized time in reconstructing G;
and updating the structure is thus zero if ¢ is chosen
sufficiently large.

‘When we insert a new point, we add it to Sy, which
increases ®(S) by ¢T'(n). Since the actual time spent
in adding a point is O(logn) plus the time spent in
reconstructing the appropriate graphs, the amortized
running time of an insert operation is O(T'(n)logn).

Deleting a point involves removing at most four
edges from each G; and @Q;, moving O(logn) points
to Sy, and reconstructing appropriate graphs. The
total time spent in deleting the edges from G; and

Q; is O(log*n), and moving the points to Sy in-
creases the total potential ®(.5) by O(logn)-ckT (n) =
O(T(n)log®n). Since the amortized time spent in re-
constructing the graphs is zero, the total amortized
time spent in deleting a point is O(T(n) log® n).

Theorem 3.4 Let 6(.,.) be a distance function for
which we can perform point queries, and insert and
delete points, in time O(T(n)) per operation. Then we
can maintain 6(R, B) in amortized time O(T'(n)logn)
per point insertion, and O(T(n)log®n) per deletion.

The above theorem and Corollary 2.4 imply that

Corollary 3.5 A Fuclidean bi-chromatic closest pair
or farthest pair of a set of n points in R, as well
as the diameter of such a set, can be maintained in
amortized time O(n*=2/(14/21+1)+e) per ypdate.

These techniques also yield efficient fully dynamic
algorithms for maintaining the minimum separation
among rectangles or higher-dimensional orthogonal
boxes, the minimum or maximum distance between
points and hyperplanes, and the minimum or maxi-
mum box defined by a set of points.

4 Euclidean Minimum Spanning Trees

We have seen how to use the nearest neighbor
searching problem to maintain the bi-chromatic clos-
est pair of a point set, as points are inserted and
deleted. We now apply these results in an algorithm
for maintaining the Euclidean minimum spanning tree
of a point set. The connection between bi-chromatic
closest pairs and minimum spanning trees can be seen
from the following lemma.

Lemma 4.1 (Agarwal et al. [1]) Given a set of n
points in R%, we can form a hierarchical collection of
O(n logdiln) bi-chromatic closest pair problems, so
that each point is involved in O(i%~1) problems of size
O(n/2Y) (1 <i<logn) and so that each MST edge is
the solution to one of the closest pair problems.

Lemma 4.1 reduces the geometric MST problem
to computing a MST in a graph whose vertices are
the points of S and whose edges are O(nlog? ' n) bi-
chromatic closest pairs. Insertion or deletion of a point
changes O(log? n) edges of the graph. Hence, we can
maintain the geometric MST by performing O(logd n)
updates in an algorithm to maintain the MST in a
dynamic graph. The following recent result strength-
ens an O(y/m) time dynamic graph MST algorithm of
Frederickson [22].

Lemma 4.2 (Eppstein et al. [21]) Given a graph
subject to edge insertions and deletions, having at
most n vertices and m edges at any one time, the
minimum spanning tree can be maintained in time

O(y/nlog(m/n)) per update.

If we combine these two results, we get an
O(y/nlog? nloglogn) time algorithm for maintaining
the MST, once we know the corresponding BCP infor-
mation. We can save a further factor of O(loglogn)
by maintaining MSTs of subproblems defined by the
hierarchical structure of Lemma 4.1, in a similar fash-
ion to the way Eppstein et al. prove Lemma 4.2 using
a hierarchical partition of the graph. The time for
solving the BCP problems reduces to a geometric se-
ries which is bounded by the time for a single problem.
The hierarchical structure of Lemma 4.1 can be peri-
odically rebalanced in a similar amortized time bound.
Thus we have

Theorem 4.3 A Euclidean minimum spanning tree
of a set of points in R% can be maintained in amortized
time O(y/nlog®n) per update for d < 4 and in time
O(n'=2/Ud/21+0+e) for d > 4.

We note that for rectilinear (L; and L) metrics,
orthogonal range query data structures can be used
to answer dynamic bi-chromatic closest pair queries
in O(log? n) time per update [34].

Theorem 4.4 The rectilinear MST of a set of n
points in RY can be maintained in time O(/nlog®n)
per update.

References

[1] P.K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and
E. Welzl. Euclidean minimum spanning trees and bi-
chromatic closest pairs. Proc. 6th ACM Symp. Com-
put. Geom. (1990) 203-210. SIAM J. Comput., to ap-
pear.

[2] P.K. Agarwal and J. Matousek. Ray shooting and
parametric search. Proc. 24th ACM Symp. Theory of
Computing (1992) 517-526.

[3] P.K. Agarwal and M. Sharir. Planar geometric loca-
tion problems and maintaining the width of a pla-
nar set. Proc. 2nd ACM/SIAM Symp. Discrete Algo-
rithms (1991) 449-458.

[4] P.K. Agarwal and M. Sharir. Applications of a new
partitioning scheme. Discrete Comput. Geom. to ap-
pear.

[5] J.Bentley and J. Saxe. Decomposable searching prob-
lems I: Static-to-dynamic transformation. J. Algo-
rithms 1 (1980) 301-358.

[6] B. Chazelle, An optimal algorithm for computing con-
vex layers, IEEE Trans. Information Theory 1T-31
(1985) 509-517.

[7] B. Chazelle, L. Guibas, H. Edelsbrunner, and M.
Sharir. Diameter, width, closest line pair, and para-
metric searching. Proc. 8th ACM Symp. Computa-
tional Geometry (1992) 120-129.

[8] B. Chazelle, L. Guibas, and D. T. Lee. The power of
geometric duality. BIT 25 (1985) 76-90.

[9] B. Chazelle and F. P. Preparata. Halfspace range
searching: An algorithmic application of k-sets. Dis-
crete Comput. Geom. 1 (1986) 83-93.

[10] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal
upper bounds for simplex range searching and new
zone theorems. Proc. 6th ACM Symp. Computational
Geometry (1990) 23-33.

[11] Yi Chiang and R. Tamassia. Dynamic algorithms in
computational geometry. Tech. Rept. CS-91-24, Dept.
Computer Science, Brown University, 1991.

[12] K. L. Clarkson. New applications of random sampling
in computational geometry. Discrete Comput. Geom.
2 (1987) 195-222.

[13] K. L. Clarkson. A randomized algorithm for closest-
point queries. SIAM J. Comput. 17 (1988) 830-847.

[14] K. L. Clarkson and P. Shor. New applications of ran-
dom sampling in computational geometry II. Discrete
Comput. Geom. 4 (1989) 387—421.

[15] T. Coreman, C. Leiserson and R. Rivest. Introduc-
tion to Algorithms, The MIT Press, Cambridge, MA,
1990.

[16] D. Dobkin and S. Suri. Dynamically computing the
maxima of decomposable functions, with applica-
tions. J. ACM 38 (1991) 275-298.

[17] H. Edelsbrunner and M. Overmars. Batched dynamic
solutions to decomposable searching problems. J. Al-
gorithms 6 (1985) 515-542.

[18] D. Eppstein. Offline algorithms for dynamic mini-
mum spanning tree problems. Proc. 2nd Worksh. Al-
gorithms and Data Structures, Springer-Verlag LNCS
519 (1991) 392-399.

[19] D. Eppstein. Dynamic three-dimensional linear pro-
gramming. Proc. 32nd IEEE Symp. Found. Computer
Science (1991) 488-494. ORSA J. Comput., to ap-
pear.

[20]

(21]

22]

23]

(24]

(25]

[26]

27]

28]

29]

(30]

31]

32]

(33]

34]

D. Eppstein and J. Erickson. Iterated nearest neigh-
bors and finding minimal polytopes. Manuscript,
1992.

D. Eppstein, Z. Galil, G.F. Italiano, and A. Nis-
sentzweig. Sparsification — A technique for speed-
ing up dynamic graph algorithms. Proc. 32nd IEEE
Symp. Found. Computer Science (1992), this proceed-
ings.

G.N. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees, with applications.
SIAM J. Comput. 14 (1985) 781-798.

J. Hershberger and S. Suri. Offline maintenance of
planar configurations. Proc. 2nd ACM/SIAM Symp.
Discrete Algorithms (1991) 32-41.

J. Matousek. Reporting points in halfspaces. Proc.
32nd IEEE Symp. Found. Computer Science (1991)
207-215.

J. Matousek and O. Schwarzkopf. Linear optimiza-
tion queries. Proc. 8th ACM Symp. Computational
Geometry (1992) 16-25.

N. Megiddo. Linear-time algorithms for linear pro-
gramming in R® and related problems. STAM J. Com-
puting 12 (1983) 720-732.

K. Mehlhorn. Multi-dimensional Searching and
Computational Geometry. Springer-Verlag, Belin—
Heidelberg—New York, 1985.

M. Overmars and H. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Sys. Sci. 23
(1981), 166—204.

F. Preparata and M. Shamos. Computational Ge-
ometry: An Introduction, Springer-Verlag, New York,
1985.

F. Preparata and R. Tamassia. Efficient point loca-
tion in a spatial cell complex. SIAM J. Comput. 21
(1992) 267-280.

N. Sarnak and R. Tarjan. Planar point location us-
ing persistent search trees, Commun. ACM 29 (1986)
669-679.

M. Smid. Maintaining the minimal distance of a point
set in polylogarithmic time. Proc. 2nd ACM/SIAM
Symp. Discrete Algorithms (1991) 1-6.

K.J. Supowit. New techniques for some dynamic
closest-point and farthest-point problems. Proc. 1st
ACM/SIAM Symp. Discrete Algorithms (1990) 84—
90.

P.M. Vaidya. Geometry helps in matching. STAM J.
Comput. 18 (1989) 1201-1225.

10

