
          

Optimal Point Placement for Mesh Smoothing

Nina Amenta 1 Marshall Bern 2 David Eppstein 3

Abstract

We study the problem of moving a vertex in a finite element
mesh to optimize the shapes of adjacent triangles. We show
that many such problems can be solved in linear time using
generalized linear programming. We also give efficient algo-
rithms for some mesh smoothing problems that do not fit into
the generalized linear programming paradigm.

1 Introduction

Unstructured mesh generation, a key step in the finite el-
ement method, can be divided into two stages. In point
placement, the input domain is augmented by Steiner
points and a preliminary mesh is formed, typically by
Delaunay triangulation. In mesh improvement, local op-
timizations are performed, involving the movement of
Steiner points and rearrangement of the triangulation.

Computational geometry has made some inroads
into point placement, and methods including Delau-
nay refinement, quadtrees, and circle packing are now
known to generate meshes with guaranteed quality; for
surveys of these results, see [8, 9]. There has been less
theoretical progress, however, in mesh improvement,
which has remained largely the domain of practitioners.

Mesh improvement typically combines several
kinds of local optimization:

• Refinement and derefinement split and merge trian-
gles, changing the number of Steiner points.
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• Topological changes such as flipping replace sets
of elements by other such sets, while preserving
the positions of the Steiner points.

• Mesh smoothing moves the Steiner points of the
mesh while preserving its overall topology.

In this paper we study mesh smoothing algorithms.
Our focus is not to determine the best smoothing
method, which is more properly a subject for experi-
ment or numerical analysis; rather we show that a wide
variety of methods can be performed efficiently.

A commonly used technique, Laplacian smooth-
ing, sweeps over the mesh, successively moving each
point to the centroid of its neighbors. This technique
lacks motivation because it is not directly connected to
any specific mesh quality criterion; moreover, the re-
sult may not even remain a valid triangulation. But in
practice Laplacian smoothing spaces points evenly and
gives two-dimensional meshes of reasonable quality. In
three dimensions, however, even spacing does not guar-
antee good element quality. A sliver tetrahedron has
evenly spaced vertices, but very sharp angles. (See [7]
for a classification of tetrahedra in terms of solid and
dihedral angles.) Laplacian smoothing sometimes re-
moves slivers, but in large meshes it often leaves clus-
ters of slivers [20].

Freitag, Jones, and Plassmann [19] proposed an al-
ternative to Laplacian smoothing. Rather than using the
centroid, their optimization-based method computes for
each Steiner point a new placement that maximizes the
minimum angle in adjacent triangles. Freitag et al. use
an iterative steepest-descent algorithm to solve this op-
timal placement problem. Empirically this algorithm
finds the optimum location in an average of 2.5 steps,
but Freitag et al. do not prove their algorithm correct.

The same optimal placement problem was indepen-
dently considered by Matoušek et al. [28] as an instance
of the paradigm called generalized linear programming.
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Matoušek et al. show how to solve this problem using
an algorithm related to the dual simplex method. (In ret-
rospect, the steepest-descent algorithm of Freitag et al.
can be seen as a primal simplex method, but its correct-
ness is not directly justified by the work of Matoušek et
al.; correctness follows from our analysis below.)

Minimum angle, however, is not the only measure
of mesh quality. Various papers have provided theo-
retical justification for other measures including maxi-
mum angle [4], maximum edge length [32], minimum
height [23], minimum containing circle [12], and—
most recently—ratio of area to sum of squared edge
lengths [6]. Data-dependent criteria [6, 16, 31] may be
used in adaptive meshing, which uses the finite element
method’s output to improve the mesh for another run.

In this paper, we study optimization-based smooth-
ing using quality criteria such as those mentioned
above. We show that, as in the case of minimum an-
gle, many of these criteria give rise to quasiconvex pro-
grams and can be solved by linear-time dual simplex
methods or steepest-descent primal simplex methods.
Because of the generality of these methods, they can
also solve mixed-criterion optimization problems.

We generalize the theory to three- and higher di-
mensions, where effective smoothing methods are a
more critical need and asymptotic time complexity is
more important. We show that again quasiconvex pro-
gramming often arises; for instance it can maximize the
minimum solid angle. We believe optimization-based
three-dimensional mesh smoothing should outperform
Laplacian smoothing in practice. Indeed, in very re-
cent experimental work Freitag and Ollivier-Gooch [20]
have shown that optimization-based smoothing for min-
imum dihedral angle outperforms Laplacian smoothing,
both alone and in conjunction with flipping.

Finally, we show that although several other opti-
mal point placement problems do not form quasiconvex
programs, we can solve them efficiently by other means.
This direction may also be relevant in practice; Freitag
and Ollivier-Gooch recommend smoothing for the sine
of the dihedral, a non-quasiconvex quality measure.

2 Generalized Linear Programming

Many problems in computational geometry, such as
separating points by a hyperplane, can be modeled di-

rectly as low dimensional linear programs. Many other
problems, such as the circumcircle of a point set, are
not linear programs, but the same techniques often ap-
ply to them. To explain this phenomenon, various au-
thors have formulated a theory of generalized linear
programming [3, 22, 28].

A generalized linear program (GLP, also known as
an LP-type problem) consists of a finite set S of con-
straints and an objective function f mapping subsets of
S to some totally ordered space and satisfying the fol-
lowing properties:

1. For any A ⊂ B, f (A) ≤ f (B).

2. For any A, p, and q, if f (A) = f (A ∪ {p}) =
f (A ∪ {q}), then f (A) = f (A ∪ {p, q}).4

Typically the constraints are subsets of a space X and
f (A) is the minimum over the intersection of the con-
straints in A of an objective function defined over X.
The problem is to compute f (S) using only evaluations
of f on small subsets of S.

A basis of a GLP is a set B such that for any A ( B,
f (A) < f (B). The dimension d of a GLP is the maxi-
mum cardinality of a basis. A number of efficient GLP
algorithms are known [1, 3, 10, 15, 22, 28], the best run-
ning time of which is O(dnT+ f (d)E log n) where n is
the number of constraints, T measures the time to test a
proposed solution against a constraint (typically this is
O(d)), f is exponential or subexponential, and E is the
time to perform a single basis evaluation. Indeed, these
algorithms are straightforward to implement and have
small constant factors, so they should be practical even
for the modest values of n relevant in our problems.
(The number of constraints should range roughly from
10 to 100 in the planar problems, depending on how
complicated a criterion one chooses to optimize and on
the degree of the initial mesh, and may possibly reach
several hundred in the three-dimensional problems.)

Our GLPs have the following form, which we call
“quasiconvex programming”. We wish to optimize
some quantity that is the pointwise maximum (or mini-
mum) of a finite set of functions. Such a problem will be

4Property 2 is often expressed in the more complicated
form that, if A ⊂ B and f (A) = f (B), then, for any p,
f (A) = f (A ∪ {p}) iff f (B) = f (B ∪ {p}). A simple
induction shows this to be equivalent to our formulation.
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a low-dimensional GLP so long as the level sets of the
functions are all convex. Note that this does not neces-
sarily imply that the functions themselves are convex; in
convex analysis, such functions are called quasiconvex.

More formally, define a nested convex family to be
a map κ(t) from R to convex sets in Rd such that if
a < b then κ(a) ⊂ κ(b). Any nested convex family
κ determines a function fκ(x) = inf { t | x ∈ κ(t) }
the level sets of which are the closures of κ(t). If fκ is
continuous, and does not take a constant value on any
open set, we say that κ is continuous.

If S = {κ1, κ2, . . . κn} is a set of nested convex
families, and A ⊂ S, let

f (A) = inf
{

(t, x)
∣∣ x ∈ ⋂

κi ∈A
κi (t)

}
where the infimum is taken in the lexicographic order-
ing, first by t and then by the coordinates of x.5 We use
this same lexicographic ordering to compare the values
of f on different subsets of S.

LEMMA 2.1. The set S and objective function f de-
scribed above form a GLP of dimension at most 2d +1.
If each κi in S is either constant or continuous, the di-
mension is at most d + 1.

Proof. . Property 1 of GLPs is obvious. Property 2
follows from the observation that (t, x) = f (A) =
f (A ∪ {κ j }) iff x ∈ κ j (t ′) for every t ′ > t .

For any t ′ < t ,
⋂

κi (t ′) = ∅ so by Helly’s theorem
some (d+1)-tuple of sets has empty intersection. Since
there are only finitely many (d + 1)-tuples, we can
choose a tuple B− that has an empty intersection for
all t ′ < t . Then f (B−) = (t, x′) for some x′, so
the presence of B− forces the GLP solution to have the
correct value of t .

If
⋂

κi (t) 6= ∅, then x is the minimal point in that
intersection, and is determined by some d-tuple B+ of
the κi . Otherwise, for any t ′ > t there is some d-tuple
determining the minimal point in

⋂
κi (t ′); let B+ be

such a set determining the minimal point for values of
t ′ arbitrarily close to t . Then f (B− ∪ B+) = f (S),
so some basis of S is a subset of B− ∪ B+ and has
cardinality at most 2d + 1.

5In all our applications, the intersection above is bounded,
and empty for sufficiently small t , so this infimum is well
defined.

Finally, suppose each κi in S is constant or contin-
uous. Let F = ⋂

cl(κi (t)) (where cl denotes the topo-
logical closure); then F is nonempty because it contains
x, and int(F) = ∅ by continuity. If some κi (t) contains
a point of the subspace spanned by F in its interior, we
say that κi is “bad”; its boundary intersects F in a subset
of measure zero, so we can find a value x′ in F that is not
on the boundary of any bad κi . The shape of the neigh-
borhood of x′ in F is determined only by the bound-
aries of good κi , and the intersection of the closures
of these good κi must span the same subspace as F .
Form the projection π : Rd 7→ Rd−dim F perpendicu-
lar to F . Then

⋂
π(cl(κi (t))) (for good κi ) is the single

point π(F). At least one good κ j is continuous (rather
than constant) and the intersection of π(int(κ j (t))) with⋂

π(cl(κi (t))) is empty. By Helly’s theorem, we can
find a (d − dim F + 1)-tuple B− of these convex sets
having empty intersection. By continuity, for each each
continous κi , and each t ′ < t , π(κi (t ′)) ⊂ π(int(κi (t))),
so the intersection of the κi (t ′) in B− is empty, even in
projection, and the presence of B− forces the GLP solu-
tion to have the correct value of t . Similarly, we can re-
duce the size of the set B+ determining the correct value
of x from d to dim F , so the total size of a basis is at
most (d − dim F + 1) + dim F = d + 1. 2

The first part of this lemma is similar to [3, The-
orem 8.1]. Note that we only used the assumption of
convexity to prove the dimension bound; similar nested
families of non-convex sets still produce GLP prob-
lems, but could have arbitrarily large dimension.

By Lemma 2.1 we can solve quasiconvex programs
using GLP algorithms. We can also perform a more
direct local optimization procedure to find (t, x). For
any x ∈ Rd, define

F(x) = inf
{

t
∣∣ x ∈ ⋂

κi ∈S
κi (t)

}
.

Then the level sets of F themselves form a nested con-
vex family, so we can find f (S) by applying steepest
descent, nested binary search, or other local optimiza-
tion techniques to find the point minimizing F . Thus
we can justify the correctness of the local optimization
mesh smoothing procedure used by Freitag et al. In
practice, it may be appropriate to combine this idea with
the dual simplex methods coming from GLP theory by
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using steepest descent to perform the basis exchange op-
erations needed in GLP algorithms.

3 Quasiconvex Mesh Smoothing in R2

Let q(1) measure the quality of a triangulation el-
ement 1 (a triangle, or perhaps a portion of a triangle
such as one of its angles). We are given a triangulation,
and wish to move one of its Steiner points in such a way
as to minimize max q(1i ), where the maximization oc-
curs over elements incident to the moving point.

In this section we describe ways of formulating
such problems as quasiconvex programs. The basic
idea is to construct for each 1i a nested convex family
κi (t) = { x | q(1i (x)) ≤ t }, where 1i (x) indicates the
triangle formed by moving the Steiner point to position
x. In other words, if we are given a bound t on the tri-
angulation quality, κi (t) is the feasible region in which
placement of the Steiner point will allow 1i to meet the
quality bound. Finding the optimal Steiner point place-
ment is equivalent to finding the optimal quality bound
that allows a feasible placement.

The families κi (t) are clearly nested, but convexity
will need to be proven using the detailed properties of
the quality measure q. One can then find the optimal
placement x by solving the quasiconvex program asso-
ciated with this collection of nested convex families. To
make sure that the result is a valid triangulation, we add
additional halfspace constraints to our collection, form-
ing constant nested families, to force x into the kernel of
the star-shaped polygon formed by removing the Steiner
point from the triangulation (Figure 1(a)).

It remains to show convexity of the feasible regions
κi (t) for various quality measures. In the remainder
of this section, we describe these measures and their
corresponding feasible regions. As shown in Figure 2,
many different criteria have identical feasible regions;
however they do not necessarily lead to the same Steiner
point placement as the parametrization of the nested
families differs.

Area. The feasible regions for maximizing minimum
triangle area are strips parallel to the fixed (exter-
nal) sides of the triangles. In the presence of the
halfspace constraints forcing the Steiner point into
the kernel of its polygon, we can simplify these
strips to halfspaces. The intersection of one such

halfspace and the corresponding kernel constraint
is shown in Figure 2(a). One can also balance
neighboring element sizes by maximizing mini-
mum area, using a halfspace with the same bound-
ary but opposite orientation (Figure 2(b)).

Altitude. The external altitude of 1i (the altitude hav-
ing the fixed side of 1i as its base) can be min-
imized or maximized using halfspace feasible re-
gions identical to those for area (Figure 2(a,b)).
The feasible regions in which the other two alti-
tudes are at least h are the intersections of pairs of
halfspaces through one fixed point, passing at dis-
tance h from the other point; one such halfspace is
shown in Figure 2(d) and the other is its vertical re-
flection. The feasible regions for minimizing the
maximum internal altitude are not convex.

Angle. As noted by Matoušek et al. [28], one can max-
imize the minimum angle by using constraints of
two types. For the internal angles at the Steiner
points, the region in which the angle is at least θ

forms either the union or intersection of two con-
gruent circles (as θ is acute or obtuse respectively)
having the fixed side of 1i as a chord. In the for-
mer case this may not be convex, but in the pres-
ence of the kernel constraints we can simplify the
feasible region to circles (Figure 2(e)). The regions
in which the external angles are at least θ form
wedges bounded by rays through a fixed vertex
of 1i , which can again be simplified in the pres-
ence of the kernel constraints to halfspaces (Fig-
ure 2(d)). It is also natural to minimize the max-
imum angle; unfortunately the feasible regions for
the internal angles are non-convex (complements
of circles). However one can still minimize the
maximum angle at external vertices, using half-
space regions (Figures 2(c)).

Edge length. The feasible region for minimizing the
length of the internal edges of 1i is an intersection
of two circles of the given radius, centered on the
fixed vertices of 1i (Figure 2(h)). We can use the
same two-circle constraints (with larger radii than
depicted in the figure) to minimize the maximum
element diameter.
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Figure 1. Steiner point may move within kernel of star-shaped region formed by its removal; for size-based criteria such as
length the optimal placement may be on the kernel boundary.

Aspect ratio. The aspect ratio of a triangle is the ra-
tio of its longest side length to its shortest alti-
tude. We consider separately the ratios of the three
sides to their corresponding altitudes; the maxi-
mum of these three will give the overall aspect ra-
tio. The ratio of external sides to altitude has a fea-
sible region (after taking into account the kernel
constraints) forming a halfspace parallel to the ex-
ternal side, like that in Figure 2(b). To determine
the aspect ratio on one of the other two sides of a
triangle 1i , normalize the triangle coordinates so
that the moving point has coordinates (x, y) and
the other two have coordinates (0, 0) and (1, 0).
The side length is then

√
x2 + y2, and the altitude

is y/
√

x2 + y2, so the overall aspect ratio has the
simple formula (x2+y2)/y. The locus of points for
which this is a constant b is given by x2+y2 = by,
or equivalently x2 + (y − (b/2))2 = (b/2)2. Thus
the feasible region is a circle tangent to the fixed
side of 1i at one of its two endpoints (Figure 2(f)).

Perimeter. The feasible region for minimizing the
maximum perimeter is an ellipse (Figure 2(g)).

Circumradius and containing circle. The feasible
regions for circumradius are nonconvex lunes
bounded by pairs of circles. However, minimizing
the maximum containing circle (the smallest circle
containing the given triangle, without necessarily
having the vertices on its boundary) produces
convex feasible regions, formed by using the same
region as the circumcircle within a vertical slab
perpendicular to the fixed segment of the triangle,

and a lune similar to that for edge length or diame-
ter outside the slab. These regions’ boundaries are
three circular arcs, meeting at common tangents,
with the radius of the middle arc equal to half that
of the arcs on either side (Figure 2(i)).

Inradius. The feasible region for maximizing the min-
imum inradius of any triangle can be shown by
some algebraic manipulation (with the two fixed
points normalized to (0, 0) and (1, 0)) to be given
by the inequality

−8r 3x + 8r 3x2 + 4r 2y − 4r 4y + 4r 2xy

− 4r 2x2y − 4r y2 + 8r 3y2 + y3 − 4r 2y3

≥ 0.

Since this is quadratic in x, its solutions form an
interval in any horizontal line. Some manipula-
tion (performed by Mathematica and omitted here)
shows that the lower and higher branches of x,
computed as functions of y and the parameter r ,
have positive and negative second derivatives re-
spectively for values of y and r for which inradius
r is possible; therefore this region is convex.

Area over squared edge length. Bank and Smith [6]
define yet another measure of the quality of a trian-
gle, computed by dividing the triangle’s area by the
sum of the squares of its edge lengths. This gives a
dimensionless quantity which Bank and Smith nor-
malize to be one for the equilateral triangle (and
less than one for any other triangle). They then
use this quality measure as the basis for a local im-
provement method for mesh smoothing. However,
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Figure 2. Feasible regions for planar mesh smoothing quality criteria: (a) minimizing maximum area or external altitude;
(b) maximizing minimum area, external altitude, or external aspect ratio; (c) minimizing maximum external angle; (d)
maximizing minimum external angle, or maximizing minimum internal altitude; (e) maximizing minimum internal angle;
(f) maximizing internal aspect ratio; (g) minimizing maximum perimeter; (h) minimizing maximum edge length (a similar
but larger lune occurs when minimizing diameter); (i) minimizing containing circle.

as Bank and Smith show, the feasible region for
this measure forms a circle centered on the per-
pendicular bisector of the two fixed points, so our
quasiconvex programming methods can be applied
to find the optimum point placement.

Mixtures of criteria. We have described the various
optimization criteria above as if only one is to be
used in the actual mesh smoothing algorithm. But
clearly, the same formulation applies to problems
in which we combine various criteria, for instance
some measuring element shape and others measur-
ing element size, with the overall quality of an ele-
ment equal to the weighted maximum of these cri-
teria. Indeed, this idea can alleviate a problem with
size-based criteria such as edge length, perimeter,
area, etc.: if one optimizes such a criterion on its
own, the optimal point placement may lie on the
boundary of the kernel, giving rise to a degener-
ate triangulation (Figure 1(b)). If one combines
these criteria with shape-based criteria such as an-
gles or aspect ratio, this complication cannot occur.
To solve such a mixed problem, we simply include
constraints for each different criterion in the com-
bination.

THEOREM 3.1. The Steiner point placement optimiz-
ing the criteria described above, or a weighted com-
bination of criteria, can be computed in linear time by
quasiconvex programming.

4 Mesh Smoothing in Higher Dimensions

Many of the two-dimensional quality criteria discussed
above have higher-dimensional generalizations that
also have convex feasible regions.

Volume and altitude. Just as the area of a triangle with
a fixed base is proportional to its height, the vol-
ume of a simplex with a fixed base is proportional
to its altitude. The triangulation minimizing the
maximum volume, or maximizing the minimum
volume, can be found using feasible regions in the
form of halfspaces parallel to the fixed face of the
simplex. The same type of feasible region can be
used to optimize the altitude at the moving Steiner
point. The feasible regions for maximizing the
minimum of the other altitudes are the intersec-
tions of pairs of halfspaces through d − 1 of the
fixed points.

Boundary measure. The measure of any boundary
face of a simplex is proportional to the distance
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of the moving Steiner point from the affine hull
of the remaining fixed points on the facet, so one
can minimize the maximum face measure using
“generalized cylinders” formed by taking a carte-
sian product of a sphere with this affine hull. In
particular the Steiner point placement minimizing
the maximum edge length can be found by using
spherical feasible regions centered on each fixed
point, and in R3 the placement minimizing the
maximum triangle area can be found using cylin-
drical feasible regions centered on each fixed edge.
These face measures are convex functions, so their
sums are also convex, implying that the level sets
for total surface area of all triangles in a tetrahe-
dron, or total length of all edges in a tetrahedron,
again form convex feasible regions.

Containing sphere. As in R2, the feasible regions for
the minimum containing sphere are bounded by
2d − 1 algebraic patches, in which the containing
sphere has some fixed set of vertices on its bound-
ary. These patches meet the plane of the fixed ver-
tices perpendicularly, and are locally convex (they
are figures of rotation of lower dimensional feasi-
ble regions, except for the one corresponding to the
region in which the containing sphere equals the
circumsphere, which is a portion of that sphere).
In R3, these patches are portions of spheres and
tori. Further, they meet at a continuous boundary
(since the containing sphere radius is a continu-
ous function of the moving point’s location) and
are continuously differentiable where they meet (at
each point where two patches meet, they share tan-
gent planes with the containing sphere itself). Thus
these patches combine to form a convex region.

Dihedrals. The dihedral angles of a simplex are
formed where two faces meet along an axis deter-
mined by some d − 1 points. If these axis points
are all fixed, one of the two faces is itself fixed,
and the feasible region is a halfspace forming
the given angle with this fixed face. However, if
the axis includes the moving point, the feasible
regions are in general non-convex.

Solid Angles. As we show in the next section, the fea-
sible regions for maximizing the minimum solid

angle (measured at the fixed points of each tetra-
hedron, for three-dimensional problems, or at the
moving point in any dimension) are convex.

THEOREM 4.1. In any constant dimension, the Steiner
point placement optimizing each of the criteria de-
scribed above except exterior solid angle, or a weighted
combination of criteria, can be computed in linear time
by quasiconvex programming. The exterior solid angles
as well can be optimized in three dimensions.

5 Feasible Regions for Solid Angles

We now prove that the feasible regions for maximizing
the minimum solid angles of the mesh elements are con-
vex, for the angles at the moving point, in any dimen-
sion, and for the angles at fixed points of tetrahedra in
R3 only. Convexity of the feasible regions for solid an-
gles at fixed points in higher dimensions remains open.

We start with the simpler case, in which we are in-
terested in the solid angle at one of the fixed vertices
of a tetrahedron in R3. This angle can be measured
by projecting the other three vertices onto a unit sphere
centered on the fixed vertex, and measuring the area of
the spherical triangle formed by these three projected
points. If the three projected points are represented by
three-dimensional unit vectors a, b, and c (with a rep-
resenting the moving point and b, c, and the origin rep-
resenting the three fixed points) then the solid angle E
at the origin satisfies the equation

tan(E/2) = a · (b × c)

1 + b · c + c · a + a · b

[18]. Therefore, the boundary of the feasible region (on
the unit sphere) is given by an equation of the form

a · (b × c) = k(1 + b · c + c · a + a · b),

which is linear in a and therefore forms a circle on the
unit sphere. In terms of the original unprojected points,
the feasible region is therefore a convex circular cone.

To prove that the feasible regions for the interior
solid angles are also convex, we use some facts from
convex analysis [13]. A function f (v) from some con-
vex subset of a vector space V to R is said to be convex
if, for any x, y ∈ V , and any 0 ≤ t ≤ 1,

f (t · x + (1 − t) · y) ≤ t · f (x) + (1 − t) · f (y).
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A function f (v) is said to be quasiconcave if its level
sets {v | f (v) ≥ k} are convex. A function is s-concave
if f (v)s is convex; in the cases of interest to us s will
always be negative. If f is quasiconcave we also say
that it is (−∞)-concave (and if f is logconcave, i.e. if
log f is convex, we also say that it is 0-concave). We
allow functions to take infinite values; these can be in-
terpreted by the squeamish as shorthand for appropriate
limits.

LEMMA 5.1. Let f (u) be s-concave for s ≤ 0, and
let g(v) be the characteristic function of a convex set
κ . Then the cartesian product h(u, v) = f (u)g(v) is
s-concave.

We omit the straightforward proof. The next result
appears as [13, Theorem 3.21].

LEMMA 5.2. Let f be s-concave on an open convex set
C inRm+n. Let C∗ be the projection of C onRm and for
x ∈ C∗, let C(x) be the x-section of C. Define

f ∗(x) =
∫

C(x)

f (x, y) dy, x ∈ C∗.

If −1/n ≤ s ≤ ∞, then f ∗ is s∗-concave on C∗,
where s∗ = s/(1+ns) with the usual conventions when
s = −1/n or s = ∞.

COROLLARY 5.1. Let f : U 7→ R be −1/k-concave,
and let g : V 7→ {0, 1} be the characteristic function
of a convex set κ in a k-dimensional subspace V of U.
Then the convolution of f and g is quasiconcave.

Proof. Let h(u, v) be the cartesian product of f (u) and
g(v) as in Lemma 5.1. Then the convolution can be
computed as h∗(u − v). The result follows from Lem-
mas 5.1 and 5.2. 2

A special case of Corollary 5.1, in which k equals
the dimension d of the domain of f , appears (with a dif-
ferent proof) as [13, Theorem 3.24]. For our applica-
tion, we are interested in a different case, in which k =
d − 1. The solid angle of a d-simplex in d-dimensional
space, measured at the moving point, can be interpreted
as the fraction of the field of view at that moving point
taken up by the convex hull κ of the remaining fixed
points. This fraction can be computed as the convolu-
tion of the characteristic function of κ with a function

f (v) measuring the fraction of field of view taken by
an infinitesimally small surface patch of κ . This func-
tion f (v) is inversely proportional to the square (d − 1
power, for general d) of the distance from v to the patch,
and directly proportional to the sine of the incidence an-
gle of v onto the patch. If we translate this patch to the
origin, f has the simple form (v · e)/|v|d where e is a
vector normal to the patch.

LEMMA 5.3. The function f (v) = (v ·e)/|v|d, defined
on the open halfspace v ·e > 0, is −1/(d−1)-concave.

Proof. Because of the rotational symmetry of f , we
need only prove this for the two-dimensional function
f (x, y) = y/(x2 + y2)d/2 in the halfplane y > 0.
We used Mathematica to compute the principal deter-
minants of the Hessian of f s. These are

∂2

∂y2
f (x, y)−1/(d−1) =
d x2y1/(d−1)(x2 + y2)d/(2d−2)(x2 + (d − 1)y2)

(d − 1)2y2(x2 + y2)2

which is always positive (for y > 0, d > 1), and(
∂2

∂x2

∂2

∂y2
− ∂2

∂x∂y

∂2

∂y∂x

)
f (x, y)−1/(d−1) = 0.

Since both principal determinants are non-negative, the
function is convex. 2

THEOREM 5.1. The feasible region for the solid angle
at the moving point of a simplex is convex.

Proof. As described above, we can express the solid
angle as the convolution of f (v) with the characteris-
tic function of the convex hull of the fixed points. By
Lemma 5.3, f is −1/(d−1)-concave within a halfspace
defined by the kernel constraints. Therefore we can use
Corollary 5.1 to show that the solid angle is quasicon-
cave and therefore has convex level sets. 2

Our proof for the interior solid angles generalizes to
any dimension, but that for the exterior solid angles does
not. There seems to be some correspondence between
the feasible regions of interior solid angles in dimension
d, and the feasible regions of exterior solid angles in
dimension d + 1; perhaps this correspondence can be
exploited to show that the exterior solid angle feasible
regions are convex in higher dimensions as well.
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6 Non-quasiconvex Mesh Smoothing

We have seen that many mesh smoothing criteria give
rise to quasiconvex programming problems; however,
other criteria, including minmax angle, minmax cir-
cumradius, and maxmin perimeter, do not have convex
feasible regions.

Perhaps this can be seen as evidence that these mea-
sures are less appropriate for mesh smoothing applica-
tions, since it means among other things that there may
be many local optima instead of one global optimum.
Indeed, it seems likely that the height and perimeter
criteria mentioned above do not lead to good element
shapes. However there is evidence that the maximum
angle is an appropriate quality measure for finite ele-
ment meshes [4], so we now discuss methods for opti-
mizing this measure. Our results should be seen as pre-
liminary and unready for practical implementation.

THEOREM 6.1. We can find the placement of a Steiner
point in a star-shaped polygon, minimizing the maxi-
mum angle, in time O(n logc n) for some constant c.

Proof. Each feasible region in which some particular
angle is at most θ forms a halfplane or circle. The lift-
ing transformation (x, y) 7→ (x, y, x2 + y2) maps
these regions to halfspaces in R3; θ is feasible if the in-
tersection of all these halfspaces meets the paraboloid
z = x2 + y2. The result follows by applying paramet-
ric search [29] to a parallel algorithm that constructs the
intersection [2, 24] and tests whether any of its features
crosses the paraboloid. 2

We can of course combine the maximum angle
with the many other criteria, including circumradius, for
which the feasible regions are bounded by lines and cir-
cles.

An alternate approach suggests itself, which may
have a better chance of leading to a practical algo-
rithm. Define a generalized Voronoi diagram the cells
of which determine which mesh angle would be worst if
the Steiner point were placed in the cell. Are the cells of
this diagram connected? If so it seems likely that gener-
alized Voronoi diagram algorithms [25, 26, 30] can con-
struct this diagram in time O(n log n) or perhaps even
O(n). We could then find the optimal placement by ex-
amining the features of this diagram.

Finally, we consider one last criterion, minimum to-
tal edge length. This does not fit into our quasicon-
vex programming framework, since the overall quality
is a sum of terms from each element rather than a min-
imum or maximum of such terms; however the corre-
sponding optimal triangulation problem remains a topic
of considerable theoretical interest [14, 27]. A mesh im-
provement phase might also help reduce the (large) con-
stant factors in known approximate minimum weight
Steiner triangulation algorithms [17]. Without the ker-
nel constraints enforcing that the result is a valid tri-
angulation, the problem of placing one Steiner point to
minimize the total distance to all other points is a fa-
cility location problem known as the Weber or Fermat-
Weber problem. Although it has no good exact solu-
tion (the solution point is a high degree polynomial in
the inputs [5, 11]) one can easily solve it approximately
by steepest descent [33]. The kernel constraints do not
change the overall nature of this solution. Thus this ver-
sion of the mesh smoothing problem can again be solved
efficiently.

7 Conclusions

We have described a general framework for theoretical
analysis of mesh smoothing problems, and have shown
how to perform optimal Steiner point placement effi-
ciently for many important quality measures. Although
there remain some open problems (for instance, to what
extent our results generalize to quadrilateral and hexa-
hedral meshes) the most important directions for future
research are empirical: which of the criteria we have de-
scribed leads to the best quality meshes, and to what ex-
tent can theoretical generalized linear programming al-
gorithms serve as practical methods for the solution of
these problems?
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