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ABSTRACT

The regression depth of a hyperplane with respect to a set of n points
in Rd is the minimum number of points the hyperplane must pass
through in a rotation to vertical. We generalize hyperplane regres-
sion depth to k-flats for any k between 0 and d− 1. The k = 0 case
gives the classical notion of center points. We prove that for any k
and d, deep k-flats exist, that is, for any set of n points there always
exists a k-flat with depth at least a constant fraction of n. As a con-
sequence, we derive a linear-time (1 + ε)-approximation algorithm
for the deepest flat.

1. INTRODUCTION

Linear regression asks for an affine subspace (a flat) that fits a set of
data points. The most familiar case assumes d−1 independent or ex-
planatory variables and one dependent or response variable, and fits
a hyperplane to explain the dependent variable as a linear function
of the independent variables. Quite often, however, there may be
more than one dependent variable, and the multivariate regression
problem requires fitting a lower-dimensional flat to the data points,
perhaps even a succession of flats of increasing dimensions. Multi-
variate least-squares regression is easily solved by separately fitting
each dependent variable, but this is not correct for other common
forms of regression such as least sum of errors [7] or least median
of squares [13].

Rousseeuw and Hubert [15] introduced regression depth as a robust
criterion for linear regression. The regression depth of a hyperplane
H fitting a set of n points is the minimum number of points whose
removal makes H into a nonfit. A nonfit is a hyperplane that can be
rotated to vertical (that is, parallel to the dependent variable’s axis)
without passing through any points. The intuition behind this defi-
nition is that a vertical hyperplane posits no relationship between
the dependent and independent variables, and hence many points
should have to be invalidated in order to make a good regression hy-
perplane combinatorially equivalent to a vertical hyperplane. Since
this definition does not make use of the size of the residuals, but
only their signs, it is robust in the face of skewed or heteroskedastic

(data-dependent) error models. Regression depth also has a number
of other nice properties including invariance under affine transfor-
mations, and a connection to the classical notions of center points
and data depth.

This paper generalizes regression depth to the case of more than one
dependent variable, that is, to fitting a k-flat to points in Rd. This
generalization is not obvious: for example, consider fitting a line to
points in R3. Generic lines can be rotated wherever one likes with-
out passing through data points, so how are we to distinguish one
line from another?

We start by reviewing previous work (Section 2) and stating our ba-
sic definitions (Section 3). We then provide a lemma that may be
of independent interest, on finding a family of large subsets of any
point set such that the family has no hyperplane transversal (Sec-
tion 4). We prove the existence of deep k-flats for any k (Section 5),
and give tight bounds on depths of lines in R3 (Section 6). We con-
clude by discussing related generalizations of Tverberg’s theorem
(Section 7), describing a possible duality between regression depth
for k-flats and (d− k− 1)-flats (Section 8), and outlining the algo-
rithmic implications of our existence proof (Section 9). Along with
the results proven in each section, we list open problems for further
research.

2. PREVIOUS WORK

Regression depth was introduced by Rousseeuw and Hubert [15] as
a combinatorial measure of the quality of fit of a regression hyper-
plane. An older notion, variously called data depth, location depth,
halfspace depth, or Tukey depth, similarly measures the quality of
fit of a single-point estimator. It has long been known that there ex-
ists a point of location depth at least dn/(d + 1)e (a center point).
Rousseeuw and Hubert provided a construction called the catline [4]
for computing a regression line for a planar point set with depth at
least dn/3e in linear time, and conjectured [14] that in higher dimen-
sions as well there should always exist a regression hyperplane of
depth dn/(d + 1)e. Steiger and Wenger [17] proved that a deep re-
gression hyperplane always exists, but with a much smaller fraction
than d1/(d +1)e. Amenta, Bern, Eppstein, and Teng [2] solved the
conjecture using an argument based on Brouwer’s fixed-point the-
orem and a close connection between regression depth and center
points; independently, Mizera [9] also proved Rousseeuw and Hu-
bert’s conjecture.

On the algorithmic front, Rousseeuw and Struyf [16] found methods
for testing the regression depth of hyperplanes. Their time bounds
are exponential in the dimension, unsurprising since the problem is



         

NP-complete for unbounded dimension [2]. Van Kreveld, Mitchell,
Rousseeuw, Sharir, Snoeyink, and Speckmann gave an O(n log2 n)

algorithm for computing a deepest line in R2 [5], and Langerman
and Steiger [6] improved this to an optimal O(n log n) time bound.

3. DEFINITIONS

Although regression is naturally an affine rather than projective con-
cept, our constructions and definitions live most gracefully in pro-
jective space. We view d-dimensional real projective space as a re-
naming of objects in (d+1)-dimensional affine space. (Affine space
is the familiar Euclidean space, only we have not specified a dis-
tance metric.) A k-flat, for 1 ≤ k ≤ d, through the origin of (d+1)-
dimensional affine space is a projective (k− 1)-flat. In particular a
line through the origin is a projective point and a plane through the
origin is a projective line. A projective line segment is the portion
of a projective line between two projective points, that is, a pair of
opposite planar wedges with vertex at the origin.

We can embed affine d-space into projective space as a hyperplane
that misses the origin. There is a unique line through any point of
this hyperplane and the origin, and hence each point of affine space
corresponds to a unique projective point. There is, however, one
projective hyperplane, and many projective k-flats for k < d − 1,
without corresponding affine flats; these are the projective k-flats
parallel to the affine space. We say that these flats are at infinity.

Each projective point p corresponds to a dual projective hyperplane
D(p), namely the hyperplane orthogonal to p at the origin in (d+1)-
dimensional affine space. Similarly a projective k-flat dualizes to its
orthogonal (d − k)-flat. Notice that in projective space, unlike in
affine space, there are no exceptional cases: each k-flat is the dual
of a (d − k)-flat.

Now let X be a set of points in d-dimensional projective space. From
now on we shall just say “point”, “line”, etc. rather than “projective
point”, “projective line”, when there is no risk of confusion. We
now propose a key definition: a distance between flats with respect
to the points in X. The definition is more intuitive in the dual formu-
lation than in the primal, but we give both below for completeness.
Let D(F) denote the flat that is dual to flat F and let D(X) denote
the set of hyperplanes that are dual to points of X. A double wedge
is the (closed) region between two projective hyperplanes.

DEFINITION 1. The crossing distance between two flats F and
G with respect to X is the minimum number of hyperplanes of D(X)
intersected by a closed projective line segment with one endpoint on
D(F) and the other on D(G). In the primal formulation, the cross-
ing distance between F and G is the minimum number of points of X
in a double wedge that contains F in one bounding hyperplane and
G in the other.

We now turn our attention to linear regression and for ease of un-
derstanding, we return temporarily to d-dimensional affine space.
Assume that we designate k dimensions as independent variables
and d − k as dependent variables. Let I denote the linear subspace
spanned by the independent dimensions. We call a k-flat vertical if
its projection onto I is not full-dimensional, that is, if its projection
is not all of I. For example, let k = 1 and d = 3 and think of the
x-axis as representing the independent variable; then any line con-
tained in a vertical plane (that is, parallel to the yz-plane) is vertical.

In projective space, a k-flat is vertical if and only if it contains a
point in a particular (d − k − 1)-flat at infinity, which we call the
(d − k − 1)-flat at vertical infinity and denote by Vd−k−1.

DEFINITION 2. The regression depth of a k-flat F is its cross-
ing distance from Vd−k−1. Equivalently, the regression depth of F is
the minimum number of points whose removal makes F into a nonfit,
where a nonfit is a k-flat with crossing distance zero from Vd−k−1.

Any k-flat at infinity meets Vd−k−1 and therefore has depth zero.
Therefore, any method for selecting a k-flat of nonzero regression
depth will automatically choose a k-flat coming from the original
affine space, rather than one that exists only in the projective space
used for our definitions.

Note that, unlike the case for ordinary least squares, there does not
seem to be any way of solving k-flat regression separately for each
dependent variable. Even for the problem of finding a line in R3,
combining the solution to two planar regression lines may result in
a nonfit.

4. NONTRANSVERSAL FAMILIES

In order to prove that deep k-flats exist, we need some combinatorial
lemmas on large subsets of points without a hyperplane transversal.

DEFINITION 3. Let S be a set of points in Rd. Then we say that
a hyperplane H cuts S if each of the two open halfspaces bounded
by H contains at least one point of S. We say that a family of sets is
transversal if there is a hyperplane that cuts all sets in the family.

LEMMA 1 (YAO, YAO, AND MATOUŠEK [8, 20]). Let d be a
constant, and assume we are given a set of n points in Rd and a pa-
rameter p. Then we can partition the points into p subsets, with at
most 2n/p points in each subset, such that any hyperplane cuts o(p)
of the subsets.

LEMMA 2 (ALON AND KALAI [1]). Let p ≥ q > d be con-
stants. Then there is a constant C(p, q, d) with the following prop-
erty: If F is any family of point sets in Rd, such that any p-tuple of
sets in F contains a transversal subfamily of q sets, then F can be
partitioned into C(p, q, d) transversal subfamilies.

THEOREM 1. Let d be a constant. Then there is a constant P(d)

with the following property: For any set S of n points in Rd, we can
find a nontransversal family of d + 1 subsets of S, such that each
subset in the family contains at least dn/P(d)e points of S.

PROOF. Choose p to be a multiple of three, sufficiently large that
the o(p) bound of Lemma 1 is strictly smaller than p/(3C(d+1, d+
1, d)), and let P(d) = 2p. By Lemma 1, partition S into p subsets
of at most 2n/p points, such that any hyperplane cuts few subsets.

Let F be the family consisting of the largest p/3 subsets in the par-
tition. If the smallest member ofF contains m points, then the total
size of all the members of the partition would have to be at most
(p/3) · 2n/p + (2p/3) · m = 2n/3 + 2pm/3, but this total size
is just n, so m ≥ n/(2p) and each member of F contains at least
n/P(d) points.



          

Figure 1: Construction of three nontransversal sets of n/6 points in R2: (a) catline, formed by partitioning the point set vertically into equal
thirds, and making a ham sandwich cut of the leftmost and rightmost 2n/3 points; (b) subdivision by three coincident lines into equal sixths.

If each (d + 1)-tuple of sets in F were transversal, we could ap-
ply Lemma 2 and partition F into C(p, q, d) transversal subfami-
lies, one of which would have to contain at least |F|/C(p, q, d) =
p/(3C(d+1, d+1, d)) subsets. But this violates the o(p) bound of
Lemma 1, so F must contain a nontransversal (d + 1)-tuple. This
tuple fulfills the conditions of the statement of the lemma.

Clearly, P(1) = 2 since the median partitions any set of points on a
line into two nontransversal subsets. Figure 1 depicts two different
constructions showing that P(2) ≤ 6. Although the bound of six
is tight for these two constructions (as can be seen by the example
of points equally spaced on a circle) we do not know whether there
might be a different construction that achieves a better bound; the
best lower bound we have found is the following:

THEOREM 2. P(2) ≥ π

2 sin−1 1
3

≈ 4.622.

PROOF. We form a distribution on the plane by centrally project-
ing the uniform distribution on a sphere. We show that any non-
transversal triple for this distribution must have a set with measure
at most 1/4.622 times the total measure. The same bound then holds
in the limit for discrete point sets formed by taking ε-approximations
of this distribution.

Let Si, i ∈ {1, 2, 3} denote the three nontransversal subsets of the
plane maximizing the minimum measure of any Si. Without loss
of generality, each Si is convex. Consider the three lines tangent
to two of the Si, and separating them from the third set (such a line
must exist since the sets are nontransversal). These lines form an ar-
rangement with seven (possibly degenerate) faces: a triangle adja-
cent on its edges to three three-sided infinite cells, and on its vertices
to three two-sided infinite cells. The sets Si coincide with the three-
sided infinite cells: any set properly contained in such a cell could
be extended to the whole cell without violating the nontransversal-
ity condition, and if they instead coincided with the two-sided cells
we could shrink the arrangement’s central triangle while increasing
the sizes of all three Si. The two arrangements in Figure 1 can both
be viewed as such three-line arrangements, degenerate in different
ways.

Each line in the plane lifts by central projection to a great circle on
the sphere. Consider the great circles formed by lifting four lines:
the three lines considered above and the line at infinity. Any ar-
rangement of four circles on the sphere cuts the sphere in the pat-
tern of a (possibly degenerate) cuboctahedron (Figure 2(a)). The
three-sided infinite cells in the plane lift to quadrilateral faces of this
cuboctahedron. Note that the area of a spherical quadrilateral is the
sum of its internal angles, minus 2π.

Form the dual of the arrangement by treating each great circle as
an “equator” and placing a pair of points at the corresponding two
poles. The geodesics between these points form a cuboid pattern
(Figure 2(b)) such that the length of each geodesic is an angle com-
plementary to one of the cuboctahedron quadrilaterals’ internal an-
gles. Thus, the cuboid minimizing the maximum quadrilateral peri-
meter corresponds to the cuboctahedron maximizing the minimum
quadrilateral area. But any spherical cuboid has at least one face
covering at least one-sixth of the sphere, and the minimum perime-
ter for such a quadrilateral is achieved when the quadrilateral is a
square. Therefore, the regular cube minimizes the maximum peri-
meter and the regular cuboctahedron maximizes the minimum area.
The ratio of a regular cuboctahedron’s square face area to the area
of a full hemisphere is the value given, π

2 sin−1 1/3
≈ 4.622.

We also do not know tight bounds on P(d) for d ≥ 3. The proof of
Theorem 1 (using the best known bounds in Lemma 1 [8]) leads to
upper bounds of the form O(C(d+1, d+1, d)−d). We may be able
to improve this somewhat, to O(C(d + 1, d, d− 1)1−d), by a more
complicated construction: Project the points arbitrarily onto a (d−
1)-dimensional subspace, find a partition in the subspace, and use
Lemma 2 to find a family F of d+1 subsets such that no subfamily of
d subsets has a transversal. As in the catline construction [4], group
these subsets into d pairs, and form a ham sandwich cut in Rd that
partitions each subset in F in the same proportion a : b, and such
that the half-subsets of size a are above or below the ham sandwich
cut accordingly as the members of the family of d+1 subsets are on
one or the other side of a Radon partition of those subsets in Rd−1.
Without loss of generality, a > b; then choose the d + 1 subsets
required by Lemma 1 to be the ones of size a.

OPEN PROBLEM 1. Prove tighter bounds on P(d) for d ≥ 2.



          

Figure 2: (a) Four great circles subdivide a sphere in the pattern of a cuboctahedron. (b) Four pairs of opposite points, connected by great
circle arcs in the pattern of a cuboid.

5. DEEP FLATS

It is previously known that deep k-flats exist for k = 0 [11] and
k = d − 1 [2, 17]. In this section we show that such flats exist for
all other values of k.

We first need one more result, a common generalization of center-
points and the ham sandwich theorem, known as the center transver-
sal theorem:

LEMMA 3 (ŽIVALJEVIĆ, ET AL. [3, 21]). Let k+1 point sets
be given in Rd, each containing at least m points, where 0 ≤ k < d.
Then there exists a k-flat F such that any closed halfspace contain-
ing F contains at least dm/(d − k + 1)e points from each set.

The weaker bound dm/(d + 1)e can be proven simply by choosing
a flat through the centerpoint of each subset.

THEOREM 3. Let d and 0 ≤ k < d be constants. Then there is
a constant R(d, k) such that for any set of n points with k indepen-
dent and d − k dependent degrees of freedom, there exists a k-flat
of regression depth at least dn/R(d, k)e.

PROOF. Project the points vertically onto the subspace spanned
by the k independent directions, in such a way that the inverse image
of each point in the projection is a (d − k)-flat containing Vd−k−1.
By Theorem 1, we can find a family of k + 1 subsets of the data
points, each with n/P(k) points, such that the k-dimensional pro-
jection of this family has no transversal. We then let F be the k-flat
determined by applying Lemma 3 to this family of subsets.

Then consider any double wedge bounded by a hyperplane contain-
ing F and a hyperplane containing Vd−k−1. The vertical bound-
ary of this double wedge projects to a hyperplane in Rk, so it must
miss one of the k + 1 subsets in the family. Within this missed
subset the double wedge appears to be simply a halfspace through
F. By Lemma 3, the double wedge must therefore contain at least
n/((d− k + 1)P(k)) points. Thus if let R(d, k) = (d− k + 1)P(k)
the theorem is satisfied.

For k = 0 or k = d−1 we know that R(d, k) = d+1 [2]. However
exact values are not known for intermediate values of k.

OPEN PROBLEM 2. Prove tighter bounds on R(d, k) for 1 ≤
k ≤ d − 2.

The following conjecture would follow from the assumption that
R(d, k) is a linear function of d for fixed k (as the O(d) bound of
Theorem 3 makes plausible), since R(k, k) = 1 and R(k + 1, k) =
k + 2. It also matches the known results R(d, 0) = R(d, d − 1) =
d + 1 and the bounds R(d, 1) ≤ 2d − 1 and R(3, 1) = 5 of the
following section. Finally, Ivan Mizera (personal communication)
has pointed out that the conjectured bound is simply one plus the
number of degrees of freedom of a k-flat in Rd.

CONJECTURE 1. R(d, k) = (k + 1)(d − k) + 1.

6. TIGHTER BOUNDS FOR LINES

The method used in the proof of Theorem 3 shows that R(d, 1) ≤
2d. This can be slightly improved using a technique of overlapping
sets borrowed from the catline construction.

THEOREM 4. R(d, 1) ≤ 2d − 1.

PROOF. The proof of Theorem 3 can be viewed as projecting the
points onto a horizontal line, dividing the line into two rays at the
median of the points, and applying the center transversal theorem to
the two sets of n/2 points contained in each ray. Instead, we project
the points onto the horizontal line as before, but partition this line
into three pieces: two rays containing (d−1)n/(2d−1) points each,
and a line segment in the middle containing the remaining n/(2d−
1) points. We then apply the center transversal theorem to two sets
S1 and S2 of dn/(2d− 1) points each, formed by the points having
a projection in the union of the middle segment and one of the two
rays. This theorem finds a line such that no halfspace containing it
has fewer than n/(2d − 1) points in either of the sets Si. We claim
that this line has regression depth at least n/(2d − 1).
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Figure 3: Three-dimensional plane arrangement showing R(3, 1) ≥ 5: (a) cross-section for x = 1; (b) cross-section for x = −1.

To prove this, consider any double wedge bounded by two hyper-
planes, one containing the regression line and the other vertical. The
vertical hyperplane intersects the horizontal projection line in a sin-
gle point. If this intersection point is in one of the two rays, then
the vertical hyperplane misses the set Si formed by the other ray
and the middle segment. In this case, the double wedge contains
the same subset of Si as a halfspace bounded by the double wedge’s
other bounding plane, and contains at least n/(2d− 1) points of Si

In the remaining case, the vertical boundary of the double wedge in-
tersects the horizontal projection line in its middle segment. Within
each set Si, the double wedge differs from a halfspace (bounded by
the same nonvertical plane) only within the subset of points project-
ing to this middle segment. But the halfspace corresponding to the
double wedge in S1 is complementary to the halfspace correspond-
ing to the double wedge in S2. Therefore, if we let Xi denote the set
of points in the halfspace but not in the double wedge for each set Si,
then X1 and X2 are disjoint subsets of the middle n/(2d−1) points.
The number of points in the double wedge within Si must be at least
n/(2d−1)−|Xi|, so the total number of points in the double wedge
is at least 2n/(2d− 1)−|X1 ∪X2| ≤ 2n/(2d− 1)− n/(2d− 1) =
n/(2d − 1).

Thus in all cases the double wedge contains at least n/(2d − 1)
points, showing that the line has depth at least n/(2d − 1).

As evidence that this 2d−1 bound may be tight, we present a match-
ing lower bound for d = 3.

THEOREM 5. R(3, 1) = 5.

PROOF. We have already proven that R(3, 1) ≤ 5, so we need
only show that R(3, 1) ≥ 5. We work in the dual space, and con-
struct an arrangement of n planes inR3, for n any multiple of 5, such
that any line has depth at most n/5.

Our arrangement consists of five groups of nearly parallel closely
spaced planes, which we label A1, A2, B1, B2, and C. Rather than
describe the whole arrangement, we describe the line arrangements

in the planar cross-sections at x = 1 and x = −1. Recall that the
depth of a line in the three-dimensional arrangement is the mini-
mum number of planes crossed by any vertical ray starting on the
line. Limiting attention to rays contained in the two cross-sections
(and hence to the planar depth of the two points where the given line
intersects these cross-sections) gives an upper bound on the depth
of the line, and so a lower bound on R(3, 1).

In the first cross-section, we place the groups of lines as shown in
Figure 3(a), with the region where A1 and A2 cross contained inside
the triangle formed by the other three groups. Moreover, A1 and
A2 do not cross side B2 of the triangle, instead crossing group B2
at points outside the triangle. The points where members of A1 in-
tersect each other are positioned on segment CA1 – A1A2. Similarly,
the crossings within A2 are situated on segment A1A2 – A2B1. The
crossings within B1, B2, and C are situated along the corresponding
sides of the triangle formed by these three groups.

In the cross-section formed as described above, points from most
cells in the arrangement can reach infinity while crossing only one
group, and so have depth at most n/5. It is only within the segments
CA1 – A1A2 and A1A2 – A2B1 that a point can have higher depth.
The arrangement is qualitatively similar for nearby cross-sections
x = 1 ± ε. Therefore, any deep line in R3 must be either nearly
parallel to A1 and not near any Bi, or nearly parallel to A2 and not
near B2.

In the second cross-section (Figure 3(b)), the groups Ai and Bi re-
verse roles: the point where B1 and B2 cross is contained in the tri-
angle determined by the other three groups, and the other details of
the arrangement are situated in a corresponding manner. Therefore,
any deep line would have to be either nearly parallel to B1 and not
near any Ai, or nearly parallel to B2 and not near A2.

There is no difficulty forming these two cross-sections from a sin-
gle plane arrangement, since (as shown in Figures 3(a) and (b)) the
slopes of the lines within each group can remain the same in each
cross-section. But the requirements imposed on a deep line by these
two cross-sections are contradictory, so no line can have depth more
than n/5 in this arrangement.



         

We believe that a similar proof can be used to prove a more gen-
eral 2d− 1 lower bound on R(d, 1) in any dimension, matching the
upper bound in Theorem 4: form an arrangement with hyperplane
groups Ai, Bi, and C, so that in one cross-section the Ai meet in a
vertex contained in a simplex formed by the other groups, and in the
other cross-section the groups Ai and Bi exchange roles. However
we have not worked out the details of where to place the intersec-
tions within groups, how to choose hyperplane angles such that the
inner groups miss a face of the outer simplex in both cross-sections,
or which cells of the resulting arrangements can have high depth.

7. GENERALIZATIONS OF TVERBERG’S
THEOREM

A Tverberg partition of a set of point sites is a partition of the sites
into subsets, the convex hulls of which all have a common intersec-
tion. The Tverberg depth of a point t is the maximum cardinality
of any Tverberg partition for which the common intersection con-
tains t. Note that the Tverberg depth is a lower bound on the loca-
tion depth. Tverberg’s theorem [18,19] is that there always exists a
point with Tverberg depth dn/(d+1)e (a Tverberg point); this result
generalizes both the existence of center points (since any Tverberg
point must be a center point) and Radon’s theorem [12] that any d+2
points have a Tverberg partition into two subsets.

Another way of expressing Tverberg’s theorem is that for any point
set we can find both a partition into dn/(d+1)e subsets, and a point
t, such that t has nonzero depth in each subset of the partition. Stated
this way, there is a natural generalization to higher dimensional flats:

THEOREM 6. Let d and 0 ≤ k < d be constants. Then there is a
constant T(d, k) such that for any set of n points with k independent
and d− k dependent degrees of freedom, there exists a k-flat F and
a partition of the points into dn/T(d, k)e subsets, such that F has
nonzero regression depth in each subset.

PROOF. As in the proof of Theorem 3, we project the points onto
the subspace spanned by the k independent directions, in such a way
that the inverse image of each point in the projection is a (d − k)-
flat containing Vd−k−1. By Theorem 1, we can find a family of k +
1 subsets Si, each with n/P(k) points, such that the k-dimensional
projection of this family has no transversal. We then find a Tverberg
point ti and a Tverberg partition of each set Si into subsets Ti,j, for
1 ≤ j ≤ dn/(P(k)(d + 1))e. We let F be the k-flat spanning these
k+1 Tverberg points. We form each set Tj in our Tverberg partition
as the union ∪iTi,j. Some points of S may not belong to any set Ti,j,
in which case they can be assigned arbitrarily to any set Ti.

Then consider any double wedge bounded by a hyperplane contain-
ing F and a hyperplane containing Vd−k−1. The vertical boundary
of this double wedge projects to a hyperplane in Rk, so it must miss
one of the k + 1 subsets Si. Within Si the double wedge appears to
be simply a halfspace through ti. It therefore contains at least one
point of each set Ti,j and a fortiori at least one point of each set Tj.
Thus if let R(d, k) = (d + 1)P(k) the theorem is satisfied.

We know that T(d, 0) = d + 1 by Tverberg’s theorem, and the cat-
line [4] shows that T(2, 1) = 3. However even in the case k = d−1
we do not know a tight bound; Rousseeuw and Hubert [14,15] con-
jectured that T(d, d − 1) = d + 1 but the best bounds from our
previous paper [2] are T(d, d − 1) ≤ d(d + 1) and T(3, 2) ≤ 6.

OPEN PROBLEM 3. Prove tighter bounds on T(d, k) for 1 ≤
k ≤ d − 1.

8. DUALITY

There is a natural relation between finding a deep k-flat and finding
a deep (d−k−1)-flat: in both cases one wants to find a k-flat and a
(d− k− 1)-flat that are far apart from each other, and the problems
only differ in which of the two flats is fixed at vertical infinity, and
which is to be found.

In our previous paper [2] we exploited this connection in the fol-
lowing way, to show that R(d, d− 1) = d + 1. A centerpoint (cor-
responding to R(d, 0)) is just a point far from a given “hyperplane
at infinity”; in projective d-space, this hyperplane can be chosen ar-
bitrarily, resulting in different centerpoint locations. We found an
appropriate way to replace the input point set by a smooth measure,
and modify the definition of a centerpoint, in such a way that we
could show that the modified centerpoint location varied continu-
ously as a function of the position of the hyperplane at infinity. We
then used a variant of the Brouwer fixed point theorem to show that
this function is surjective. A hyperplane in the inverse image of the
point at vertical infinity is the desired deep regression plane.

Conjecture 1 implies that R(d, k) = R(d, d−k−1), and one would
naturally hope for a proof of this equality generalizing our previous
proof that R(d, d − 1) = R(d, 0). Currently, the main obstacle is
that we do not know how to modify the definition of a deep k-flat
in such a way as to choose a unique flat which varies continuously
as a function of the location of the (d − k − 1)-flat at infinity. A
similar lack of a continuous version of Tverberg’s theorem blocked
our attempts to prove that T(d, d − 1) = d + 1. We believe that if
we can solve this technical difficulty, topological techniques should
prove the essential equivalence of the k and d − k − 1 cases.

OPEN PROBLEM 4. Does R(d, k) = R(d, d − k − 1) for 1 ≤
k ≤ d − 2?

OPEN PROBLEM 5. Does T(d, k) = T(d, d − k − 1) for 0 ≤
k ≤ d − 1?

9. ALGORITHMIC IMPLICATIONS

We now show how to use our proof that deep flats exist as part of
an algorithm for finding an approximate deepest flat. We begin with
an inefficient exact algorithm.

THEOREM 7. Let d and k be constants. Then we can find the
deepest k-flat for a collection of n points in Rd, in time nO(1).

PROOF. Let A be the arrangement of hyperplanes dual to the n
given points. The distance from points in Rd to Vd−k−1 is constant
within each cell of A, and all such distances can be found in time
O(nd) by applying a breadth first search procedure to the arrange-
ment. The depth of a k-flat F is just the minimum depth of any cell
of A pierced by F. Any two flats that pierce the same set of cells of
A have the same depth.

The space of k-flats forms a (k+1)(d−k)-dimensional algebraic set
Fd

k , in which the flats touching any (d−k−1)-dimensional cell of A



         

form a subset of codimension one. The arrangement of these O(nd)

subsets partitions Fd
k into O(nd(k+1)(d−k)+ε) cells, corresponding

to collections of flats that all pierce the same set of cells. We can
construct this arrangement, and walk from cell to cell maintaining
a priority queue of the depths of the cells in A pierced by the flats in
the current cell, in time O(nd(k+1)(d−k)+ε).

We now use standard geometric sampling techniques to combine
this exact algorithm with our lower bound on depth, resulting in an
asymptotically efficient approximation algorithm.

THEOREM 8. Let d, k, and δ > 0 be constants. Then we can
find the a k-flat with depth within a (1− δ) factor of the maximum,
for a collection of n points in Rd, in time O(n).

PROOF. We first construct an ε-approximation S of the points,
for the range space consisting of double wedges with one vertical
boundary, where ε = δ/(2R(d, k)). Then if a flat F has depth D with
respect to S, Dn/|S| is within an additive εn term of the true depth of
F with respect to the original point set. S can be found with |S| =
O(ε−2 log ε−1), in time O(ε), using standard geometric sampling
algorithms. We then let F be the deepest flat for S.

Suppose the optimal flat F∗ for the original point set has depth cn.
Then the depth of F∗ in S, and therefore also the depth of F in S,
must be at least (c− ε)|S|. Therefore, the depth of F in the original
point set must be at least (c − 2ε)n. Since c ≥ 1/R(d, k), (c −
2ε)n ≥ (1− δ)cn.

Although our approximation algorithm takes only linear time, it is
likely not practical due to its high constant factors. However, per-
haps similar ideas can form the basis of a more practical random
sampling based algorithm.

OPEN PROBLEM 6. Improve the time bounds on finding an ex-
act deepest k-flat. Is it any easier to find a k-flat with depth at least
n/R(d, k), that may not necessarily approximate the deepest flat?
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