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Robust Regression

Given data with dependent and independent vars

Describe dependent vars as function of indep. ones

Should be robust against arbitrary outliers

Prefer distance-free methods for robustness against
skewed and data-dependent noise
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Example: Data Depth
(no variables independent)

Fit a point to a cloud of data points

Depth of a fit x
= min # data points in halfspace containing x

x

Tukey median
= point with max possible depth
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Known Results for Data Depth

Tukey median has depth ≥
⌈ n

d + 1

⌉
[Radon 1946]

Deep (but not optimally deep) point can be found
in time polynomial in n and d
[Clarkson, Eppstein, Miller, Sturtivant, Teng 1996]

Deepest point can be found in time O(nd)

(linear program with that many constraints)

Computing the depth of a point is
NP-complete for variable d [Johnson & Preparata 1978]

O(nd−1+n log n) for fixed d [Rousseeuw & Struyf 1998]
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Example: Regression Depth
(all but one variable independent)
[Hubert & Rousseeuw 1998]

Fit a hyperplane to a cloud of data points

Nonfit = vertical hyperplane
(doesn’t predict dependent variable)

Depth of a fit = min # data points crossed
while moving to a nonfit
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Known Results for Regression Depth

Deepest hyperplane has depth ≥
⌈ n

d + 1

⌉
[Amenta, Bern, Eppstein, Teng 1998; Mizera 1998]

Deepest hyperplane can be found in time O(nd)

(breadth first search in arrangement)

Planar deepest line can be found in O(n log n)

[van Kreveld et al. 1999; Langerman & Steiger 2000]

Computing the depth of a hyperplane is
NP-complete for variable d [Amenta et al. 1998]

O(nd−1+n log n) for fixed d [Rousseeuw & Struyf 1998]
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Multivariate Regression Depth
(any number k of independent variables)
[Bern & Eppstein 2000]

Definition of depth for k-flat

Equals data depth for k = 0

Equals regression depth for k = d− 1

Deepest flat has depth Ω(n)

Conjecture: depth ≥
⌈

n
(k + 1)(d− k) + 1

⌉

true for k = 0, k = 1, k = d− 1
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New Results

Computing the depth of a k-flat is
O(nd−2 + n log n) when 0 < k < d− 1

Saves a factor of n compared to
similar results for regression depth, data depth

Deterministic O(n log n) for lines in space
(k = 1, d = 3)

Randomized O(nd−2) for all other cases

Likely can be derandomized using ε-net techniques

8



     

Projective Geometry

Augment Euclidean geom. by “points at infinity”
One infinite point per family of parallel lines
Set of infinite points forms “hyperplane at infinity”

Equivalently: view hyperplanes and points
as equators and pairs of poles on a sphere

Nonfit = k-flat touching some
particular (d− k− 1)-flat at infinity
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Projective Duality

Incidence-preserving correspondence
between k-flats and (d− k− 1)-flats

Cloud of data points becomes
arrangement of hyperplanes

In coordinates (two dimensional case):

(a, b) 7→ y = ax + b

y = mx + c 7→ (−m, c)
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Crossing Distance

Crossing distance between a j-flat and a k-flat
in a hyperplane arrangement

= minimum number of hyperplanes crossed
by any line segment connecting the two flats

(incl. line segments “through infinity”)
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Definition of Depth

Depth of a k-flat F

= crossing distance between dual(F)

and dual((d− k− 1)-flat at infinity)

In primal space, minimum # data points
in double wedge bounded by F
and by ((d− k− 1)-flat at infinity

Nonfit always has depth zero
(zero-length line seg, empty wedge)
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Parametrizing Line Segments

Let F1, F2 be flats (unoriented projective spaces)

If F1 ∩ F2 = ∅, any pair (p1 ∈ F1, p2 ∈ F2)

determines unique line through them

Need one more bit of information
to specify which of two line segments:
double cover (oriented proj. spaces) O1, O2

Two-to-one correspondence
O1 × O2 7→ line segments
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When does a segment cross a hyperplane?

Set of line segments crossing hyperplane H
is h1 ⊕ h2 where hi are halfspaces in Oi
with boundary(hi) = H ∩ Oi

Or more simply, disjoint union of two sets
halfspace × halfspace

O1
F1+ ∞ F1–

O2 ∞

F2+

F2–

Line seg w/fewest crossings
= point covered fewest times by such sets
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Algorithm for k = 1, d = 3:

Want point in torus O1 × O2
covered by fewest rectangles h1 × h2

Sweep left-right (i.e., by O1-coordinate),
use segment tree to keep track of
shallowest point in sweep line

Time: O(n log n)

Algorithm for Higher Dimensions:

Replace segment tree by history tree of
randomized incremental arrangement

Replace sweep by traversal of history tree

O(nj+k−1) for crossing distance between
j-flat and k-flat⇒ O(nd−2) for flat depth
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Conclusions

Presented efficient algorithm for testing depth

Many remaining open problems in
algorithms, combinatorics, & statistics

How to find deepest flat efficiently?

What is its depth?

Can we find deep flats efficiently
when d is variable?

Do local optimization heuristics work?

Are similar ideas of depth useful for
nonlinear regression?
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