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Robust Regression
Given data with dependent and independent vars

Describe dependentvars as function of indep. ones

Should be robust against arbitrary outliers

Prefer distance-free methods for robustness against
skewed and data-dependent noise



Example: Data Depth
(no variables independent)

Fit a point to a cloud of data points

Depth of a fit x
= min # data points in halfspace containing x

Tukey median
= point with max possible depth



Known Results for Data Depth

n
Tukey median has depth > {—1
Y Pth = d+1
[Radon 1946]

Deep (but not optimally deep) point can be found
In time polynomial in n and d
[Clarkson, Eppstein, Miller, Sturtivant, Teng 1996]

Deepest point can be found in time O(n%)
(linear program with that many constraints)

Computing the depth of a point is
NP-complete for variable d [Johnson & Preparata 1978]
O(nY—14+nlogn) for fixed d [Rousseeuw & Struyf 1998]



Example: Regression Depth
(all but one variable independent)
[Hubert & Rousseeuw 1998]

Fit a hyperplane to a cloud of data points

Nonfit = vertical hyperplane
(doesn’t predict dependent variable)

Depth of a fit = min # data points crossed
while moving to a nonfit



Known Results for Regression Depth

N
Deepest hyperplane has depth > {W
P Yperp pth ~ d+ 1
[Amenta, Bern, Eppstein, Teng 1998; Mizera 1998]

Deepest hyperplane can be found in time O(n9)
(breadth first search in arrangement)

Planar deepest line can be found in O(nlogn)
[van Kreveld et al. 1999; Langerman & Steiger 2000]

Computing the depth of a hyperplane is
NP-complete for variable d [Amentaet al. 1998]
O(nY~14nlogn) for fixedd [Rousseeuw & Struyf 1998]



Multivariate Regression Depth
(any number k of independent variables)
[Bern & Eppstein 2000]

Definition of depth for k-flat
Equals data depth for k =0
Equals regression depth fork =d — 1

Deepest flat has depth <2(n)

n
Conjecture: depth >
. P = kD —K) +1

truefork=0,k=1,k=d -1



New Results

Computing the depth of a k-flat is
O(n9=2 4+ nlogn)when0 <k<d-—1

Saves a factor of n compared to
similar results for regression depth, data depth

Deterministic O(nlogn) for lines in space
(k=1,d =23)

Randomized O(n9—2) for all other cases

Likely can be derandomized using e-net techniques



Projective Geometry

Augment Euclidean geom. by “points at infinity”
One infinite point per family of parallel lines
Set of infinite points forms “hyperplane at infinity”

Equivalently: view hyperplanes and points
as equators and pairs of poles on a sphere

Nonfit = k-flat touching some
particular (d — k — 1)-flat at infinity



Projective Duality

Incidence-preserving correspondence
between k-flats and (d — k — 1)-flats

Cloud of data points becomes
arrangement of hyperplanes

In coordinates (two dimensional case):

(a,b) — y=ax+b
y=mx—+c¢ — (—m,c)
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Crossing Distance

Crossing distance between a j-flat and a k-flat
In a hyperplane arrangement

= minimum number of hyperplanes crossed
by any line segment connecting the two flats

(incl. line segments “through infinity”)
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Definition of Depth
Depth of a k-flat F

= crossing distance between dual (F)
and dual((d — k — 1)-flat at infinity)

In primal space, minimum # data points
In double wedge bounded by F
and by ((d — k — 1)-flat at infinity

Nonfit always has depth zero
(zero-length line seg, empty wedge)
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Parametrizing Line Segments
Let Fq, F» be flats (unoriented projective spaces)

If F1 N Fy = 0, any pair (p1 € F1,p2 € Fy)
determines unique line through them

Need one more bit of information
to specify which of two line segments:
double cover (oriented proj. spaces) O, Oy

Two-to-one correspondence
01 x O2 — line segments
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When does a segment cross a hyperplane?

Set of line segments crossing hyperplane H
Is h1 & hy where h; are halfspaces in O;
with boundary(h;) = H N O;

Or more simply, disjoint union of two sets
halfspace x halfspace

Line seg w/fewest crossings
= point covered fewest times by such sets
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Algorithm fork =1,d = 3:

Want point in torus O1 x Oy
covered by fewest rectangles h1 x ho

Sweep left-right (i.e., by O1-coordinate),
use segment tree to keep track of
shallowest point in sweep line

Time: O(nlogn)

Algorithm for Higher Dimensions:

Replace segment tree by history tree of
randomized incremental arrangement

Replace sweep by traversal of history tree

O(nJT%=1) for crossing distance between
j-flat and k-flat = O(n%2) for flat depth
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Conclusions
Presented efficient algorithm for testing depth

Many remaining open problems in
algorithms, combinatorics, & statistics

How to find deepest flat efficiently?
What is its depth?

Can we find deep flats efficiently
when d is variable?

Do local optimization heuristics work?

Are similar ideas of depth useful for
nonlinear regression?
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