
           

Computing the Depth of a Flat

Marshall Bern∗ David Eppstein†

Abstract

We compute the regression depth of a k-flat in a set of n points
in Rd, in time O(nd−2 + n log n) for 1 ≤ k ≤ d − 2. This
contrasts with a bound of O(nd−1 + n log n) when k = 0 or
k = d − 1.

1 Introduction

Regression depth was introduced by Hubert and
Rousseeuw [7] as a distance-free quality measure for
linear regression. The depth of a hyperplane is the minimum
number of points crossed in any continuous motion taking
the hyperplane to a vertical hyperplane (a “nonfit”). The
deepest hyperplane provides a good fit even in the presence
of skewed or data-dependent errors, and is robust against a
constant fraction of arbitrary outliers.

Due to its combinatorial nature, regression depth leads
to many interesting geometric and algorithmic problems. A
simple construction called the catline provides a line of depth
dn/3e for n points in the plane [3]. The catline’s depth bound
is best possible, and more generally in Rd the best depth
bound is dn/(d + 1)e [1, 5]. On the algorithmic side, the
deepest line in the plane can be found in timeO(n log n) [4].
In higher dimensions, the fastest known exact algorithm takes
time O(nd), and ε-cuttings can be used to obtain an O(n)-
time (1 + ε)-approximation to the maximum depth [9].

In previous work [2], we generalized depth to multivari-
ate regression, fitting points in Rd by affine subspaces with
dimension k < d − 1 (k-flats for short). The generaliza-
tion is most natural in a dual setting. The projective dual of a
point set is a hyperplane arrangement, and linear regression
dualizes to finding a central point in an arrangement. If the
depth of point p is the minimum number of arrangement hy-
perplanes crossed by any line segment from p to the plane
at infinity, then the regression depth of a hyperplane is ex-
actly the depth of its dual point in the dual arrangement. Thus
we defined the crossing distance between two flats in an ar-
rangement to be the fewest crossings on any line segment
having one endpoint on each flat, and defined the regression
depth of a k-flat to be the crossing distance between its dual
(d − k − 1)-flat and a certain k-flat at vertical infinity. (This
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definition also subsumes the classical notion of data depth or
Tukey depth.) We showed that deep flats always exist, mean-
ing that for any point set in Rd, there is always a k-flat of
depth a constant fraction of n. Moreover, ε-cuttings can be
used to obtain an O(n)-time (1 + ε)-approximation for the
deepest flat. The catline generalizes to give lines with depth
dn/(2d−1)e, which is tight for d ≤ 3 and would be tight for
all d under a conjectured dn/((k + 1)(d− k) + 1)e bound on
maximum regression depth.

In this paper, we consider the problem of testing the
depth of a given flat, or more generally the crossing depth of
two flats. Rousseeuw and Struyf [8] studied similar problems
for hyperplanes and points. The crossing distance between a
point and a hyperplane can be found in timeO(nd−1+n log n)
by examining the arrangement’s restriction to the hyperplane
(as described later), and the same bound applies to testing the
depth of a hyperplane or point. We show that, in contrast,
the depth of a flat of any other dimension can be found in
randomized time O(nd−2 + n log n). More generally, the
crossing distance between a j-flat and a k-flat can be found
in time O(n j+k−1 + n log n) when 1 ≤ j, k ≤ d − 2.

We omit many details in this extended abstract; see the
longer version of this paper at http://arXiv.org/abs/cs.CG/
0009024 for a more complete exposition.

2 Reduction to Covering

As we now show, crossing distance can be reduced to
finding a minimally covered point in a certain family of
sets. Suppose we are given a hyperplane arrangement, a
j-flat F1, and a k-flat F2 in Rd. We wish to determine
the line segment, having one endpoint on each flat, that
crosses as few arrangement hyperplanes as possible. We
first parametrize these line segments. Without loss of gen-
erality the two flats do not meet (else the crossing distance
is zero) so any pair of points from F1 × F2 determines a
unique line. The pair divides the line into two line seg-
ments (one through infinity), so we need to augment each
point of F1 × F2 by an additional bit of information to
specify each possible line segment. We do this topologi-
cally: F1 is a projective space, having as its double cover
a j-sphere S1, and similarly the double cover of F2 is a k-
sphere S2. The product S1 × S2 supplies two extra bits of
information per point, and there is a continuous two-to-one
map from S1 × S2 to the line segments connecting the two
flats.
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Now consider subdividing S1×S2 according to whether
the corresponding line segments cross or do not cross a hyper-
planeH of the arrangement. The boundary between crossing
and non-crossing line segments is formed by the segments
with an endpoint on a great sphere formed by intersectingH
withS1 orS2. The line segments that crossH therefore corre-
spond to a set (H1 ×H2)∪ (H1 ×H2), whereHi is a hemi-
sphere bounded by the intersection of H with Si. The line
segment crossing the fewest hyperplanes then simply corre-
sponds to the point in the fewest such sets, and since the union
in each such set is disjoint we have the following result.

LEMMA 2.1. Computing crossing distance between flats F1

and F2 is equivalent to finding a point in S1×S2 covered by
the fewest of a family of sets of the formH1 ×H2.

As a special case, the crossing distance between a point
and a hyperplane can be found as the point covered by the
fewest hemispheres of a single (d− 1)-sphere, justifying the
O(nd−1 + n log n) time bound claimed above.

LEMMA 2.2. Given an arrangement of hyperplanes in Rd,
we can produce a recursive decomposition of Rd, with high
probability in time O(nd + n log n), such that any halfspace
bounded by an arrangement hyperplane has (with high prob-
ability) a representation as a disjoint union of decomposition
cells with O(nd−1 + log n) ancestors.

Proof. We apply a randomized incremental arrangement
construction algorithm. Each cell in the recursive decompo-
sition is an arrangement cell at some stage of the construction.
The bound on the representation of a halfspace comes from
applying the methods of [6, pp. 120–123] to the zone of the
boundary hyperplane. 2

The same method applies essentially without change to
spheres and hemispheres, so we can apply it to the sets oc-
curring in Lemma 2.1. Each product of hemispheres occur-
ring in Lemma 2.1 can be represented as disjoint unions of
O(n j+k−2) products of cells in the product of the two recur-
sive decompositions formed by applying Lemma 2.2 to S1

and S2. Since there are O(n) products of hemispheres, we
have overall O(n j+k−1) products of cells.

3 The Algorithm

Our crossing distance algorithm performs a depth-first traver-
sal of the recursive decomposition for S1, while maintain-
ing a number for each cell of the decomposition of S2. This
number measures the fewestH2 hemispheres covering some
point in that cell, where theH2 hemispheres come from pairs
H1 × H2 for which H1 covers the current cell in the traver-
sal of S1. These numbers are computed by taking the mini-
mum number for the cell’s two children and adding the num-
ber of hemispheres whose decomposition uses that cell di-
rectly. When the traversal visits a cell in S1, we determine

the set of hemispheres whose decomposition uses that cell,
and update the numbers for the ancestors of cells covering
the corresponding hemispheres inS2. Each hemisphere prod-
uct leads toO(n j+k−2) update steps, so the total time for this
traversal is O(n j+k−1). We also maintain the overall mini-
mum covering seen so far, and take the minimum with the
number at the root of the decomposition of S2 whenever the
traversal reaches a leaf in the decomposition of S1.

When one flat (say F1) is a line, this method’s time in-
cludes an unwanted logarithmic factor. To avoid this, we tra-
verse S1 directly instead of its hierarchical decomposition.
We use the same data structure for S2, and when the traversal
reaches an endpoint of an intervalH1, we update the cells for
the corresponding hemisphereH2.

We summarize our results.

THEOREM 3.1. The crossing distance between a j-flat and
a k-flat can be found in time O(n j+k−1 + n log n) with high
probability for 1 ≤ j, k. The depth of a single k-flat inRd can
be found in time O(nd−2 + n log n) with high probability for
1 ≤ k ≤ d − 2.

It is likely that ε-cuttings can be used to derandomize this
result. If both flats are lines, we can substitute segment trees
for the randomized hierarchical decomposition.
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