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Abstract

We consider the problem of orienting the edges of a planar graph in such a way that
the out-degree of each vertex is minimized. If, for each vertex v, the out-degree is at
most d, then we say that such an orientation is d-bounded. We prove the following
results:

e Each planar graph has a 5-bounded acyclic orientation, which can be constructed
in linear time.

e FEach planar graph has a 3-bounded orientation, which can be constructed in linear
time.

e A 6-bounded acyclic orientation, and a 3-bounded orientation, of each planar
graph can each be constructed in parallel time O(lognlog®n) on an EREW
PRAM, using O(n/lognlog™ n) processors.

As an application of these results, we present a data structure such that each entry
in the adjacency matrix of a planar graph can be looked up in constant time. The data
structure uses linear storage, and can be constructed in linear time.
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1 Introduction

There are two basic ways of representing a graph G = (V| F) in a computer. The first way
is to keep the list of neighbours N (v) for each vertex v € V. If |V| = n and |E| = m, then
this representation uses O(n + m) memory, and is very useful in many graph algorithms,
especially those which involve searching a graph.

The second way is the adjacency matrix: for every two vertices u,v € V we keep a
boolean value Afu,v] which tells us whether (u,v) € E or not. This representation uses
as much as O(n?) memory, and this does not depend on the number of edges in G. The
advantage of the adjacency matrix is that queries of the type:

(x): Given u,v € V, is (u,v) € E?

can be answered in time O(1), whereas this does not seem possible if we use adjacency lists.

For planar graphs, the waste of memory when the adjacency matrix is used is especially
painful: of the n? entries in A only at most 6n of them are actually used. There is also
a problem with initialization of this matrix—it seems at first glance that O(n?) time is
necessary to initialize A. There is, however, a solution to this problem which takes only
O(n) time (see [1], Exercise 2.12).

In this note we show an easy way to represent a planar graph in such a way that the
queries () can be answered in time O(1) and the whole data structure uses only O(n) space.

An orientation w of a graph is a function which replaces each edge (u,v) € E by an arc
u — v or v — u. By deg] (v) we will denote the out-degree of v, under this orientation w
(for simplicity we will avoid the subscript w). We say that w is d-bounded if for each vertex
v € V we have deg™ (v) < d.

The main results of the paper are:

e We prove that each planar graph has a 5-bounded acyclic orientation. It is easy to
see that there are graphs which cannot have 4-bounded acyclic orientations, so this
bound is optimal. We also present an algorithm for finding this orientation in linear
time.

e We give an optimal NC parallel algorithm for finding 6-bounded acyclic orientations
in planar graphs. The algorithm works in time O(lognlog* n) on EREW PRAM and
uses O(n/lognlog*n) processors.

e We show that each planar graph has a 3-bounded orientation, and show that it can
be found in linear time. Actually, we present two different linear time algorithms for
this problem. The existence of a 3-bounded orientation can be also derived from the
fact that planar graphs have arboricity at most 3, see [19, 12, 6].

e We give an optimal NC parallel algorithm for finding 3-bounded orientations in planar



graphs. This algorithm works in time O(lognlog*n) on an EREW PRAM and uses
O(n/lognlog® n) processors.

Later, we also consider outerplanar graphs. We prove that each outerplanar graph has
a 2-bounded acyclic orientation, and present the following algorithms:

e A linear-time sequential algorithm for finding a 2-bounded acyclic orientation.

e An optimal parallel EREW algorithm for finding a 2-bounded orientation which works
in time O(lognlog* n) on O(n/lognlog* n) processors.

e A parallel CRCW algorithm for finding an acyclic 2-bounded orientation which works
in time O(logn) on O(n) processors.

We also show that some of those results for outerplanar graphs can be extended to
series-parallel graphs.

Most of our algorithms do not use an embedding of the input graph. For sequential
algorithms this leads to simpler algorithms. More importantly, the best known parallel
algorithm for planar embedding takes time O(log?n) [14], so the use of an embedding
would considerably slow down our parallel algorithms.

These results give immediately algorithms for constructing compacted adjacency matri-
ces: given a d-bounded orientation w of G, it is sufficient to store, for each v, only these
neighbours z of v such that w(v,z) =v — z.

We also show that this new way of representing planar graphs is very useful in some
algorithms on graphs. The problems we concentrate on are the subgraph listing problems.
We show how this data structure yields linear-time algorithms for listing triangles and 4-
cliques in planar graphs. It has been known before that these two problems can be solved in
linear time [20, 6]. However, using our compacted adjacency matrix, both problems become
trivial.

Let us also point out the connection between our work and the recent paper of Kannan,
Naor and Rudich [16]. They investigate the problem of labelling the vertices of a graph G
in such a way, that given the labels of w and v it is possible to tell whether v and v are
adjacent. Their solution for graphs, in our terminology, is to label u with the four-tuple
(u,x,y, z), where x,y, z are neighbours of v, such that the edges (v,z), (v,y) and (v, 2)
are directed outwards from v, in some fixed 3-bounded orientation of G. They call it a
4-labelling. It is obvious that these labels indeed determine the adjacency relation. The
algorithms from our paper can be applied also to yield a linear-time algorithm for finding
such a 4-labelling of planar graphs.



2 Acyclic orientations

Theorem 1 FEach planar graph G = (V, E) has a 5-bounded acyclic orientation; such an
orientation can be constructed in linear time.

Proof: A 5-bounded orientation of G can be computed by the following algorithm:

for i — 1 to n do begin
choose v € V with deg(v) < 5;
f(v) 4
remove v from G

end

By Euler’s formula G has always a vertex of degree at most 5, so we can always find v
in the for loop. The function f computed above determines the acyclic orientation in the
following way: given (u,v) € E, let w(u,v) = u — v if f(u) < f(v), and v — u otherwise.
At the moment we remove v, it has at most 5 neighbours, and only they will be assigned
numbers greater than f(v); therefore the resulting orientation is 5-bounded.

It remains to show that the algorithm above can be implemented in time O(n). To do
this, we use a queue Q in which we keep all vertices in G of degree at most 5. The vertex v
can be found in time O(1) by taking the first vertex from Q. When we remove v we have
to update Q: look at all the neighbours of v, and if any of them has degree at most 5 after
removing v and does not belong to Q, then add it to Q. This takes time O(1). Therefore
the whole computation takes time O(n). O

Using Theorem 1 we can represent a planar graph in the following way. Compute the
function f as in the proof of Theorem 1, and let NT(v) denote the set of descendants of
v under the orientation determined by f. Represent G by an n x 5 array B such that
Blv,1...5] contains the list of the vertices in N*(v). This representation can be computed
in linear time, as in the proof of Theorem 1.

In order to answer query (*) we check first which of f(u), f(v) is smaller. Suppose that
f(u) < f(v). Then we check whether v € Nt (u) by scanning the entries Blu, i] for i from 1
to 5. Thus in at most 5 steps we can answer our query. Alternatively, we can sort the entries
Blu,i] for each u, and perform binary search. This solution requires 5n memory locations,
so only 2n of them are not used. It may be actually more space- and time-efficient than
lists, because we do not need pointers.

It is easy to see that there are planar graphs which do not have acyclic 4-bounded
orientations. Take, for example, any planar graph with minimum degree 5. Then for each
acyclic orientation there is a vertex v which has in-degree 0, so deg™ (v) > 5.



Theorem 2 There is a parallel EREW PRAM algorithm for computing a 6-bounded acyc-
lic orientation of planar graphs, which runs in time O(lognlog® n) with O(n/lognlog™ n)

processors.

Proof: The algorithm is very similar to parallel 5-coloring algorithms for planar graphs
(see, for example [11]), so we only sketch it here. The computation is divided into O(logn)
phases. In phase ¢ we find a set R of vertices of degree at most 6. Now we construct a graph
H = (R, F), where (u,v) € F if either (u,v) € E or u and v have a common neighbour
x such that the edges (u,z) and (v,x) are consecutive in the adjacency list of x. In the
next step we compute a maximal independent set I in H. Since the maximum degree in
H is O(1), |I| = ©(n). Finally, we remove all vertices in I, and each v € I is assigned the
number f(v) = 4. The orientation is determined from f as in the sequential case.

The time for each phase is dominated by the computation of the maximal independent
set I. This can be done in either of two similar ways, one taking time O(logn) with
O(n/logn) processors, and the other taking time O(log* n) with O(n) processors (see [10]).
We use the first method for the first O(log*n) phases, after which we use the second
method. Because at each step the number of operations to be performed decreases as the
size of the graph decreases, the total number of operations is O(n). By a theorem of Brent
[3], if these operations can be scheduled among p processors, the total parallel time will be
O(n/p + lognlog™n).

We perform this scheduling by keeping the names of remaining vertices and edges in an
array, and periodically compacting the array to remove positions no longer holding an edge
or vertex. The compaction is performed with a prefix computation [17], each iteration of
which takes time O(logn) and uses O(n) operations. Again the total number of operations
is O(n). If we perform these compactions at appropriately chosen intervals, the compactions
will also take a total time of O(lognlog®n), and we can use Brent’s theorem to perform
the algorithm with only O(n/lognlog* n) processors. O

An interesting problem, whether finding a 5-bounded acyclic orientation is in NC, re-
mains open. This question is related to a problem if a p(G)-coloring can be computed fast
in parallel (p(G) is the maximum over all subgraphs G’ of G, of the minimum degree of G").
This other problem was shown recently to be P-complete (see [24]).

3 3-bounded orientations

In this section we show that planar graphs have a 3-bounded orientation. This result can be
derived independently from a general fact about arboricity of planar graphs. The arboricity
of a graph G, denoted by a(G) is the smallest number of edge-disjoint spanning forests,
whose union is G. Nash-Williams [19] proved a general fact that

q
G) = maxy ——
a(G) aXHp_l,



where the maximum is over all non-trivial subgraphs of G, p is the number of vertices and
q is the number of edges in G. From this formula it is easy to derive that if G is planar
then a(G) < 3. Since we can orient every forest such that the out-degree of every vertex
is at most 1, this shows that every planar graph has a 3-bounded orientation. However,
the proof of [19] does not seem to yield a linear time algorithm. We present below another
proof of this fact, and two linear-time algorithms for this problem.

Theorem 3 FEach planar graph G has a 3-bounded orientation, and it can be found in
linear time.

Proof: Assume we are given an embedding of G in the plane, and let one face of the
embedding be specially marked (we call this the unbounded face). Call each vertex v of G
either exterior if v is on the unbounded face, or interior otherwise. We prove a stronger
version of the theorem:

Claim 1: Every planar graph G has a 3-bounded orientation such that for each exterior
vertex v, deg™(v) < 2.

Claim 1 is proved by induction on n. There must be some exterior vertex v adjacent
to at most 2 other exterior vertices. (Actually, there must be at least two such vertices.
This is obvious when one realizes that the subgraph of G induced by the external vertices
is outerplanar). Let the graph G’ be the subgraph of G formed by removing v, and having
as its exterior vertices the remaining exterior vertices of G together with the neighbors of v.
Then by induction G’ has a 3-bounded orientation such that, for each exterior vertex w of
G', deg™ (w) < 2. Now we may orient the edges (v, z) between v and each of its neighbors.
If x is exterior in G, we orient (v, x) from v to z; otherwise we orient it from x to v. It can
be seen that the resulting orientation satisfies the properties of the theorem.

We explain now how to implement the method from the proof in linear time. The
algorithm consists of two phases. In the first phase we remove vertices from the graph. In
the second phase we return these vertices in reverse order, and orient the edges adjacent to
them.

In the first phase we keep for each vertex an information whether it is or is not exterior,
and how many exterior neighbors it has. We also have a queue Q of the exterior vertices
which have at most 2 exterior neighbours. A vertex v to be removed is chosen in time O(1)
by taking the first vertex from Q. When we remove v, we have to update the information
stored in other vertices. Let e(v) be a boolean variable which tells whether v is exterior
or not, and let also deg®(v) be the number of exterior neighbours of v. The steps taken to
remove a vertex v are as follows.



G — G\ {v};
for each w € N(v) do begin
deg(w) — deg®(w) — 1
if e(w) = false do begin
e(w) «— true;
for each z € N(w) do begin
deg®(7) « deg®(w) + 1;
if deg®(z) > 3 and z € Q then
Q— Q\{z}
end;
end;
if deg®(w) <2 and w ¢ Q
then Q — QU {w}

end

Let us analyze now the complexity of this algorithm. Charge the time for each iteration
of the inner loop to the edge (w,x), and charge the remaining time in each iteration of the
outer loop to the edge (v, w). Then each edge (s,t) in the graph is charged at most three
times: once when each of e(s) and e(t) become true, and once when one of s or ¢ is removed
from the graph. The total number of edges is at most 3n, so at most 9n charges are made,
and the total time of the algorithm is O(n).

The second phase is very easy to implement in time O(n) by following the method from
the proof. O

Note that in fact the algorithm above can be used to give a linear time decomposition
of a planar graph into three forests, giving another proof that the arboricity of a planar
graph is at most 3.

Note also that we use an embedding of G when we construct our 3-bounded orientation.
The question arises whether it is possible to find such an orientation without using an
embedding. There are two reasons for considering this question. First, it is not clear
whether the existence of a linear-time algorithm for constructing a 3-bounded orientation is
a topological property of planar graphs, or whether it follows simply from their low density.
Observe that the proof of Theorem 3 does not work for toroidal graphs, because if we take
a face of a toroidal graph then each vertex on this face may have three neighbours on this
face. But toroidal graphs have, asymptotically, the same density as planar graphs. Second,
from the point of view of the application to compressing adjacency matrices, it would be
optimal to use a 3-bounded orientation, because then we would need only 3n entries in
the adjacency matrix. It seems to us, however, that the need to find an embedding before



actually computing the representation, would limit possible applications of our method.

Therefore, we present now also another proof of Theorem 3, and an algorithm which does
not need the embedding. We need some more definitions. By ng we will denote the number
of vertices of degree d. A vertex v € V will be called small if deg(v) < 18, otherwise it will
be called large. A vertex v € V is reducible if it satisifes one of the following conditions:

(r1) deg(v) < 3.
(r2) deg(v) = 4 and v has at least 2 small neighbours.

(r3) deg(v) = 5 and v has at least 4 small neighbours.

Before describing the algorithm, we prove the lemma below.
Lemma 1 Fach planar graph G has a reducible vertex.

Proof: The proof is by contradiction. Suppose that G does not have reducible vertices.
Therefore, ng = 0 for d = 0,...,3. From Euler’s formula we have m < 3n, which after
substituting n =} ;54 ng and m = % >_d>4 dng, and some simple rearranging yields

2n4 +ny > Z(d —6)ng. (1)
d>7
From the assumption that G does not have reducible vertices we obtain that each vertex
of degree 4 has at least 3 large neighbours, and each vertex of degree 5 has at least 2 large
neighbours. By counting the edges between vertices of degree 4, 5 and large vertices we
obtain that

3ng + 2n5 < Z dnyg. (2)
d>18

Then, from (1) and (2) we have

2 2
3 dg dng > §(3n4 + 2ns5)
>18
> 2n4 + ns
> > (d—6)ng. (3)
d>17

This gives the contradiction by rearranging the inequality above, as follows:

> (3d—18)ng+ »_ (d—18)ng < 0.

d>7 d>18
This completes the proof. O
The idea of the algorithm is as follows: we choose a reducible vertex v, and perform an

appropriate reduction. A reduction consists of removing v and possibly adding some edges
between its neighbours. We orient the obtained graph, and then we extend the orientation



to the edges incident to v. The extension method will depend on the orientation of the
edges added during the reduction.

Let us note first the following, easy lemma.

Lemma 2 Let v € V. Then there are at least two vertices x,y € N(v) such that |N(xz) N
N@W)| <2 and |[N(y) N N(v)| < 2.

Proof: This follows from the observation that the subgraph of G induced by the vertices
in N(v) is outerplanar. O

Now we describe the reduction and extension methods. We have three cases, depending
on the degree of v.

1. deg(v) < 3.

Reduction: Remove v from G.

Eztension: Add v to G. For each edge (v, z), set w(v,z) == v — =.
2. deg(v) = 4.

Reduction: Find a vertex ¢, € N(v) such that |[N(¢,) N N(v)| < 2. Remove v, and
add an edge (t,,z) for some x € N(v) \ N(t,).

Extension: Add v to G. Suppose that w(t,,z) =t, — x (the other case is symmet-
ric). Set w(ty,v) :=t, — v. For all s € N(v) \ {t,}, set w(s,v) :=v — s.

3. deg(v) = 5.

Reduction: Find a vertex t, such that N(¢,) N N(v)| < 2. Remove v, and add edges
(ty,x), for all x € N(v) \ N(ty).

Eztension: Add v to G. Let T = N(v) \ N(t,). Therefore T contains ¢, and all
vertices x joined to t, by added edges. We have some cases now.

(a) Two of the vertices in T" have an added edge directed outwards from it.
Let z and y be these vertices. Then, set w(z,v) :=x — v, w(y,v) :=y — v,
and for all s € N(v) \ {z,y} do w(s,v) :=v — s.

(b) (a) is false. This means, that w(t,,x) =t, — z, for all x € T'\ {t,}. That

is, all added edges are directed outwards from t,.
Since w is 3-bounded, we must have that [T\ {¢,}| <3, so [N(t,) "N (v)| =
1 or 2. In both cases there is a non-added edge (t,, z) such that z € N(¢,) N
N(v) and w(ty, z) = z — t,. Therefore we can proceed as follows: w(z,t,) :=
t, — z (that is, we reorient (z,t,)), w(ty,v) :=t, — v, w(z,v) ;== z — v and
for all z € N(v) \ {ty, 2} do w(z,v) :=v — x.

An example of a reduction and an extension is shown in Fig.1. We note now the following
lemma.



Lemma 3 Let G' be a graph obtained from G by applying one of the reductions above.
Then,

(i) If G is planar then so is G'.

(i1) If w is 3-bounded on G', then it is also 3-bounded on G.

Proof: The first part of the lemma is obvious, since the edges we add can be drawn
through the region we obtain after removing v, and they do not cross because they all have
a common endpoint t,.

So let us concentrate now on (7). We have three cases, corresponding to the three
reductions above.

The case when deg(v) < 3 is obvious. The case when deg(v) = 4 is also easy. No
matter what the orientation of (t,,z) is, we will have at least one edge oriented into v, so
deg™ (v) < 3. And for each neighbour of v, the number of edges oriented outwards does not
increase.

So let us consider now the case deg(v) = 5. Suppose first that the first subcase (@) in
the extension procedure holds. Then we will have at least two edges directed into v, so
deg™t(v) < 3. If (b) holds, then we will also have at least two edges directed into v, namely
(ty,v) and (2,v). The value of deg™(z) does not change, because we reorient (t,,z). Also,
the value of deg™ (t,) does not increase. This is because we remove at least one outwards
oriented edge, so even though we reorient (t,,z2), the total change of deg™(¢,) cannot be
positive. O

Note that the reductions above can be applied to any vertex of degree at most 5. This
gives an easy O(n?) algorithm for finding a 3-bounded orientation, because each reduction
and extension can be implemented in time O(n). The difficulty is in finding the vertex t,,
because we need to choose t, such that it has at most 2 common neighbours with v. It does
not seem possible to do it faster than in time O(n), unless one uses an adjacency matrix,
but this leads to a vicious circle, considering the applications we have in mind.

A way around this is to put some restrictions on the vertices we reduce, as shown in the
lemma below.

Lemma 4 Ifv is a reducible vertex, then the reduction of v, and the extension of w can be
done in time O(1).

Proof: Consider first a reducible vertex v of degree 4. The vertex ¢, can be found as
follows: let z,y € N(v) be small. If one of them has at most two common neighbours with
v, then let t, be this vertex. Otherwise, take ¢, to be any vertex in N(v) \ {z,y}. By
planarity, if z is the fourth neighbour of v, ¢, and z cannot be adjacent.

If deg(v) = 5, look at the four small neighbours of v. By Lemma 2, at least one of them
must have at most two common neighbours with v. O



Now we can describe the algorithm. We maintain a queue Q which contains all reducible
vertices in GG. The algorithm consists of two phases. In the first phase we perform the
reductions on G, until G is empty. We have also a stack S, on which we store the information
about the applied reductions, sufficient to undo them in the second phase. Clearly, O(1)
space per reduction suffices. In the second phase we take the reductions from S, so that they
will be considered in reverse order, undo them and extend gradually the current orientation.

The vertex to be reduced can be found in time O(1) by taking the first vertex from Q.
The reductions and extensions cost time O(1) each. Therefore, to prove that the algorithm
can be implemented in time O(n) we need to show that the total time of updating Q is also

O(n).
Let Update(z) be the following procedure:

if z is reducible then
if 2 ¢ Q then Q — QU {z}
else

if z € Q then Q — 9\ {z}

While executing the reduction at v we update the information about Q, by looking at all
vertices which have to be put into, or removed from Q. Note that the only vertices whose
degree changes during the reduction are the neighbours of v. Several things can happen:

o A vertex z € N(v) had deg(z) > 5 but now deg(xz) < 5. Clearly, x may be reducible
now.

o A vertex x € N(v) had deg(x) < 5, but now deg(z) > 5. Then, we may have to
remove x from Q.

o A vertex x € N(v) was large, but now it is small. If z has a neighbour z of degree at
most five, then z may have become reducible, and we have to put it in Q.

e A vertex z € N(v) was small, but now it is large. Then we may have to remove one

of its neighbours from Q.

Therefore we need to look at small neighbours of v, and their neighbours of degree at
most five. We do the following:

for each z € N(v) do
if z is small or z was small before reducing v then
begin
Update(z);
for each y € N(z) with deg(y) <5 do Update(y)

end

10



By the consideration above, this will ensure that Q contains exactly those vertices which
are reducible. It is easy to see that the procedure above takes only O(1) time. So, finally,
we obtain

Theorem 4 There is an O(n)-time algorithm which finds a 3-bounded orientation in a
planar graph, and does not use an embedding of this graph.

4 A parallel algorithm for 3-bounded orientations

Before we present the algorithm, we need to prove a combinatorial result about the dis-
tribution of degrees in planar graphs. The idea of the algorithm is similar to that of the
second sequential algorithm from the preceding section. This time, however, we must re-
duce a linear number of vertices simultaneously. Therefore we need a more relaxed notion
of reducibility, and an appropriate stronger version of Lemma 1.

We will redefine now slightly the notions of small and reducible vertices. A vertex v € V
will be called small if deg(v) < 25. Also, let us call a vertex reducible if it satisfies one of
the conditions (71), (r2), (r3), or the additional condition below:

(r4) deg(v) < 6 and all neighbours of v are small.

We will use the following theorem.
Lemma 5 If R is the set of reducible vertices in G, then |R| > n/21.

Proof: The proof is similar to the one for Lemma 1. It is sufficient to consider only
connected graphs, so ng = 0. Let us denote by ng the number of reducible vertices of
degree d, and by 74 the number of non-reducible vertices of degree d. Clearly, ng = ng for
d=1,2,3, and ng = ng + ng for d = 4,5, 6.

Using Euler’s formula, and some simple rearrangements similar to those in the proof of
Lemma 1, we obtain

5
S (6= dna > 3 (d— 6)na. (4)

By counting the edges between non-reducible vertices of degree 4,5,6, and large vertices, we
obtain

3itg + 275 + g < dng. (5)
d>25

Using (1) and (2), we proceed as follows:

11



21|R‘ > 21ny + 1Tng + 13n3 + 914 + 505 + 3ng
= 21n; + 17ng + 13n3 + 9nyg + 5ns + 3ng — (914 + 515 + 376)

6 5
> > na+4> (6—d)ng — 3(3f4 + 205 + 7g)
d=1 d=1
6
> Z ng+4Y (d—6ng—3  dng
d=1 a>7 d>24
6 24
= > ng+4) (d—6ng+ Y (d—24)ng
d=1 d=T7 a>24
> ng = N.
d>1

The above inequality directly implies the lemma. O

The general idea of the algorithm is to perform some reductions on the graph such that
it will be eventually become empty. Reductions consist of removing some vertices, and
possibly adding some edges between the neighbours of removed vertices. In the second
phase, the removed vertices are returned to the graph in reverse order, and the current
orientation is extended to new edges. The method of extending the orientation depends on
the applied reduction. The reduction and extension methods for vertices of degree at most
5 is the same as in the second algorithm from the preceding section. We show only how to
reduce vertices of degree 6.

Reduction: Remove v from the graph. Find a small vertex t, € N(v) such that |[N(v) N
N(t,)| <2. Add all edges (t,,z) for x € N(v) \ N(ty).

Eztension: There are four cases. In each case we find three edges (v, x) to direct as x — v;
we direct the remaining three edges (v,y) as v — y.

(a) Three of the edges (t,,z) added in the reduction are directed & — t,. Then for
each such = we direct the edge (v,x) as z — v.

(b) Two added edges (t,,x) are directed x — ¢,. For both such x we direct the edge
(v,x) as © — v, and we direct the edge (v,t,) as t, — v.

(c) One added edge (t,, z) is directed z — t,,. We direct the edge (z,v) as ¢ — v, and
the edge (v,t,) as t, — v. In addition, since ¢, is adjacent in the reduced graph
to all 5 neighbors of v, it can only have 3 out-edges among these adjacencies,
so one edge (ty,z) that was not added in the reduction must also be directed
as z — t,. We reverse the orientation of this edge and direct the edge (v, z) as
z— .

(d) All added edges (t,,x) are directed t, — x. Then t, must be adjacent in the
unreduced graph to exactly two neighbours z of v, and both edges (¢, z) must be
directed (z,t,). We reverse the orientation of both edges and direct both edges
(v,z) as z — v. In addition we direct the edge (t,,v) as t, — v.

12



We note first the following lemma.

Lemma 6 Let G’ be a graph obtained from G by applying the reduction above. Then,

(a) G' is planar,

(b) If w is a 3-bounded orientation of G, then after applying the extension, w is a 3-bounded
orientation of G.

Proof: Part (a) follows as in the proof of Lemma 3.

For part (b), we need only consider the new extensions for degree-six vertices. First
note that each neighbour of v other than ¢, has its out-degree unchanged by the extension.
Also, v itself is given in-degree 3, and therefore out-degree 3. Finally, each edge for which
we change the orientation to be away from t, is balanced by an edge directed from ¢, in the
reduced graph which no longer exists in the unreduced graph. Therefore the out-degree at
t, also remains at most three, and the lemma follows. O

Before presenting the whole algorithm we observe the following.
Lemma 7 If v is a reducible vertex, then the vertex t, can be found in time O(1).

In the algorithm we will attempt to reduce many reducible vertices. The problem is that
some of reductions might conflict one with another. For example, we cannot, in general,
apply a reduction to adjacent vertices. A more subtle problem arises when we execute
reductions of vertices v and v such that ¢, = ¢,. Then it may happen that v and v have
another common neighbour x, and in the extension procedure, u will try to reorient (t,,x),
while the extension at v does not need it. Another possibility of a conflict arises when we
remove vertices which have a common neighbour, not necessarily small. Say, v and v are
reducible and z € N(u) N N(v). When we remove u and v we need to update the adjacency
list at . More specifically, we need to remove the entries corresponding to u and v. But
this obviously causes a problem when these entries are consecutive. Finally, two different
reductions might attempt to add the same edge to the graph. Therefore we need to choose
the set of vertices to be reduced very carefully.

By a conflict graph we will mean a graph ‘H = (R, F'), where (u,v) € F if one of the
following conditions holds:

(c1) (u,v) € E,
(c2) there is a small vertex = € N(u) N N(v),

(c3) there is a vertex x € N(u) N N(v) such that the entries in the adjacency list of z
corresponding to edges (z,u) and (x,v) are consecutive.

Intuitively, the edges of H correspond to possible conflicts in the reductions in G. So to
avoid conflicts, we must execute only reductions belonging to an independent set in H. We
now show that, if we do this, the resulting algorithm will be correct.

13



Lemma 8 Let I be an independent set in H. If we execute the reductions from I in parallel,

they remain correct and no memory conflict occurs.

Proof: Correctness could only be violated if two reductions or extensions attempted to
perform an operation on the same edge. All edges involved in extensions and reductions
have both endpoints either v itself or a neighbour of v, so if an edge has a small endpoint
then (c¢1) or (¢2) will prevent any conflict in this case. The only remaining possibility is
that two degree-four vertices attempt to add the same edge, in each case between two large
vertices. But this would mean that the two vertices are non-adjacent, each has two adjacent
(small) neighbors, and both are adjacent to the same pair of (large) vertices. But this is

not possible in a planar graph.
Finally, condition (¢8) ensures that no memory conflict can occur in updating the ad-

jacency lists of each vertex. O

The following lemma ensures that restricting our reductions to an independent subset
of H still allows us to perform many reductions at once.

Lemma 9 Let I be a mazimal independent set in H. Then |I| = ©(n).

Proof: Since |R| = ©(n), it is sufficient to show that |I| = O(|R|). This fact follows
easily from the observation that the maximum degree in H is at most 6(1 4 24) = 150. O

Now we are ready to present the algorithm.

Reduction phase:
for £ — 1 to clogn do begin

identify the set R of reducible vertices;

construct the conflict graph H = (R, F');

find a MIS [ in H;

for each v € I do parallel begin
execute the reduction at v;
nr(v) «— k

end;

end;
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Ezxtension phase:
for k£ «— clogn downto 1 do begin
I —{v|nr(v) =k};
for each v € I do parallel
extend the orientation w at v

end

Theorem 5 There is a parallel EREW PRAM algorithm, which computes a 3-bounded
orientation of a planar graph G, and it runs in time O(lognlog®n) with O(n/lognlog® n)
PToCessors.

Proof: By Lemma 5, if ¢ is a large enough constant, the graph will be exhausted after
clogn steps. As in the algorithm for acyclic 6-orientation, the computation of maximal
independent sets can be performed in time O(log*n). So it is sufficient to show that the
remaining steps in each iteration can be performed in time O(1).

During the algorithm we have processors assigned to each vertex, and to each entry of
adjacency lists in the representation of G. Consider one iteration of the reduction phase.
We need O(1) time for finding R. The construction of H can be also done in time O(1) by
the processors assigned to the reducible vertices. This can be achieved by coordinating their
scanning the adjacency lists of their small neighbours. After computing the independent
set I, each vertex v € I can execute safely its reduction independently of the others, in

constant time.

A similar analysis shows that each iteration in the second phase costs time O(1). O

5 Outerplanar graphs

In this section we consider the outerplanar graphs. An outerplanar graph is a planar graph
with the additional requirement that it has an embedding such that all vertices are on the
same face. We prove first the following.

Theorem 6 Fach outerplanar graph has a 2-bounded acyclic orientation, which can be
found in linear time.

Proof: The proof is very similar to the proof of Theorem 1, so we only sketch it here.
We use the fact that each outerplanar graph has a vertex of degree at most two (actually,
it must have at least two such vertices). Let v be such a vertex. Remove v from G, find
a 2-bounded acyclic orientation of the resulting graph, and add v back to GG. Orient the
edges incident to v outwards. It is obvious that this gives a 2-bounded acyclic orientation.

It is easy to implement this algorithm in time O(n), by maintaining a queue containing
vertices of degree 2, and updating it each time a vertex is removed. O
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Now we will present a parallel algorithm for finding a 2-bounded orientation, not nec-
essarily acyclic. The algorithm is very similar to the 3-orientation algorithm for planar
graphs.

We redefine first the notion of reducibility. A vertex v € V is called now small if
deg(v) < 7, otherwise it is called large. A vertex v is called reducible if one of the following
conditions holds:

(1) deg(v) <2,
(02) deg(v) = 3 and v has a small neighbour,

(03) deg(v) = 4 and v has a small neighbour.

We will use the following lemma.
Lemma 10 Let R be the set of reducible vertices in an outerplanar graph G. Then |R| > 10

Proof: Let ng and ng denote, respectively, the number of reducible and non-reducible
vertices of degree d. It is well-known that for an outerplanar graph G we have m < 2n.
This implies, after substituting n =3_;~, ng and m = % >_a>1 dng, that

3ny + 2ng + ng > Z(d — 4)nd. (6)
d>5

Consider a bipartite graph induced by edges between non-reducible vertices of degree 3
or 4, and large vertices. By counting the edges in this graph we obtain

3ng +4ny < 2(Rg + Nu + Z ng),
d>7

fig + 204 < 2 ng. (7)
a>7

Using (6) and (7), we proceed as follows:

10|R| > 10n; + Tng + 4ng + 8ny

4
Z ng + 3(3711 + 2n9 + n3) — 4(ﬁ3 + 2’7?,4)

>
d=1
4
> an+32(d—4)nd—82nd
d=1 d>5 d>7
4 7
= > ng+3> (d—Nng+ Y (3d—20)ng
d=1 d=>5 a>T7
> Z ng = N.

d>1
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This completes the proof. O

The algorithm is almost identical to the one from the preceding section, so we only
sketch it here. As before, we reduce only reducible vertices. We define a conflict graph H,
find a maximal independent set I in H, and execute only the reduction for vertices in I. It
is not hard to see that the lemmas corresponding to Lemmas 6, 7, and 9 are also true. This
yields the following theorem.

Theorem 7 A 2-bounded orientation in an outerplanar graph G can be found in time
O(lognlog®n) on an EREW PRAM with O(n/lognlog* n) processors.

Let us consider now acyclic orientations. It is easy to see that each outerplanar graph
has a linear number of vertices of degree at most 4. Following the idea of the algorithm for
the 6-bounded acyclic orientations in planar graphs, we obtain the following result.

Theorem 8 An acyclic 4-bounded orientation of an outerplanar graph can be found in time
O(lognlog* n) on an EREW PRAM with O(n/lognlog* n) processors.

Now we will show that we can construct even an acyclic 2-bounded orientation in an
outerplanar graph. This algorithm is very different from the other algorithms presented in
this paper. Unlike the others, it is not based on reduction techniques.

We assume the graph to be already embedded in the plane. This costs time O(logn)
with O(n) processors, if we use Diks’ algorithm from [7]. The first phase is to reduce the
problem to orienting 2-connected components of G, as follows:

find a tree 7 of 2-connected components of G}
for each 2-connected component C' do begin
let z¢ denote the vertex which
attaches C to its father in 7;
Orient(C, z¢)

end

The procedure Orient(C, z) finds a 2-bounded orientation w in C such that deg™ (z) = 0.
To find 2-connected components, and construct 7 we can use the Tarjan-Vishkin algorithm
from [22], which works in time O(logn) and uses O(n) processors. It is clear that, after
Orient(C, z¢) is completed for each C, then the obtained orientation will be 2-bounded
and acyclic.

So it is sufficient to describe the procedure Orient(C,z). Before we do this, let us
introduce a notion of a dual. A dual of an outerplanar graph G is a graph D(G) = (U, F),
whose vertices are the regions of GG, except the external one, and for two such regions p, g,
we have (p,q) € F iff the regions p and ¢ have a common edge. This edge will be called
the edge dualto (p,q), and denoted by e, ;. The relationship between an outerplanar graph
and its dual was studied in [9]. The following fact is well-known.
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Lemma 11 Let G be outerplanar. Then D(G) is a tree.

Now we can describe the procedure for orienting 2-connected components of G.

Orient(C, z):
construct D(C);
transform D(C') into a directed in-tree D= (U, ﬁ),
rooted at a region containing z;
for each p € U do parallel begin
if p does not contain z then begin
q < the father of p in f);
(Z,9) < epyq
end else
(z,y) < (z,2), where (z,2') is any
edge in the external region;
t «— any vertex on p other than x and y;
let X and Y be, respectively, the paths
from ¢ to z and y, along p;
orient the edges in X from ¢ to z;
orient the edges in Y from ¢ to y;
if p contains z then
orient (z,2’) from 2’ to z
end
Note that each region p orients all edges on this region, except the edge dual to (p, q),
where ¢ is the father of p. This edge e, ; will be oriented by ¢. In Fig.2, the reader can find

an example of an outerplanar graph G, its dual 13, and a relationship between D and the
orientation of G.

Theorem 9 There is a parallel CRCW PRAM algorithm which finds an acyclic 2-bounded
orientation in an outerplanar graph, and which runs in time O(logn) on O(n) processors.

Proof: First we prove the correctness. As it was already mentioned above, it is sufficient
to prove the correctness of the procedure Orient(C, z). Consider the regions around a given
vertex u. It is easy to see that there is at most one region around u, such that its father
in D is not a region around u, because otherwise we would have a contradiction with the
fact that D is an in-tree. Therefore, in D the regions around u correspond to two paths
meeting at p (one of these paths may be empty). Let us look at some region ¢ around wu.
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Suppose that g # p. This means that the successor of ¢, say r, is also a region around u.
Let (u,y) = eqr. If (u,s) is the other edge from ¢ incident to u, then, according to the
algorithm, we will have w(u,s) = s — u. Therefore all edges incident to u, except these
which are on region p, will be directed into w. This implies that deg™(u) < 2. A similar
argument shows that deg™(2) = 0.

Consider now the complexity of this algorithm. Finding the embedding and the tree
7T of 2-connected components costs time O(logn), using the algorithm from [7, 22]. In
Orient(C, z), construction of D(G) and D can be done in O(logn) time, if the embedding
is already computed. Orienting the edges around a region also can be done in time O(logn).
Therefore the total time complexity is O(logn). O

6 Series-Parallel Graphs

In this section we show that the results from the previous section can be generalized to
series-parallel graphs. The class of series-parallel graphs contains graphs G in which two
vertices sg and tg are distinguished, and called often source and sink. We define such
graphs inductively as follows.

(a) A single edge (s,t) is a series-parallel graph.

(b) Suppose that H; and Hj are series-parallel. Then

(i) Let H = H; ® Hy be the graph obtained from H; and Hs, by identifying tp,
with sg,, and taking sy := sp,, tyg := tg,. Then also H is series-parallel. The
operation ® is called the series composition.

(ii) Let H = H; & H» be the graph obtained from H; and Hy by identifying sp,
with sp, and tg, with tg,, and taking s, tg to be the vertices obtained by this
identification. Then, H is also series-parallel. The operation & will be called the
parallel composition.

Both series and parallel compositions can be extended in an obvious way to have more
than two arguments. We prove first the following theorem.

Theorem 10 FEach series-parallel graph has an acyclic 2-bounded orientation, and this
orientation can be found in linear time.

Proof: We will prove a slightly stronger fact.

(%) Every series composition H has an acyclic 2-bounded orientation such that deg™ (sg) =
deg™ (ty) = 0.

(x%) Every parallel composition H has an acyclic 2-bounded orientation with deg™ (tz) = 0
and deg™(sy) < 1.
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Note that an isolated edge satisfies (xx). The proof is by induction. Suppose first that
H is a series composition, that is H = H; ® Hy. We know that Hs has an acyclic orientation
such that deg® (sp,) < 1 and deg™(tg,) = 0. By symmetry, H; has an acyclic orientation
such that deg®(tg,) < 1 and deg™(sg,) = 0. After identifying sp, with ¢z, we obtain a
desired orientation of H.

Suppose now that H is a parallel composition. Then we can represent H as H =
H{&...® Hy, where the graphs H; are series compositions, except possibly of one of them,
say Hy, which is a single edge. If Hy = (spg,tm), then we set w(sg,ty) = sy — ty. The
orientation of the other graphs H; remains unchanged. Them H clearly satisfies (x).

It is very easy to implement this method in linear time, given a series-parallel represen-
tation of a given graph. Such a representation can be also found in linear time (see [23]).
O

Theorem 11 The 2-bounded acyclic permutation from Theorem 10 can be constructed
in time O(logn) with O(n) processors on an CREW PRAM, or in time O(log?n) with
O(n/logn) processors on an EREW PRADM.

Proof: We only sketch the algorithm here. We use the algorithm from [8], where a
recognition algorithm for series-parallel graphs is presented, which works in time O(logn)
and uses O(n) processors on an CREW PRAM, or in time O(log?n) with O(n/logn)
processors on an EREW PRAM. A less efficient algorithm can be found also in [13]. These
algorithms actually construct the series-parallel representation of a given graph G. Such
a representation can be visualized as a tree T in which each node corresponds to some
component H of G. We can transform this tree in such a way that if H is a parallel
decomposition, and H = Hy @ ... ® Hy, where the H; are series compositions, except
possibly of H which can be a single edge, then the graphs H; are the sons of H. This tree
will correspond to the method from the proof of Theorem 10.

Suppose that H is a parallel composition, H = Hy @ ... @ Hj, as in the proof of
Theorem 10. If Hy, is an edge (su, ,tm, ), then we call this edge an st-edge for H. Each edge
is and st-edge for some parallel component of G (we treat edges in series compositions as
parallel components with k& = 1). Thus in the algorithm we have to decide for each edge
e = (sg,tm), whether to orient it from sy to ty, or vice versa.

This can be easily determined by looking at the father H' of H. H’is a series composition
of H and some other component Hy. If H' = H ® Hj, then w(e) :=ty — sy. Otherwise,
if H = Hy ® H, then w(e) := sy — ty.

The total time complexity is dominated by the construction of the representation of G,
the rest is easy to do within the complexity bounds stated in the theorem. O
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7 Applications

In this section we show how our compacted adjacency matrix can be applied in some algo-
rithms for planar graphs. Consider the two following problems:

e Given a planar graph G, list all triangles in G.

e Given a planar graph G, list all 4-cliques in G.

There are several algorithm for these problems which use a linear time [2, 15, 20, 6].
However, some of them tend to be rather complicated, especially the algorithm of Papadim-

itriou and Yannakakis for listing all 4-cliques. In this section we show how we can use a
compacted adjacency matrix, together with adjacency lists, for this purpose.

We consider only the problem of listing 4-cliques; listing all triangles is even simpler. As
in some previous algorithms we mantain a queue Q on which we keep all vertices of degree
at most 5. The algorithm is as follows:

construct a compacted adjacency matrix;
Q — {u € E|deg(v) < 5};
while Q # () do begin
v < the first vertex from O;
for every triple z,y,z € N(v) do
if (z,v),(z,2),(y,2) € E then
print the 4-clique {v,z,y, z};
N — N(v);
G — G—A{v};
for each x € N do
if deg(z) <5 and z ¢ Q
then Q — QU {z}
end
Theorem 12 The algorithm above lists all 4-cliques in a planar graph, and it works in
time O(n).

Proof: Let v be a vertex chosen at some iteration from Q. We have O(1) triples of
neighbours of v to check. Using our compacted adjacency matrix, each test costs time
O(1). So in time O(1) we list all 4-cliques containing v at this phase. (Some of the cliques
containing v might have been already listed before, though.)

To complete the proof we need to make yet two observations. First, all 4-cliques will
indeed be listed. Consider some 4-clique {v,z,y, z}, and let v be the vertex which was put
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first into @. Then this clique will be listed when v is removed from Q. This also shows that
this clique will be listed only once.

Second, observe that we have to update also our compacted adjacency matrix when we
remove v. This is easy to do, if we have also adjacency lists: we remove all entries at the
row v, and for all neighbours € N(v) we remove v from the row of z. O

8 Final Remarks

In this paper we have presented sequential and parallel algorithms for orienting edges in a
planar graph in such a way that the out-degree of each vertex is bounded by a constant: 5
or 6 in case of acyclic orientations, and 3 in case of arbitrary orientations. Our sequential
algorithms are optimal, they run in linear time. The parallel algorithms are also optimal,
and they do not need the input graph to be given with an embedding.

For outerplanar graphs, the most interesting fact, in our opinion, is that it is possible to
compute in NC an optimal, that is 2-bounded, acyclic orientation. Actually, the algorithm
we presented runs in time O(logn) with O(n) processors, so it is almost optimal. It would
be very interesting to find fast parallel algorithms for better acyclic orientations of planar
graphs, that is at least 5-bounded. Unfortunately, the technique we use for outerplanar
graphs does not seem to apply in more general cases.

As it was already noted, these bounded orientations can be applied to compact the ad-
jacency matrix of planar graphs. This work was motivated by the paper of Chiba, Nishizeki
and Saito [4], who present an O(nlogn)-time algorithm for finding large independent sets
in planar graphs. The main drawback of this algorithm is that it uses an adjacency matrix,
so it requires O(n?) space. Unfortunately, the way of compacting adjacency matrix we
present is not yet sufficient to reduce the space requirements in their algorithm, because
their algorithm performs vertex contractions during its execution, and it is not clear how
these contractions can be done with such a compacted adjacency matrix. This problem was
solved in [6] by a different method, which also reduces the total time of the algorithm to
O(n).

Another possibility of applying our methods may be to find grid embeddings of planar
graphs. In a recent paper on this topic, W. Schnyder [21] presented a very elegant method
for finding such embeddings by using a decomposition of planar graphs into three trees. The
decomposition he uses must have certain acyclity properties, but we suspect that suitable
modifications of our algorithms may give appropriate decomposition.

As we have shown in the preceding section, our method turns out to be useful in other
algorithms on planar graphs. Having both the adjacency lists and our compacted adjacency
matrix, it is possible both to search a graph quickly, and to answer queries () in constant
time.
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(a) A reducible vertex v before a reduction.

(b) After the reduction.
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(c) After orienting G'.

(d) After extending the orientation.

Fig.1. An example of a reduction and extension.
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O

Fig. 2. An example of an outerplanar graph G (thick lines) and its dual D (thin lines)

after orientation. The root of D is denoted by r.



