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Abstract

We present algorithms for five interdistance enumeration problems that take as inp&a sgtoints
in RY (for a fixed but arbitrary dimensio) and as output enumerate pairs of pointSisatisfying various
conditions. We present: a@(nlogn + k) time andO(n) space algorithm that takes as additional input a
distances and outputs alk pairs of points inS separated by a distance ®br less; arO(nlogn + k log k)
time andO (n+ k) space algorithm that enumeratesion-decreasing ordahek closest pairs of points if;
an O(nlogn + k) time algorithm for the same problem without any order restrictiongDamklogn) time
and O(n) space algorithm that enumerates in nondecreasing orderktpairs representing thie nearest
neighbors of each point if; and anO(nlogn + kn) time algorithm for the same problem without any order
restrictions. The algorithms combine a modification of the planar approach of Dickerson, Drysdale, and
Sack [11] with the method of Bern, Eppstein, and Gilbert [3] for augmenting a point set to have a linear size
bounded degree Delaunay triangulation. Thus, in addition to providing new solutions to these problems, the
paper also shows how the Delaunay triangulation can be used as the underlying data structure in a unified
approach to proximity problems even in higher dimensions.

1 Introduction

In this paper, we present efficient algorithms for the following problems:

Problem 1. (Fixed-Radius Near-Neighbors Searchisiven a finite set S of n distinct points in R, and a
distance §. For each point p € S report all pairs of points (p, q), q € S such that the distance from p toq is
less than or equal to .

Problem 2. (Enumerating Distances in Space(iven afinite set S of n distinct pointsin R¢, withdy < - - - <

d the distances determined by the pairs of pointsin S. For a positive integer k < (2), enumerate k pairs of
2/ . .

pointswhich redlized, ..., dk.

Problem 3. (K Nearest Neighbors)Given a finite set S of n distinct points in R, and a positive integer
k < n — 1, enumerate thek nearest neighbors of each point in S.

The first two problems are closely related. Simply stated, Problem 2 is to report in nondecreasing order
by distances th& closest pairs of points iB (with the simplifying assumption that for multiple pairs with
equivalent distances, we may enumerate them in arbitrary orderpflProblem 1 is the distance to a unique

kth longest distance for theof Problem 2, then the pairs of points output in the solutions to the two problems
are identical. Note that is not necessarily known in advance for either problem, but for Problem 2 may be
determined dynamically by some other condition. We also examine a slightly easier version of Problem 2 where



k is known in advance and the pairs are not necessarily enumerated in order, and also an easier version of
Problem 2 where we do not require the neighbors to be enumerated in order by distance.

The algorithms we present in this paper extend the recent planar results of Dickerson and Drysdale [9]
and Dickerson, Drysdale, and Sack [11] to higher dimensions by making use of the results of Bern, Eppstein,
and Gilbert [3] onprovably good mesh generatioBern, et al. showed how for a s8tof points in arbitrary
dimension, a supers& of S could be found inO(nlogn) time so that the Delaunay triangulation $fhas
linear complexity. Specifically, they give a construction such iBatis O(|S]), and with the added property
that the degree of each vertex in the Delaunay triangulati@®\isfbounded by a constant. Our paper presents a
unified approach to Problems 2, 1, and 3. We show for the first time how Delaunay triangulation can be used in
efficient solutions to general proximity problems in higher dimensions. We describe our methods with respect
to the Euclidearl, metric, but we do not use this metric in any essential way; similar techniques and results
apply to other metrics oR9, and in particular to thé p metrics.

1.1 Background and Previous Results

Problem 2 was posed by Smid [24]. He presente®@nlogn) time O(n) space algorithm for enumerating
the O(n%?) smallest distances for a setmpoints ind-space for any. , metric, and posed as an open problem
enumerating th@ (n) smallest distances i®(nlogn) time andO(n) space. He used this as a subroutine in
solving the following problem: Given a sBtof n points inRY, create a linear size data structure supporting the
insert(x, P), deletéx, P), andminimum-distano@) operations ir0(n%2logn) time for anyL p metric. Smid
showed how the update times for his data structure could be improw@¢fa log n) time given anO(nlogn)
solution to Problem 2 fok = n. (Smid also has an algorithm to solve this problenkidimensional space
in O((logn)**2) amortized time and(n(logn)¥) space [25].) A solution to Problem 2 is also an important
substep in one of the fast greedy triangulation algorithms of Dickerson, Drysdale, McElfresh, and Welzl [12].
For this applicationk is not known in advance (the enumeration is terminated when the triangulation is complete)
and the pairs are required in nondecreasing order of distance.

Closely related to Problem 2 is the following problem recently investigated by Chazelle [8], and by Agarwal,
Aronov, Sharir, and Suri [1]:

Problem 4 (Selecting Distances)Given afinite set S of n points, letd; < --- < d(g) be the distances deter-
mined by the pairs of pointsin S. For a given positive integer k < (’2‘) determine the value of dy and find a pair
of points that realizes d.

A solution to Problem 2 clearly provides a solution to Problem 4, although we would expect there to be a
faster algorithm foselectionthan for theenumeratiorproblem which may have large output size. (That is, it
would be nice to have an algorithm for selection whose running time is independeit of

Problem 1 has also received considerable attention. It was pointed out in [9] that the fixed-radius search
arises in many situations when we have a density restriction “no moramtgairs of points may lie within a
given distance of each other.” The problem was originally solved by Bentley, Stanat, and Williams [5] in worst
case timeO(3%dnlogn + 3%%) whered is the dimension ankl the number of pairs reported. Algorithms for
problem 1 have also been used by Salowe [21, 22] and Lenhof and Smid [17] as subroutines in parametric-search
methods for solving Problems 2 and 4.

Problem 3 is a generalization of the well-known nearest neighbors problem. For classification problems,
it is more robust than a simple nearest neighbors search. The grdpheafrest neighbors to each point has
certain interesting theoretical properties [18, 19]. Eppstein and Erickson [13] showed how a variety of clustering
problems such as those of findikgoints with minimum diameter, circumradius, or variance, could all be solved
efficiently using algorithms for Problem 3 as a subroutine, improving previous techniques basahdooder
Voronoi diagrams. Problem 3 has also been used for contouring in geographic information systems.

Chazelle [8] presented a subquadratic solution to Problem 4 based on the batching technique of Yao [27]. The
algorithm worksin any dimensionin tim@(n2-#@ log*~#@ nywhereg(d) = 1/(29+1). Thus for dimension 2
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the running time i<0(n%®log*° n). More recently, Agarwal, Aronov, Sharir, and Suri [1] have improved that
result for theplanarcase providing a deterministic algorithm that runs in t@@2 log®? n), and arandomized
algorithm with expected running time @(n*3log®3n). Agarwal, in a personal communication, has claimed
that the randomized algorithm can be made deterministic without affecting the running time significantly. In
d-dimensions, he can select tkié distance in timed (n21-1/(@+D)+€) ‘wheree is any arbitrarily small constant.

Salowe has also solved the interdistance selection problem fartmaetric ind-dimensions irD(nlog® n)
time [20] fork < n, and has since extended these results to gé&t@ogn + k) time algorithm for Problem 2
that works for anyt , metric [21, 22]; however the value kimust be known in advance, and the distances are not
enumerated in order. As a sub-step, Salowe also presents an algorithm to solve Problem 1, the fixed-radius near-
neighbor search problem, in tin@(n log n+-k) for L , metrics ind-dimensions. This algorithm was inspired by
Vaidya'’s optimal all-nearest-neighbors algorithm [26]. Lenhof and Smid [17] have also presented an algorithm
to compute thé closest pairsk known in advance and the pairs not generated in ordedyimlogn + k) time,
using an approach similar to that of Salowe. Our paper presents algorithms with similar asymptotic running
times, using different methods than those of Salowe, and Lenhof, and Smid.

For the planar case of Problem 2, enumerating the smélltistances, Dickerson, Drysdale, and Sack [11]
presented a®@(nlogn + klogk) time andO(n + k) space algorithm. A nice feature of the algorithm of [11]
is that it is based on a common data structure, the Delaunay triangulation. It is both simple to state and easy to
implement. Unfortunately, this result did not extend directly to higher dimensions. Though the algorithm can
be shown to work correctly in any dimension, the running time deterioratas for2 because the Delaunay
triangulation, even fod = 3, may have quadratic size.

Previous work on Problem 3 has generally been independent of work done on the other problems, with very
different methods used in the solutions. Problem 3 can be solved by constructing thekofdgy Voronoi
diagram, and then for each poiptdetermining the othek points lying in the same Voronoi region. For small
values ofk in the plane, this is a fairly efficient method. Lee [16] showed how to construct the lokonoi
diagram inO(k?nlogn) time, and Aggarwal et al. [2] have since improved that resuld ¢k°n 4 nlogn) time.
Dickerson et al.[11] presented an asymptotically faster algorithm requdimjogn + knlogk) time for the
planer case; as with their solution to Problems 2 and 1, it searches the standard Delaunay triangulation. Eppstein
and Erickson [13] solved the planar problem for the simplgr metric in timeO(nlogn + kn). Once again,
however, these approaches were not efficient in higher dimensions. Vaidya [26] gives an alternate approach
based on a modified form of quadtrees; his algorithm works in any dimension and reQumemgn) time.

In this paper, we extend the result of [11]. We show how to make use of the results of [3] on linear-sized
higher dimensional Delaunay triangulation to solve proximity problems in higher dimensions. Because of the
addition of Steiner points, it is not at all clear that even with the linear size and constant degree bound of the
constructed Delaunay triangulation, that the algorithms will be efficient. In particular, any given point may have
a large number of neighboring Steiner points that will increase the amount of work done even though we do
not want to report these pairs as part of our output. The analysis of our algorithm will require an amortization
argument to show that the amount of extra work we do is proportional to the size of the inglgsared output.

Our results for the unordered variants of Problem 1 and Problem 2 are matched asymptotically by those
of Salowe [22] and Lenhof and Smid [17]. And empirical results for the algorithm of [17] in two dimensions
compare favorable with the results of [11]. However the method of [17] requirek begtnown in advance and
does not output the pairs in order, and thus may not be used as a substep in the greedy triangulation. Our methods
may also be somewhat simpler: in particular, unlike the approach of [22], our algorithm for Problem 2 does not
require the use of parametric search. Our algorithm for Problem 3 is fastest known solution asymptotically, and
is indeed optimal as well as being conceptually simple.

Very recently Callahan [6] has claimed that his work with Kosaraju [7] provides an alternate solution to Problem 3 with the same
running timeO(nlogn + kn)



Preprocessing Phase Given a finite sefs of n distinct points, construct a linear sized, bounded vertex degree
Delaunay triangulatio® of S as described in [3].

Search Algorithm  From each poinp in the original setS, do a depth first search dd. Halt each branch of
the search at the first poigtsuch thad(p, q) > 8. Report all pairgp, q) such thad(p,q) < § andg € S.
(Don'treport(p,q)ifqe S — S)

Figure 1: Algorithm 1

2 Fixed-Radius Near Neighbors Search in Space

We begin with the Problem 1, the fixed-radius near neighbors search problem, as the proof of correctness and
amortization arguments are slightly simpler than those for Problems 2 and 3. Throughout the paper, we let
d(p, q) be the Euclidean (ok ) distance fromp to q for p, q € R.

We present an algorithm for Problem 1 that requidgs logn + k) time andO(n) space. Specifically, we
have a one-time preprocessing phas&gh logn) time andO(n) space to compute the higher dimensional
Delaunay triangulation with added Steiner points. Given this data structure, we can solve the problem for any
value ofs in O(n + k) time andO(n) space. Algorithm 1 is given in Figure 1. A proof of the algorithm’s
correctness and complexity will follow.

2.1 Proof of Correctness

To prove the correctness of Algorithm 1, we use Lemma 1 below. This is a similar version of a lemma for the
planar case appearing as Lemma 1 in [11].

Lemma 1. LetSbeaset of distinct pointsin RY, and D the Delaunay triangulation of S. Let p andq be points
in'S. Then either (p, q) isan edgein D or thereisapointr € Swithedge(r,q) € D andd(p,r) < d(p, Q).

Proof: Let H be the largest empty sphere contained in the diameter sptiené (p, q) and lying onH’ at

pointg. If H = H’, thenH’ is an empty sphere containing edge q), and(p, q) is in D. Otherwise there
is some point in H’ tangent toH. SinceH is empty,(r, q) is in D. And sincer is in H’, which is in turn

contained in the sphere with radigg, q) centered ap, d(p, r) must be less thad(p, q). O

That Algorithm 1 correctly reports all paikp, q) with d(p, q) < § follows from Lemma 1 by induction
ond(p, q). The base case for eaghe Sis the closest poinp* € S. Sincep* is a nearest neighbor tp,
the edge(p, p*) must be inD , and thusp* is found on the depth-first search fropx Now consider another
pointg with d(p, ) < §. If (p,q) is also inD, then it too is found directly in the depth-first search. But by
Lemma 1, if(p, q) is not in D then there is a point € Swith (r,q) in D andd(p,r) < d(p, q). By our
inductive hypothesig, will be reported in the depth-first search, and sifce) is in D, we knowq will also
be reported onceis found.

2.2 Steiner Point Density

Before we analyze our fixed radius search algorithm, we prove a key lemma about the density of Steiner points in
the construction of [3]. Recall that the result of [3] was aSeb Swith |S| = O(]S]), such that the Delaunay
triangulation ofS has a constant degree bound. We extend$e= O(S) bound to a more local condition to

say that, roughly, within any region &, the number of points i$ is proportional to that irS.
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We first describe in some detail the constructionSofrom [3], as that paper was more concerned with
two-dimensional triangulation algorithms and omitted some important details from the higher-dimensional
construction. Lek = O(+/d) be sufficiently large that any sphere of radius R contains at least one cube
with vertices having integer coordinates. We construquadtreeby starting with a hypercubicabot box
containingS, and then recursively subdividing each box infostnaller boxes until each box contains at most
one point and each input point is in the center of a grid%égual-size boxes. As we perform this subdivision,
we maintain &alance conditiorthat no two adjacent unsubdivided hypercubes can differ in size by more than
a factor of two. If more than some fixed numlzeof subdivisions occurs without separating any points, we
identify aclusterof points which we triangulate recursively, using a root box for the recursive cluster that is the
center cube of a grid of%cubes, that may then be subdivided to meet the same balance condition above. Note
that none of the outer cubes in such a grid will be subdivided. In the outer quadtree, we treat this cluster as a
single point, so it should end up in a grid df 8qual-size boxes.

We then formS by replacing each box in the quadtree or surrounding a recursive cluster by a gfd of
points, and taking the union of these grid points with our input set. These grids have the property that no sphere
can pass through two nonadjacent boxes without having an interior grid point. As a consequence, the complexity
of the Delaunay triangulation & is proportional to the number of boxes in the quadtree, that as we note in the
proof below isO(n).

Lemma 2. Let D beadisk of radiusr inRY, and let D (1 + ¢) be a concentric disk of radiusr (1+ ¢) for some
fixed e > 0. Let m denote the number of input points within D(1 + ¢), and let M’ denote the number of points
of S within D. Thenm’ = O(m), with a constant of proportionality depending only ond and e.

Proof: Define thelevelof a Steiner poinp, denoted(p), to be the size of the quadtree box containmgf
p was added as part of a box in the grid around a recursive cluster, then let the IpJes tifie size of that box.

In any quadtree, the boxes formed by the balance condition are within distii¢e)) of boxes formed
by some other subdivision. And the limit on the number of subdivisions possible without forming a recursive
cluster implies that for any Steiner poipt there is a pair of input points within distan€(¢(p)) from p,
separated by the subdivision of a hypercube of 6iz&(p)). Thus globally we can charge each Steiner point to
the subdivision event in which that pair of points was separated, and each event is dbétyéches, giving
the O(n) bound of [3].

Locally, within D we can charge each Steiner pomfor which £(p) = O(e¢) to an event in which two
input points inD’ are separated. There canine- 1 such events, so there can ®€m) such Steiner points.
The remaining Steiner points, for whi€lip) = Q2 (¢), are separated by a distancenf¢(p)) from each other
and hence there can be at maxt(1/¢)%) = O(1) such points.O

2.3 Analysis

We now provide an amortized analysis of the running time of our fixed radius search algorithm. The preprocessing
phase takes tim®(nlogn), as shown in [3]. The search phase takes time proportional to the number of vertices
searched, since the Delaunay triangulation has fixed degree. Some of those vertices form pairs that are part of
the output, while others are Steiner points added in the preprocessing phase and do not contribute to the output.
To analyze the algorithm, we must amortize the cost of looking at a pair of p@ntp with g a Steiner point
against the actual cost of all reported pairs. The argument follows.

Consider dividingR® into a grid of hypercubes of fixed diametgr Let points lying on the boundary of
more than one grid be considered as belonging to the adjacent grid in the direction of negative infinity. Within a
grid cell g; let m; denote the number of Steiner points andlenote the number of input points. It is clear that
all (’;) pairs of input points in the same grid cell are reported.

Now consider a Steiner poiste S — S, contained in cel;. The amount of work caused by this Steiner
point is bounded asymptotically by the numimeof original points within a distancé from s. We chargem
units to that one of th@© (1) grid cells within distancé of g; and having the largest value wf.
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Lemma 3. Eachcdll g ischarged at most O(n?) units.

Proof: Let some Steiner poirg be within distancel of m input points. There ar©(1) grid cells within
distance$, sos must be within distancé of a grid cell having2 (m) points, and will only charge a cell with at
least that many points. Equivalently, each gglis charged only by Steiner points with = O(n;).

To complete the proof we show that cgllis charged by at mo$2(n;) Steiner points. For suppose that some
cell g; within distance’ of g; has more thaen; Steiner points for some sufficiently large Then by Lemma 2
there must b& (cn;) input points within distancé of g;, thus there would be a single cell wifh(cn;) points
and ifc is sufficiently large this would be more thanandg; would not be charged by points @j. Thusg; is
charged only from cells witl© (n;) Steiner points, and it can be charged only by@@) cells within distance
8 of gi, completing the proof.0

Thus the time spent searching Steiner vertices can be charged against the number of output pairs, and we
have the following result.

Theorem 1. Given aset of n pointsin RY, We can list all interpoint distances less than some given 8, in time
O(nlogn + k) wherek denotes the number of such distances.

3 Enumerating k Smallest Distances

We now present an algorithm for Problem 1. The basic idea of the algorithm is simply to interleave simultaneous
breadth-first search&é$rom all vertices in the original se8, wherebreadthis defined by distance and not by
number of edges. Forthose familiar with Algorithm 1in[11], this algorithm is based on a similar strategy but with
four main differences: in thereprocessinghase, we use the Steiner Delaunay triangulation as presented in [3],
rather than the standard (possibly quadratic sized) Delaunay triangulation for pditsiimthe enumeration
phase we allow the queue to grow beyond &iZthough we show that the size will remaivk)); the bounded
degree of the vertices implies that we need not sort adjacent edges in increasing order by length; and finally we
treat all points and pairs of points equally, including Steiner points, except that we only begin our breadth-first
searches from original points, and we ordport pairs where both points are from the original Set

The algorithm require®©(nlogn + klogk) time andO(n + k) space. Specifically, we have a one-time
preprocessing phaseOf(n log n) time andO (n) space, followed by an algorithm requiri@y (n+k) log(n+k))
time andO(n + k) space. A discussion of the algorithm’s correctness and complexity will follow.

3.1 Correctness of Algorithm 2

Algorithm 2 is given in Figure 2. We le be a priority queue that suppoi®leteMin andInsert operations.
TheDeleteMin operation deletes frorQ the pair(v, w) with minimum distance and returiis, w). Thelnsert
(v, w) operation checks to see (i, w) is already inQ, and inserts it only if it is not. As noted, what this
algorithm does is essentially a simultaneous interleaved breadth-first search from all verfices in

The correctness of Algorithm 2 follows, using Lemma 1, by induction on the number of pairs deleted from
Q. The inductive hypothesis is: At thigh iteration of the loop, gth closest paifv, w) of points fromS x S
will be deleted from the priority queu®. Furthermore, all pairs of points separated by distanckv, w) will
have been inserted into the queue before $tep detailed proof for a slightly simpler planar version of the
algorithm is given in [11].

2We might call these “best-first” or “closest-first” search. We cannot use the simpler depth-first search as we did in Algorithm 1 for
two reasons: 1) we do not know the search dist@rineadvance, and so we don’t know the halting condition; and 2) we must enumerate
the distance in non-decreasing order.



1. Preprocessing Phase Given a finite seS of n distinct points inR9, construct a linear sized, bounded vertex
degree Delaunay triangulatidh of S' as described in [3].

2. Initialization Phase For each edgév, w) € D with v € S, Insert(v, w).

3. Enumeration Phase

Leti :=1.
WHILE i <=k DO
a) Let(v, w) := DeleteMin(Q); mark (v, w) “visited”
b) Lets :=d(v, w).
c)if v, w € Sandv <|gx w then
report(v, w) with d; = 3.
Leti ;=i + 1.
d) V(w, x) if (v, X) has not been visitethen Insert(v, X);
END

Figure 2: Algorithm 2

3.2 Analysis

We now analyze the complexity of Algorithm 2. As already discussed, Step 1 requindsg n) time andO(n)
space and results is the Delaunay triangulafibof a point setS' © Swith |S| is O(]S]) and the maximum
vertex degree i bounded by a constant [3]. Using an appropriate balanced tree implementation for our queue,
we can perform thénsert andDeleteMin operations ifD(K) space an@® (log K) time whereK is the current
size of the queue. The time required by Step 2 is therdBirelogn).

To analyze the enumeration phase, Step 3Kldie the number of iterations of the WHILE loop. Since
the maximum degree of vertices 1 is also constant, step 3.d) contributes only a constant numbasert
operations per iteration of the loop, so the queue remains ofXjaer- K). A dictionary also of siz&®(n+ K)
can be used to keep track of the edges already visited. Thuissbe andDeleteMin operations each require
time O(log(n + K)). Steps 3.b) and 3.c) can be done in constant time per iteration. It followkK thetations
of the WHILE loop require a total o® (K log(n + K)) time.

To prove our bound 0O ((n + k) log(n + k)), it remains only to prove tha& is O(n + k). However this
follows directly from the analysis given for Algorithm 1. Létbe the length of th&th longest distance .
We showed in our earlier analysis that we examine at mask pairs of points in a search of radisisHaving
shown thatk is O(n + k), we have completed the proof of the following result:

Theorem 2. Wecan enumeratethek smallest distances determined by aset of pointsin RY, in order by distance,
intime O(nlogn + klogk).

This is asymptotically equivalent to the running time of the previously known planar algorithm, but now
holds in any fixed dimension.



4 Enumerating k Unordered Distances

We now describe how to modify the bound of Theorem 2, to eliminateXtieg k) term in the case thatis
known in advance and thHedistances to be enumerated need not be output in order.

The analysis of our previous algorithm tells us that there is some (large) conystanh that if we enumerate
the ck smallest distances i8 we will be guaranteed to find among them themallest distances i8. The
actualk smallest distances can then be found by a linear time selection algorithm [4]. (An explicit boend on
is needed to implement the algorithm, but this can be determined by a more careful analysis in Lemmas 2 and
3; we omit the details here.)

Thus we can reduce the problem to one of findingthemallest distances in a collectionrdbounded-degree
breadth first search trees. We use an algorithm of Frederickson [15] for performing selection in heap-ordered
trees.

Lemma 4 (Frederickson [15]). Let T be a binary tree in which each vertex has a weight, and in which the
weight of any vertex is less than the weight of its children. Then we can find the k smallest weights of vertices
inT,intime O(k).

Note that the time bound of Lemma 4 does not depend ¢rbut only onk. For instance, Frederickson uses
this lemma to find thé& smallest spanning trees in a graph in ti@émlog S(m, n) + k%?2) [14], even though
in this applicationT has exponential size.

In our application, the breadth first search trees are not binary, but they have bounded degree, which is
sufficient for the lemma (one can translate a degréree into a binary tree by expanding each vertex into a
subtree of — 1 vertices; this only changes by a factoi$ef 1 the number of nodes that need to be enumerated).

In our breadth first search trees, the weight of each vertex is the Euclidean distance to the tree root; these weights
have the appropriate heap ordering by Lemma 1. There is only one further complication: Lemma 4 requires
that the input be a single trde whereas we wish to perform global selection in a forest tkes. We form a

single treeT by hooking the forest together using a binary tree witleaves; all the new nodes of the binary

tree will have weight zero. We can then find tHlesmallest distances i by selecting th&s — 1)ck+2n -1

smallest weight vertices i, eliminating repetitions, and ignoring tha 2 1 zero-weight vertices in the binary

tree connecting our breadth-first search trees and at the roots of the breadth-first search trees.

Theorem 3. We can list the k smallest distances determined by a set of points in R, as an unordered set, in
time O(nlogn + k).
5 Enumerating k Nearest Neighbors

We now present our algorithm for Enumeratingearest neighbors of each point3n This algorithm uses the
same approach as the previous two: searching the Steiner Delaunay triangulation. Here, however, the amortized
analysis is slightly different. The output is actually of siderather than sizé&.

5.1 Correctness and Analysis

Algorithm 3 is given in Figure 3. Once again, the proof of correctness follows directly from Lemma 1. The
analysis of the running time takes a slightly different turn, however. It is based on the following lemma.

Lemma5. Let Sand S betwo setsof pointsin RY for arbitrary but fixed dimensiond. Let p be agiven point
inset S. The number of pointsq € S such that p can be as closeto q asq’skth nearest neighbor in S is O (k).

A generalization of the proof of Lemma 4 in [11] suffices to prove Lemma 5. We may now complete our
analysis. The number of vertices visited in the breadth-first search from someppeiftis O(k + k') where
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1. Preprocessing Phase Given a finite seS of n distinct points inR9, construct a linear sized, bounded vertex
degree Delaunay triangulatidh of S' as described in [3].

2. Enumeration Phase Foreach poinpin S, do a breadth-first search (by distance)®to find thek nearest
neighbors inS.

Figure 3: Algorithm 3

k’ is the number of Steiner points as closeptas itskth nearest neighbor i8. Though for a particular poinp,

k' may be as large as by Lemma 5 we know that a Steiner point is visited at n@¢k) times in all searches
from all points inS. Since the number of Steiner points@gn), the number of visits to all Steiner points is
O(nk). Each queue operation used in the breadth-first search may ré&ylirgn) time, since the queues can
grow as big a®d(n) for a particular search. Our overall running time is therefoxaklogn).

Theorem 4. We can enumerate thek nearest neighbors to each of aset of pointsin RY, in order by distance, in
time O(knlogn).

5.2 Unordered Variant of k Nearest Neighbors

We now describe how to speed up Algorithm 3 using the techniques of Lemma 4 in the case where we do not
require the neighbors to be output in order by distance. As before our ordered enumeration algorithm consists
of searching out to a certain distarici the breadth-first search tree. If we knew that distance, we could simply
search the tree in depth first order as in Theorem 1. If we knew how many entries in the tree we were going
to search, we could find all those entries using Lemma 4 and then select among them as we did in Theorem 3.
However neithed nor the number of entrids+ k' is available to us.

To get around these difficulties, we use the following strategy.«Llet an estimate for the unknown value
k + K. Initially we choosec = O(k). We use Lemma 4 to find thesmallest entries in the breadth first search
tree, corresponding to thenearest neighbors to the root$ We scan that set af neighbors and count how
many of them are its. If k or more neighbors are i, they must be a superset of the tkueearest neighbors,
which we can find by a linear time selection algorithm [4]. If fewer tkareighbors are itg, we doublec and
continue iteratively. The final value efwill then be less than@ + k’). The time per iteration i© (x) and the
time for all iterations adds in a geometric serie©xk + k’). We have already seen that adding these quantities
for all input points gives a total aD (kn).

Theorem 5. We can list thek nearest neighbors to each of a set of points in R, as an unordered set, in time
O(nlogn + kn).

Finally, we note that the bound of Theorem 4 can be improved f@xknlogn) to O(nlogn + knlogk)
time, matching the planar results of Dickerson et al.[11], by applying Theorem 5 and then using a sorting
algorithm within each set of neighbors, but the resulting algorithm is considerably more complicated than that
presented above.

6 Summary

We have given a® (nlogn+klogk) time andO (n+ k) space algorithm for the solution to Problem 2, reporting
thek smallest interpoint distances of a &bf n points in a plane; we improved this ©@(nlogn + k) to list
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the distances without requiring them to be in order. We have also gived(afogn + k) time algorithm
for Problem 1, andO(nklogn) and O(nlogn + kn) time algorithms for Problem 3. These algorithms are
based on a modification of a common data structure, the Delaunay triangulation. This shows that the Delaunay
triangulation, which because of its high complexity was previous thought to be of little use for solving proximity
problems in higher dimensions, can be used as a theoretically efficient underlying data structure. Our algorithms
for enumerating points in order are simple given the Steiner Delaunay triangulation. Our improved algorithms
for listing the points out of order make use of some complicated subroutines, in particular the linear time selection
algorithm of Blum et al. [4], but they demonstrate optimal asymptotic efficiency.

In all algorithms given in this paper, the initi@(nlogn) time step is a true preprocessing phase used only
to construct the Steiner Delaunay triangulation. The same structure remains for use in other applications. In
particular, with the fixed radius search algorithm we have a running tin@(of+ k) for any search radius
once the triangulation is computed.

6.1 Open Problems

There are a number of interesting open questions related to the work presented here.

() Can the result of Agarwal et al. [1] be improved for latgdor instance wheik is ©(n%)? How good a
deterministic algorithm is possible? In particular, how quickly can the median problem be solved?

(i) Our algorithm for enumerating thesmallest interpoint distances requi@sn logn + klogk) time. The
algorithms of Salowe and of Lenhof and Smid requrén logn + k) time but does not give the distances in
nondecreasing order and requires thae at mosh. Is there an algorithm that can enumerate the distances in
non-decreasing order i®(nlogn + k) time? A solution to this problem would give @(n?) algorithm for
listing all of the interpoint distances in increasing order, solving an old open problem.

(i)  We present asymptotically optimal methods for solving a number of proximity problems. These problems
have also been solved optimally by Salowe [22], Lenhof and Smid [17], and Callahan and Kosaraju [6, 7] using
different algorithms. Can we compare the constant factors in these asymptotic bounds, and the dependence of
those bounds on the dimension, to determine which of the various algorithms would be best in pPactice?
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