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Abstract

We present algorithms for five interdistance enumeration problems that take as input a setS of n points
in IRd (for a fixed but arbitrary dimensiond) and as output enumerate pairs of points inS satisfying various
conditions. We present: anO(n logn + k) time andO(n) space algorithm that takes as additional input a
distanceδ and outputs allk pairs of points inSseparated by a distance ofδ or less; anO(n logn + k logk)

time andO(n+k) space algorithm that enumeratesin non-decreasing orderthek closest pairs of points inS;
an O(n logn + k) time algorithm for the same problem without any order restrictions; anO(nk logn) time
and O(n) space algorithm that enumerates in nondecreasing order thenk pairs representing thek nearest
neighbors of each point inS; and anO(n logn+ kn) time algorithm for the same problem without any order
restrictions. The algorithms combine a modification of the planar approach of Dickerson, Drysdale, and
Sack [11] with the method of Bern, Eppstein, and Gilbert [3] for augmenting a point set to have a linear size
bounded degree Delaunay triangulation. Thus, in addition to providing new solutions to these problems, the
paper also shows how the Delaunay triangulation can be used as the underlying data structure in a unified
approach to proximity problems even in higher dimensions.

1 Introduction

In this paper, we present efficient algorithms for the following problems:

Problem 1. (Fixed-Radius Near-Neighbors Search)Given a finite set S of n distinct points in IRd, and a
distance δ. For each point p ∈ S report all pairs of points (p, q), q ∈ S such that the distance from p to q is
less than or equal to δ.

Problem 2. (Enumerating Distances in Space)Given a finite set Sof n distinct points in IRd, with d1 ≤ · · · ≤
d(n

2)
the distances determined by the pairs of points in S. For a positive integer k ≤ (n

2

)
, enumerate k pairs of

points which realize d1, . . . , dk.

Problem 3. (K Nearest Neighbors)Given a finite set S of n distinct points in IRd, and a positive integer
k ≤ n − 1, enumerate the k nearest neighbors of each point in S.

The first two problems are closely related. Simply stated, Problem 2 is to report in nondecreasing order
by distances thek closest pairs of points inS (with the simplifying assumption that for multiple pairs with
equivalent distances, we may enumerate them in arbitrary order). Ifδ of Problem 1 is the distance to a unique
kth longest distance for thek of Problem 2, then the pairs of points output in the solutions to the two problems
are identical. Note thatk is not necessarily known in advance for either problem, but for Problem 2 may be
determined dynamically by some other condition. We also examine a slightly easier version of Problem 2 where
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k is known in advance and the pairs are not necessarily enumerated in order, and also an easier version of
Problem 2 where we do not require the neighbors to be enumerated in order by distance.

The algorithms we present in this paper extend the recent planar results of Dickerson and Drysdale [9]
and Dickerson, Drysdale, and Sack [11] to higher dimensions by making use of the results of Bern, Eppstein,
and Gilbert [3] onprovably good mesh generation.Bern, et al. showed how for a setS of points in arbitrary
dimension, a supersetS′ of S could be found inO(n logn) time so that the Delaunay triangulation ofS′ has
linear complexity. Specifically, they give a construction such that|S′| is O(|S|), and with the added property
that the degree of each vertex in the Delaunay triangulation ofS′ is bounded by a constant. Our paper presents a
unified approach to Problems 2, 1, and 3. We show for the first time how Delaunay triangulation can be used in
efficient solutions to general proximity problems in higher dimensions. We describe our methods with respect
to the EuclideanL2 metric, but we do not use this metric in any essential way; similar techniques and results
apply to other metrics onIRd, and in particular to theL p metrics.

1.1 Background and Previous Results

Problem 2 was posed by Smid [24]. He presented anO(n logn) time O(n) space algorithm for enumerating
theO(n2/3) smallest distances for a set ofn points ind-space for anyL p metric, and posed as an open problem
enumerating the2(n) smallest distances inO(n logn) time andO(n) space. He used this as a subroutine in
solving the following problem: Given a setP of n points inIRd, create a linear size data structure supporting the
insert(x, P), delete(x, P), andminimum-distance(P) operations inO(n2/3 logn) time for anyL p metric. Smid
showed how the update times for his data structure could be improved toO(

√
n logn) time given anO(n logn)

solution to Problem 2 fork = n. (Smid also has an algorithm to solve this problem ink-dimensional space
in O((logn)k+2) amortized time andO(n(logn)k) space [25].) A solution to Problem 2 is also an important
substep in one of the fast greedy triangulation algorithms of Dickerson, Drysdale, McElfresh, and Welzl [12].
For this application,k is not known in advance (the enumeration is terminated when the triangulation is complete)
and the pairs are required in nondecreasing order of distance.

Closely related to Problem 2 is the following problem recently investigated by Chazelle [8], and by Agarwal,
Aronov, Sharir, and Suri [1]:

Problem 4 (Selecting Distances).Given a finite set S of n points, let d1 ≤ · · · ≤ d(n
2)

be the distances deter-
mined by the pairs of points in S. For a given positive integer k ≤ (n

2

)
, determine the value of dk and find a pair

of points that realizes dk.

A solution to Problem 2 clearly provides a solution to Problem 4, although we would expect there to be a
faster algorithm forselectionthan for theenumerationproblem which may have large output size. (That is, it
would be nice to have an algorithm for selection whose running time is independent ofk.)

Problem 1 has also received considerable attention. It was pointed out in [9] that the fixed-radius search
arises in many situations when we have a density restriction “no more thanm pairs of points may lie within a
given distance of each other.” The problem was originally solved by Bentley, Stanat, and Williams [5] in worst
case timeO(3ddn logn + 3dk) whered is the dimension andk the number of pairs reported. Algorithms for
problem 1 have also been used by Salowe [21, 22] and Lenhof and Smid [17] as subroutines in parametric-search
methods for solving Problems 2 and 4.

Problem 3 is a generalization of the well-known nearest neighbors problem. For classification problems,
it is more robust than a simple nearest neighbors search. The graph ofk nearest neighbors to each point has
certain interesting theoretical properties [18, 19]. Eppstein and Erickson [13] showed how a variety of clustering
problems such as those of findingk points with minimum diameter, circumradius, or variance, could all be solved
efficiently using algorithms for Problem 3 as a subroutine, improving previous techniques based onkth order
Voronoi diagrams. Problem 3 has also been used for contouring in geographic information systems.

Chazelle [8] presented a subquadratic solution to Problem 4 based on the batching technique of Yao [27]. The
algorithm works in any dimension in timeO(n2−β(d) log1−β(d) n)whereβ(d) = 1/(2d+1). Thus for dimension 2
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the running time isO(n9/5 log4/5 n). More recently, Agarwal, Aronov, Sharir, and Suri [1] have improved that
result for theplanarcase providing a deterministic algorithm that runs in timeO(n3/2 log5/2 n), and a randomized
algorithm with expected running time ofO(n4/3 log8/3 n). Agarwal, in a personal communication, has claimed
that the randomized algorithm can be made deterministic without affecting the running time significantly. In
d-dimensions, he can select thekth distance in timeO(n2(1−1/(d+1))+ε), whereε is any arbitrarily small constant.

Salowe has also solved the interdistance selection problem for theL∞ metric ind-dimensions inO(n logd n)

time [20] fork ≤ n, and has since extended these results to get anO(n logn + k) time algorithm for Problem 2
that works for anyL p metric [21, 22]; however the value ofk must be known in advance, and the distances are not
enumerated in order. As a sub-step, Salowe also presents an algorithm to solve Problem 1, the fixed-radius near-
neighbor search problem, in timeO(n logn+k) for L p metrics ind-dimensions. This algorithm was inspired by
Vaidya’s optimal all-nearest-neighbors algorithm [26]. Lenhof and Smid [17] have also presented an algorithm
to compute thek closest pairs (k known in advance and the pairs not generated in order) inO(n logn + k) time,
using an approach similar to that of Salowe. Our paper presents algorithms with similar asymptotic running
times, using different methods than those of Salowe, and Lenhof, and Smid.

For the planar case of Problem 2, enumerating the smallestk distances, Dickerson, Drysdale, and Sack [11]
presented anO(n logn + k logk) time andO(n + k) space algorithm. A nice feature of the algorithm of [11]
is that it is based on a common data structure, the Delaunay triangulation. It is both simple to state and easy to
implement. Unfortunately, this result did not extend directly to higher dimensions. Though the algorithm can
be shown to work correctly in any dimension, the running time deteriorates ford > 2 because the Delaunay
triangulation, even ford = 3, may have quadratic size.

Previous work on Problem 3 has generally been independent of work done on the other problems, with very
different methods used in the solutions. Problem 3 can be solved by constructing the order(k + 1) Voronoi
diagram, and then for each pointp determining the otherk points lying in the same Voronoi region. For small
values ofk in the plane, this is a fairly efficient method. Lee [16] showed how to construct the orderk Voronoi
diagram inO(k2n logn) time, and Aggarwal et al. [2] have since improved that result toO(k2n + n logn) time.
Dickerson et al.[11] presented an asymptotically faster algorithm requiringO(n logn + kn logk) time for the
planer case; as with their solution to Problems 2 and 1, it searches the standard Delaunay triangulation. Eppstein
and Erickson [13] solved the planar problem for the simplerL∞ metric in timeO(n logn + kn). Once again,
however, these approaches were not efficient in higher dimensions. Vaidya [26] gives an alternate approach
based on a modified form of quadtrees; his algorithm works in any dimension and requiresO(kn logn) time.

In this paper, we extend the result of [11]. We show how to make use of the results of [3] on linear-sized
higher dimensional Delaunay triangulation to solve proximity problems in higher dimensions. Because of the
addition of Steiner points, it is not at all clear that even with the linear size and constant degree bound of the
constructed Delaunay triangulation, that the algorithms will be efficient. In particular, any given point may have
a large number of neighboring Steiner points that will increase the amount of work done even though we do
not want to report these pairs as part of our output. The analysis of our algorithm will require an amortization
argument to show that the amount of extra work we do is proportional to the size of the input anddesiredoutput.

Our results for the unordered variants of Problem 1 and Problem 2 are matched asymptotically by those
of Salowe [22] and Lenhof and Smid [17]. And empirical results for the algorithm of [17] in two dimensions
compare favorable with the results of [11]. However the method of [17] requires thatk be known in advance and
does not output the pairs in order, and thus may not be used as a substep in the greedy triangulation. Our methods
may also be somewhat simpler: in particular, unlike the approach of [22], our algorithm for Problem 2 does not
require the use of parametric search. Our algorithm for Problem 3 is fastest known solution asymptotically, and
is indeed optimal as well as being conceptually simple.1

1Very recently Callahan [6] has claimed that his work with Kosaraju [7] provides an alternate solution to Problem 3 with the same
running timeO(n logn + kn)
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Preprocessing Phase Given a finite setSof n distinct points, construct a linear sized, bounded vertex degree
Delaunay triangulationD of S′ as described in [3].

Search Algorithm From each pointp in the original setS, do a depth first search onD. Halt each branch of
the search at the first pointq such thatd(p, q) > δ. Report all pairs(p, q) such thatd(p, q) ≤ δ andq ∈ S.
(Don’t report(p, q) if q ∈ S′ − S.)

Figure 1: Algorithm 1

2 Fixed-Radius Near Neighbors Search in Space

We begin with the Problem 1, the fixed-radius near neighbors search problem, as the proof of correctness and
amortization arguments are slightly simpler than those for Problems 2 and 3. Throughout the paper, we let
d(p, q) be the Euclidean (orL2) distance fromp to q for p, q ∈ IRd.

We present an algorithm for Problem 1 that requiresO(n logn + k) time andO(n) space. Specifically, we
have a one-time preprocessing phase ofO(n logn) time andO(n) space to compute the higher dimensional
Delaunay triangulation with added Steiner points. Given this data structure, we can solve the problem for any
value ofδ in O(n + k) time andO(n) space. Algorithm 1 is given in Figure 1. A proof of the algorithm’s
correctness and complexity will follow.

2.1 Proof of Correctness

To prove the correctness of Algorithm 1, we use Lemma 1 below. This is a similar version of a lemma for the
planar case appearing as Lemma 1 in [11].

Lemma 1. Let Sbe a set of distinct points in IRd, and D the Delaunay triangulation of S. Let p and q be points
in S. Then either (p, q) is an edge in D or there is a point r ∈ Swith edge (r, q) ∈ D and d(p, r ) < d(p, q).

Proof: Let H be the largest empty sphere contained in the diameter sphereH ′ of (p, q) and lying onH ′ at
point q. If H = H ′, thenH ′ is an empty sphere containing edge(p, q), and(p, q) is in D. Otherwise there
is some pointr in H ′ tangent toH . SinceH is empty,(r, q) is in D. And sincer is in H ′, which is in turn
contained in the sphere with radius(p, q) centered atp, d(p, r ) must be less thand(p, q). 2

That Algorithm 1 correctly reports all pairs(p, q) with d(p, q) ≤ δ follows from Lemma 1 by induction
on d(p, q). The base case for eachp ∈ S is the closest pointp∗ ∈ S. Sincep∗ is a nearest neighbor top,
the edge(p, p∗) must be inD , and thusp∗ is found on the depth-first search fromp. Now consider another
point q with d(p, q) ≤ δ. If (p, q) is also inD, then it too is found directly in the depth-first search. But by
Lemma 1, if(p, q) is not in D then there is a pointr ∈ S with (r, q) in D andd(p, r ) < d(p, q). By our
inductive hypothesis,r will be reported in the depth-first search, and since(r, q) is in D, we knowq will also
be reported oncer is found.

2.2 Steiner Point Density

Before we analyze our fixed radius search algorithm, we prove a key lemma about the density of Steiner points in
the construction of [3]. Recall that the result of [3] was a setS′ ⊃ Swith |S′| = O(|S|), such that the Delaunay
triangulation ofS′ has a constant degree bound. We extend the|S′| = O(S) bound to a more local condition to
say that, roughly, within any region ofIRd, the number of points inS′ is proportional to that inS.
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We first describe in some detail the construction ofS′ from [3], as that paper was more concerned with

two-dimensional triangulation algorithms and omitted some important details from the higher-dimensional
construction. Letx = O(

√
d) be sufficiently large that any sphere of radiusx in IRd contains at least one cube

with vertices having integer coordinates. We construct aquadtreeby starting with a hypercubicalroot box
containingS, and then recursively subdividing each box into 2d smaller boxes until each box contains at most
one point and each input point is in the center of a grid of 3d equal-size boxes. As we perform this subdivision,
we maintain abalance conditionthat no two adjacent unsubdivided hypercubes can differ in size by more than
a factor of two. If more than some fixed numberc of subdivisions occurs without separating any points, we
identify aclusterof points which we triangulate recursively, using a root box for the recursive cluster that is the
center cube of a grid of 5d cubes, that may then be subdivided to meet the same balance condition above. Note
that none of the outer cubes in such a grid will be subdivided. In the outer quadtree, we treat this cluster as a
single point, so it should end up in a grid of 3d equal-size boxes.

We then formS′ by replacing each box in the quadtree or surrounding a recursive cluster by a grid ofxd

points, and taking the union of these grid points with our input set. These grids have the property that no sphere
can pass through two nonadjacent boxes without having an interior grid point. As a consequence, the complexity
of the Delaunay triangulation ofS′ is proportional to the number of boxes in the quadtree, that as we note in the
proof below isO(n).

Lemma 2. Let D be a disk of radius r in IRd, and let D(1+ ε) be a concentric disk of radius r (1+ ε) for some
fixed ε > 0. Let m denote the number of input points within D(1 + ε), and let m′ denote the number of points
of S′ within D. Then m′ = O(m), with a constant of proportionality depending only on d and ε.

Proof: Define thelevelof a Steiner pointp, denoted̀ (p), to be the size of the quadtree box containingp. If
p was added as part of a box in the grid around a recursive cluster, then let the level ofp be the size of that box.

In any quadtree, the boxes formed by the balance condition are within distanceO(`(p)) of boxes formed
by some other subdivision. And the limit on the number of subdivisions possible without forming a recursive
cluster implies that for any Steiner pointp, there is a pair of input points within distanceO(`(p)) from p,
separated by the subdivision of a hypercube of size2(`(p)). Thus globally we can charge each Steiner point to
the subdivision event in which that pair of points was separated, and each event is chargedO(1) times, giving
the O(n) bound of [3].

Locally, within D we can charge each Steiner pointp for which `(p) = O(ε) to an event in which two
input points inD′ are separated. There can bem − 1 such events, so there can beO(m) such Steiner points.
The remaining Steiner points, for which`(p) = Ä(ε), are separated by a distance ofÄ(`(p)) from each other
and hence there can be at mostO((1/ε)d) = O(1) such points.2

2.3 Analysis

We now provide an amortized analysis of the running time of our fixed radius search algorithm. The preprocessing
phase takes timeO(n logn), as shown in [3]. The search phase takes time proportional to the number of vertices
searched, since the Delaunay triangulation has fixed degree. Some of those vertices form pairs that are part of
the output, while others are Steiner points added in the preprocessing phase and do not contribute to the output.
To analyze the algorithm, we must amortize the cost of looking at a pair of points(p, q) with q a Steiner point
against the actual cost of all reported pairs. The argument follows.

Consider dividingIRd into a grid of hypercubes of fixed diameterδ. Let points lying on the boundary of
more than one grid be considered as belonging to the adjacent grid in the direction of negative infinity. Within a
grid cell gi let mi denote the number of Steiner points andni denote the number of input points. It is clear that
all

(ni
2

)
pairs of input points in the same grid cell are reported.

Now consider a Steiner points ∈ S′ − S, contained in cellgi . The amount of work caused by this Steiner
point is bounded asymptotically by the numberm of original points within a distanceδ from s. We chargem
units to that one of theO(1) grid cells within distanceδ of gi and having the largest value ofni .
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Lemma 3. Each cell gi is charged at most O(n2
i ) units.

Proof: Let some Steiner points be within distanceδ of m input points. There areO(1) grid cells within
distanceδ, sos must be within distanceδ of a grid cell havingÄ(m) points, and will only charge a cell with at
least that many points. Equivalently, each cellgi is charged only by Steiner points withm = O(ni ).

To complete the proof we show that cellgi is charged by at mostO(ni ) Steiner points. For suppose that some
cell gj within distanceδ of gi has more thancni Steiner points for some sufficiently largec. Then by Lemma 2
there must beÄ(cni ) input points within distanceδ of gj , thus there would be a single cell withÄ(cni ) points
and ifc is sufficiently large this would be more thanni andgi would not be charged by points ingj . Thusgi is
charged only from cells withO(ni ) Steiner points, and it can be charged only by theO(1) cells within distance
δ of gi , completing the proof.2

Thus the time spent searching Steiner vertices can be charged against the number of output pairs, and we
have the following result.

Theorem 1. Given a set of n points in IRd, We can list all interpoint distances less than some given δ, in time
O(n logn + k) where k denotes the number of such distances.

3 Enumerating k Smallest Distances

We now present an algorithm for Problem 1. The basic idea of the algorithm is simply to interleave simultaneous
breadth-first searches2 from all vertices in the original setS, wherebreadthis defined by distance and not by
number of edges. For those familiar with Algorithm 1 in [11], this algorithm is based on a similar strategy but with
four main differences: in thepreprocessingphase, we use the Steiner Delaunay triangulation as presented in [3],
rather than the standard (possibly quadratic sized) Delaunay triangulation for points inIRd; in theenumeration
phase we allow the queue to grow beyond sizek (though we show that the size will remainO(k)); the bounded
degree of the vertices implies that we need not sort adjacent edges in increasing order by length; and finally we
treat all points and pairs of points equally, including Steiner points, except that we only begin our breadth-first
searches from original points, and we onlyreport pairs where both points are from the original setS.

The algorithm requiresO(n logn + k logk) time andO(n + k) space. Specifically, we have a one-time
preprocessing phase ofO(n logn) time andO(n) space, followed by an algorithm requiringO((n+k) log(n+k))

time andO(n + k) space. A discussion of the algorithm’s correctness and complexity will follow.

3.1 Correctness of Algorithm 2

Algorithm 2 is given in Figure 2. We letQ be a priority queue that supportsDeleteMin andInsert operations.
TheDeleteMin operation deletes fromQ the pair(v, w) with minimum distance and returns(v, w). TheInsert
(v, w) operation checks to see if(v, w) is already inQ, and inserts it only if it is not. As noted, what this
algorithm does is essentially a simultaneous interleaved breadth-first search from all vertices inS.

The correctness of Algorithm 2 follows, using Lemma 1, by induction on the number of pairs deleted from
Q. The inductive hypothesis is: At thej th iteration of the loop, aj th closest pair(v, w) of points fromS× S′

will be deleted from the priority queueQ. Furthermore, all pairs of points separated by distance≤ d(v, w) will
have been inserted into the queue before stepj . A detailed proof for a slightly simpler planar version of the
algorithm is given in [11].

2We might call these “best-first” or “closest-first” search. We cannot use the simpler depth-first search as we did in Algorithm 1 for
two reasons: 1) we do not know the search distanceδ in advance, and so we don’t know the halting condition; and 2) we must enumerate
the distance in non-decreasing order.
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1. Preprocessing Phase Given a finite setSof n distinct points inIRd, construct a linear sized, bounded vertex
degree Delaunay triangulationD of S′ as described in [3].

2. Initialization Phase For each edge(v, w) ∈ D with v ∈ S, Insert(v, w).

3. Enumeration Phase

Let i := 1.
WHILE i <= k DO

a) Let(v, w) := DeleteMin(Q); mark(v, w) “visited”
b) Let δ := d(v, w).
c) if v, w ∈ Sandv <lex w then

report(v, w) with di = δ.
Let i := i + 1.

d) ∀(w, x) if (v, x) has not been visitedthen Insert(v, x);
END

Figure 2: Algorithm 2

3.2 Analysis

We now analyze the complexity of Algorithm 2. As already discussed, Step 1 requiresO(n logn) time andO(n)

space and results is the Delaunay triangulationD of a point setS′ ⊇ S with |S′| is O(|S|) and the maximum
vertex degree inD bounded by a constant [3]. Using an appropriate balanced tree implementation for our queue,
we can perform theInsert andDeleteMin operations inO(K ) space andO(log K ) time whereK is the current
size of the queue. The time required by Step 2 is thereforeO(n logn).

To analyze the enumeration phase, Step 3, letK be the number of iterations of the WHILE loop. Since
the maximum degree of vertices inD is also constant, step 3.d) contributes only a constant number ofInsert
operations per iteration of the loop, so the queue remains of sizeO(n+ K ). A dictionary also of sizeO(n+ K )

can be used to keep track of the edges already visited. Thus theInsert andDeleteMin operations each require
time O(log(n + K )). Steps 3.b) and 3.c) can be done in constant time per iteration. It follows thatK iterations
of the WHILE loop require a total ofO(K log(n + K )) time.

To prove our bound ofO((n + k) log(n + k)), it remains only to prove thatK is O(n + k). However this
follows directly from the analysis given for Algorithm 1. Letδ be the length of thekth longest distance inS.
We showed in our earlier analysis that we examine at mostn + k pairs of points in a search of radiusδ. Having
shown thatK is O(n + k), we have completed the proof of the following result:

Theorem 2. We can enumerate the k smallest distances determined by a set of points in IRd, in order by distance,
in time O(n logn + k logk).

This is asymptotically equivalent to the running time of the previously known planar algorithm, but now
holds in any fixed dimension.
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4 Enumerating k Unordered Distances

We now describe how to modify the bound of Theorem 2, to eliminate theO(logk) term in the case thatk is
known in advance and thek distances to be enumerated need not be output in order.

The analysis of our previous algorithm tells us that there is some (large) constantc, such that if we enumerate
the ck smallest distances inS′ we will be guaranteed to find among them thek smallest distances inS. The
actualk smallest distances can then be found by a linear time selection algorithm [4]. (An explicit bound onc
is needed to implement the algorithm, but this can be determined by a more careful analysis in Lemmas 2 and
3; we omit the details here.)

Thus we can reduce the problem to one of finding thecksmallest distances in a collection ofn bounded-degree
breadth first search trees. We use an algorithm of Frederickson [15] for performing selection in heap-ordered
trees.

Lemma 4 (Frederickson [15]). Let T be a binary tree in which each vertex has a weight, and in which the
weight of any vertex is less than the weight of its children. Then we can find the k smallest weights of vertices
in T , in time O(k).

Note that the time bound of Lemma 4 does not depend on|T |, but only onk. For instance, Frederickson uses
this lemma to find thek smallest spanning trees in a graph in timeO(m logβ(m, n) + k3/2) [14], even though
in this applicationT has exponential size.

In our application, the breadth first search trees are not binary, but they have bounded degree, which is
sufficient for the lemma (one can translate a degree-δ tree into a binary tree by expanding each vertex into a
subtree ofδ −1 vertices; this only changes by a factor ofδ −1 the number of nodes that need to be enumerated).
In our breadth first search trees, the weight of each vertex is the Euclidean distance to the tree root; these weights
have the appropriate heap ordering by Lemma 1. There is only one further complication: Lemma 4 requires
that the input be a single treeT , whereas we wish to perform global selection in a forest ofn trees. We form a
single treeT by hooking the forest together using a binary tree withn leaves; all the new nodes of the binary
tree will have weight zero. We can then find theck smallest distances inS′ by selecting the(δ − 1)ck+ 2n − 1
smallest weight vertices inT , eliminating repetitions, and ignoring the 2n−1 zero-weight vertices in the binary
tree connecting our breadth-first search trees and at the roots of the breadth-first search trees.

Theorem 3. We can list the k smallest distances determined by a set of points in IRd, as an unordered set, in
time O(n logn + k).

5 Enumerating k Nearest Neighbors

We now present our algorithm for Enumeratingk nearest neighbors of each point inS. This algorithm uses the
same approach as the previous two: searching the Steiner Delaunay triangulation. Here, however, the amortized
analysis is slightly different. The output is actually of sizenk rather than sizek.

5.1 Correctness and Analysis

Algorithm 3 is given in Figure 3. Once again, the proof of correctness follows directly from Lemma 1. The
analysis of the running time takes a slightly different turn, however. It is based on the following lemma.

Lemma 5. Let Sand S′ be two sets of points in IRd for arbitrary but fixed dimension d. Let p be a given point
in set S′. The number of points q ∈ S such that p can be as close to q as q’s kth nearest neighbor in S is O(k).

A generalization of the proof of Lemma 4 in [11] suffices to prove Lemma 5. We may now complete our
analysis. The number of vertices visited in the breadth-first search from some pointp ∈ S is O(k + k′) where
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1. Preprocessing Phase Given a finite setSof n distinct points inIRd, construct a linear sized, bounded vertex
degree Delaunay triangulationD of S′ as described in [3].

2. Enumeration Phase For each pointp in S, do a breadth-first search (by distance) onD to find thek nearest
neighbors inS.

Figure 3: Algorithm 3

k′ is the number of Steiner points as close top as itskth nearest neighbor inS. Though for a particular pointp,
k′ may be as large asn, by Lemma 5 we know that a Steiner point is visited at mostO(k) times in all searches
from all points inS. Since the number of Steiner points isO(n), the number of visits to all Steiner points is
O(nk). Each queue operation used in the breadth-first search may requireO(logn) time, since the queues can
grow as big asO(n) for a particular search. Our overall running time is thereforeO(nk logn).

Theorem 4. We can enumerate the k nearest neighbors to each of a set of points in IRd, in order by distance, in
time O(kn logn).

5.2 Unordered Variant of k Nearest Neighbors

We now describe how to speed up Algorithm 3 using the techniques of Lemma 4 in the case where we do not
require the neighbors to be output in order by distance. As before our ordered enumeration algorithm consists
of searching out to a certain distanceδ in the breadth-first search tree. If we knew that distance, we could simply
search the tree in depth first order as in Theorem 1. If we knew how many entries in the tree we were going
to search, we could find all those entries using Lemma 4 and then select among them as we did in Theorem 3.
However neitherδ nor the number of entriesk + k′ is available to us.

To get around these difficulties, we use the following strategy. Letκ be an estimate for the unknown value
k + k′. Initially we chooseκ = O(k). We use Lemma 4 to find theκ smallest entries in the breadth first search
tree, corresponding to theκ nearest neighbors to the root inS′. We scan that set ofκ neighbors and count how
many of them are inS. If k or more neighbors are inS, they must be a superset of the truek nearest neighbors,
which we can find by a linear time selection algorithm [4]. If fewer thank neighbors are inS, we doubleκ and
continue iteratively. The final value ofκ will then be less than 2(k + k′). The time per iteration isO(κ) and the
time for all iterations adds in a geometric series toO(k + k′). We have already seen that adding these quantities
for all input points gives a total ofO(kn).

Theorem 5. We can list the k nearest neighbors to each of a set of points in IRd, as an unordered set, in time
O(n logn + kn).

Finally, we note that the bound of Theorem 4 can be improved fromO(kn logn) to O(n logn + kn logk)

time, matching the planar results of Dickerson et al.[11], by applying Theorem 5 and then using a sorting
algorithm within each set of neighbors, but the resulting algorithm is considerably more complicated than that
presented above.

6 Summary

We have given anO(n logn+k logk) time andO(n+k) space algorithm for the solution to Problem 2, reporting
thek smallest interpoint distances of a setS of n points in a plane; we improved this toO(n logn + k) to list
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the distances without requiring them to be in order. We have also given anO(n logn + k) time algorithm
for Problem 1, andO(nk logn) and O(n logn + kn) time algorithms for Problem 3. These algorithms are
based on a modification of a common data structure, the Delaunay triangulation. This shows that the Delaunay
triangulation, which because of its high complexity was previous thought to be of little use for solving proximity
problems in higher dimensions, can be used as a theoretically efficient underlying data structure. Our algorithms
for enumerating points in order are simple given the Steiner Delaunay triangulation. Our improved algorithms
for listing the points out of order make use of some complicated subroutines, in particular the linear time selection
algorithm of Blum et al. [4], but they demonstrate optimal asymptotic efficiency.

In all algorithms given in this paper, the initialO(n logn) time step is a true preprocessing phase used only
to construct the Steiner Delaunay triangulation. The same structure remains for use in other applications. In
particular, with the fixed radius search algorithm we have a running time ofO(n + k) for any search radiusδ
once the triangulation is computed.

6.1 Open Problems

There are a number of interesting open questions related to the work presented here.

(i) Can the result of Agarwal et al. [1] be improved for largek, for instance whenk is Ä(n2)? How good a
deterministic algorithm is possible? In particular, how quickly can the median problem be solved?

(ii) Our algorithm for enumerating thek smallest interpoint distances requiresO(n logn + k logk) time. The
algorithms of Salowe and of Lenhof and Smid requireO(n logn + k) time but does not give the distances in
nondecreasing order and requires thatk be at mostn. Is there an algorithm that can enumerate the distances in
non-decreasing order inO(n logn + k) time? A solution to this problem would give anO(n2) algorithm for
listing all of the interpoint distances in increasing order, solving an old open problem.

(iii) We present asymptotically optimal methods for solving a number of proximity problems. These problems
have also been solved optimally by Salowe [22], Lenhof and Smid [17], and Callahan and Kosaraju [6, 7] using
different algorithms. Can we compare the constant factors in these asymptotic bounds, and the dependence of
those bounds on the dimension, to determine which of the various algorithms would be best in practice?3
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