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I: A happy ending



Quadrilaterals in five-point sets

Esther Klein, early 1930s:

Five points in general position
(no three in a line)
contain a convex quadrilateral

Proof:

If convex hull has 4 or 5
vertices, obvious

Otherwise, line through inner
points misses a hull edge; use
that edge + inner points



Erdős and Szekeres, 1935

Generalization to larger convex polygons

Every
(2k−4
k−2

)
+ 1 < 4k points in general position

contain a convex k-gon

Conjecture: # points needed to ensure a convex k-gon is 2n−2 + 1

Still open, $500 prize for solution

Klein and Szekeres marry, commemorated in the theorem name



A Pascal’s triangle of point sets

Each set of
(n
i

)
points combines above-left

(n−1
i−1
)

and right
(n−1

i

)
Separated far enough so lines through two left points pass above
right points, lines through two right points pass below left points



Cups and caps

For the set in position
(n
i

)
, largest cup (subset of points on the

graph of a convex function) has size n − i + 1 and largest cap
(subset on the graph of a concave function) has size i + 1



Erdős and Szekeres, 1960

One side of the 1935 conjecture:
there exist sets of 2k−2 points with no convex k-gon

Construction: Glue together the sets on one row of Pascal’s
triangle in the same way the individual sets are glued together

Convex subsets either stay in one subset, or have the form
cap – point – point – · · · – cup



Finding the largest convex subset

Chvátal and Klincsek 1980; Edelsbrunner and Guibas 1989

Biggest polygon with fixed bottom vertex is dual to longest convex
chain in line arrangement, found by sweeping the arrangement

Test all choices of bottom vertex: O(n3) time, O(n) space

(Related algorithms for finding convex subsets with other optimization
criteria: E, Overmars, Rote, Woeginger, 1992; E, Erickson, 1994)



Suk 2016

Every 2k+O(k2/3 log k) points in general position have a convex k-gon

Proof strategy:

Use E–S 1935 to find a big cup or cap (red)
such that each yellow region has many points

Use Dilworth to find large chains or antichains in each yellow region
for partial ordering by triangle containment

Apply case analysis to glue together yellow regions



Key properties of largest convex polygon

The function that maps point sets to
the size of their largest convex polygon
has two key properties.

Monotone:
Removing points can only reduce
largest convex subset

Invariant:
Depends only on relative
orientations of triples of points,
not on their exact locations



Motivation for monotone invariant properties

Hereditary properties (monotonic under vertex removal)
are central to graph theory:

Cliques, independent sets, and coloring

Perfect graphs

Claw-free and triangle-free graphs

Chordal graphs and other intersection classes of graphs

Etc.

We should build an analogous theory in discrete geometry!

. . . or maybe we already have and we just didn’t realize it?



II: A menagerie of
monotone invariant problems



Projective clustering

How many lines are needed to cover all points of a point set?

NP-complete [Megiddo and Tamir 1982]

Fixed parameter tractable [Langerman and Morin 2005]

Greedy cover gives only log-approximation

Open: Can we do better?



The no-three-in-line problem

Dudeney 1917: Largest general-position subset of n × n grid

Erdős 1951: at least n(1− o(1))

Hall et al. 1975: at least n(1.5− o(1))

Guy 2005: conjectures at most

πn√
3

+ o(n) ≈ 1.814n + o(n).

Open: Any upper bound better than 2n



Trading line length for general-position subsets

Erdős 1986, 1988: if not many points
are on any line, must there be a large
general-position subset?

Square grid: Longest line and largest
general-position subset both O(

√
n)

Payne and Wood: Whenever longest
line is ` = O(

√
n), largest

general-position subset is Ω(
√
n/ log `)

Balogh and Solymosi 2017: Some point
sets with no four on a line have largest
general-position subset O(n5/6+ε)

Open: Close gap between 1/2 and 5/6



Orchard planting

Jackson 1821, Lloyd 1914:
How many three-point lines can we form from n points?

Burr et al. 1974: at least

⌊
n(n − 3)

6

⌋
+ 1

Green and Tao 2013: Burr et al. is optimal for large n



Onion layers

Repeatedly remove convex hull vertices

How many layers do you get?

Chazelle 1985: O(n log n)-time algorithm

Har-Peled and Lidický 2013: n × n grid has Θ(n4/3) layers

Conjecture (E, Har-Peled, Nivasch 2017): Onion-peeling convex
subsets of grids approximates the affine curve-shortening flow



Tukey depth

Depth(q) = minimum # points in a halfplane containing q

Deepest point = estimate of central location, more robust to
outliers than the centroid (Tukey 1975)

Deepest point in the plane: not invariant

Deepest from a given point set: invariant and monotone



Integer coordinates

The Perles configuration (Perles, 1960s)

No combinatorially-equivalent set of points has integer coordinates

Open (Grünbaum 2003): Smallest non-integer configuration?

Open: Computational complexity of integer realization?



Rational distances

Euler 1862: For every k there exists a convex polygon with all
pairwise distances rational

Rotate unit vector by
the angle of a

Pythagorean triangle

Reflect integer-sided
triangle across

perpendicular bisectors

(Both constructions listed by Harborth 1998)



Harborth, Erdős, and Ulam

Erdős–Ulam conjecture: there exists a dense subset of the plane
for which all distances are rational

would imply

Harborth’s conjecture: every planar graph can be drawn with all
edges as integer-length line segments

6

6

6

6

6

5 5

5

5

5

5

55

3 3

4

4

4

4

Open, would answer one of the two conjectures:
Is there a general-position set of points with no combinatorially

equivalent rational-distance realization?



Paths with low stabbing number

Any point set has a path with stabbing number O(
√
n), used in

range searching (Agarwal, Matoušek, Welzl 1991–2)

Stabbing number has logarithmic approximation (Har-Peled 2009)

What is its computational complexity?



Shattering number

How many lines needed to separate all points?

Path stabbing number ≥ (n − 1)/L

For grid, L ≈
√
n, but for random points, L ≈ n2/3 logO(1) n
(Har-Peled and Jones 2017)



Universality

Max k s.t. we can draw all k-vertex planar graphs on given points?

The six points below can be used for all six-vertex planar graphs,
but for larger k we need n > k

(Chrobak and Karloff 1989; Kurowski 2004; Cardinal et al. 2015)

Smallest known k-universal set: k2/4− O(n)
(Bannister, Cheng, Devanny, E, 2014)

Open: Close gap between Ω(k) and O(k2)



III: New perspectives from monotonicity



Obstacles

Every monotone property (preserved on deletion) can be
characterized by minimal point sets that violate it (“obstacles”)

Every monotone parameter can be characterized by minimal point
sets forcing parameter ≥ k (obstacles to bounded parameter value)

122b 123 132 133a

222 223 233b 333

111 112a 113112b 122a

133b

233a

complete
quadrilateral

(Some obstacles to covering with two lines, being two points away from
collinear, and being one point away from general position)



Parameters from obstacles

Given obstacles, we can define monotone parameters

Largest obstacle-avoiding set
(e.g. no-three-in-line:
largest 3-line-avoiding subset)

Min points to delete
to eliminate all obstacles

Fewest subsets in partition
into obstacle-avoiding subsets
(projective clustering: fewest
triangle-avoiding subsets)
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How hard is finding an obstacle?

Theorem: Testing whether n points include a given k-point
obstacle is NP-complete, W[1]-hard, and not solvable in time

no(
√
k) unless the exponential time hypothesis fails

Reduction from clique-finding:
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. . . nevertheless, it’s (obviously) polynomial for k = O(1).



Parameterized complexity

Distance to an obstacle-free
subset is always
fixed-parameter tractable

(Sunflower-based kernelization
for hitting sets of bounded size,
Flum and Grohe 2006)

Open: Is there a finite obstacle
set for which largest obstacle-
avoiding subset is not FPT?

(both ΣP
2 -complete for variable

sets of obstacles)



New parameters for hard problems

Partition into general-position subsets is NP-complete for its
natural parameter
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. . . but FPT parameterized by min # lines to cover all points



Property testing

Theorem: For every property
with finitely many obstacles,
sampling nc points for some
c < 1 distinguishes sets with
the property from sets far from
the property, w.h.p.

Sometimes c > 0 is necessary
(e.g. convexity)

Sometimes even O(1) points
suffice (e.g. collinearity)

A set that is n/4-far from convex
whose samples of o(n2/3) points
are w.h.p. convex



Are there always O(1) obstacles?

No! There exist infinite antichains of point sets

Any subset of the antichain can be an obstacle set

But many natural properties have finite obstacles
(including largest obstacle-avoiding subset, projective clustering,

onion layers, Tukey depth, universality)

Properties of some restricted classes of points (e.g. weakly convex,
or covered by two lines) always have O(1) obstacles



Comparison of parameters

Which parameters are bounded by a function of which other
parameters?

Well-quasi-ordered
for bounded
parameter values

SIZE
SHATTER

ONLINE + MAX-GENERAL

OFFLINE

UNSTABBED

DELETE-TO-CONVEX

ONION

DEPTH LINE-COVER
MAX-GENERAL
MAX-CONVEX

UNIVERSALCONVEX-PARTITION
ONLINE + WEAK-PARTITION

WEAK-PARTITION

PATH-STAB

HEAVY-POINTS
ONLINE + HEAVY-LINES

DELETE-TO-GENERALHEAVY-LINES

MULTIPLE-HEAVY

HEAVY-KERNEL

GENERAL-PARTITION

ONLINE



Conclusions

Monotonicity provides a unifying framework for many famous
problems in discrete geometry

Characterization by obstacles leads to algorithms of many types
(exact, parameterized, approximation, property testing)

Much more remains to be done!
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