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My specialty: Algorithm design

The algorithm design process:

I Find a computational task
in need of solution

I Abstract away
unimportant details

I Often, a naive algorithm
exists but is too slow

I Design algorithms that are
faster (scale better with
problem size) without
sacrificing solution quality
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ALEKS circa 2000–2005

Ø

A B

AC AB

ACE ABC ABD

ABCE ABCD ABDF

ABCDE ABCDF ABDFH

ABCDEF ABCDFH

ABCDEFG ACBDEFH

ABCDEFGH

Limited to quasi-ordinal
learning spaces:

I What a student knows is
represented as a finite set,
the set of concepts the
student has mastered

I Learning space: the family
of sets that could possibly
be the state of knowledge
of some student

I Quasi-ordinal: the
intersection or union of
any two sets in the family
is another set in the family



What’s wrong with quasi-ordinal spaces?

Closure under unions makes sense psychologically, but closure
under intersections does not

This causes the spaces to have more sets than they should
(intersections that can’t really happen)

The extra sets increase the number of test questions needed to
assess a student, slow down the assessment calculations, and lead

to inaccuracies in the assessments

Because of these problems,
JCF was desperate to eliminate this restriction.



If quasi-ordinal spaces are bad, why use them?

Mathematically, quasi-ordinal spaces form distributive lattices

Birkhoff’s representation theorem: the sets in these spaces can be
represented as downward-closed subsets of a partial order

A B

C D

E F

G H

Ø

A B

AC AB

ACE ABC ABD

ABCE ABCD ABDF

ABCDE ABCDF ABDFH

ABCDEF ABCDFH

ABCDEFG ACBDEFH

ABCDEFGH



But what does it mean?

A partial order on a set of concepts to be learned describes a
prerequisite relation

A student will only become ready to master a concept after he or
she has mastered all its prerequisites

CC-BY-NC image from http://abstrusegoose.com/272



Advantages of using the underlying partial order

It’s concise

I Only the prerequisite relation needs to be communicated to
client software

It’s fast

I Key computational bottleneck:
listing all states in the learning space

I Time per state ≈ #concepts / machine word size
[as implemented in early versions of ALEKS]

I Can theoretically be improved to O(log #concepts) per state
[Squire 1995]



Lesson I

When your state space forms a distributive lattice,
find out what the underlying partial order means,

and take advantage of it for fast and space-efficient algorithms



Application: Rectangular cartograms

Stylize geographic regions as rectangles

Rectangle areas represent numerical data

[Raisz, “The rectangular statistical cartogram”, Geog. Rev. 1934]

Stylization emphasizes the fact that it’s not a map

The simplicity of the shapes makes areas easy to compare



Formalization of cartogram construction

Find a partition of a rectangle
into smaller rectangles,
satisfying:

I Adjacency: Geographically
adjacent regions should
stay adjacent

I Orientation: Avoid gross
geographic misplacement
(e.g. California should not
be north of Oregon)

I Area universality: Can
adjust to any desired set
of areas while preserving
adjacency

Area-universal

2

2

1

1

Not area-universal



Combinatorial language for describing layouts

Augment adjacency graph with
four extra vertices, one per side
of outer rectangle

Color side-by-side adjacencies
blue, orient left to right

Color above adjacencies red,
orient top to bottom

Layouts for a given set of
adjacencies correspond 1-for-1
with labelings in which the four
colors and orientations have
the correct clockwise order at
all vertices



Local changes from one layout to another

Change colors/orientations within a quadrilateral

Corresponds to twisting either the boundary between two regions
(as shown) or a rectangle surrounded by four others



The distributive lattice of layouts and labelings
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What does it mean?
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Elements = layouts

Neighbors = layouts that differ
by a single twist

Upward in lattice order = twist
counterclockwise

Elements of partial order =
number of times each boundary
has been twisted

Area-universal if and only if no
edge twists are possible



Results of applying Lesson I

Although there may be exponentially many layouts,
the underlying partial order has polynomial size

and can be constructed in polynomial time

By working at the partial order level of abstraction, can efficiently
find an area-universal layout (if it exists) with arbitrary constraints

on boundary orientations

E., Mumford, Speckmann, & Verbeek, “Area-universal and constrained

rectangular layouts”, SIAM J. Comput. 2012



Beyond quasi-ordinal spaces

My contribution to ALEKS:

I Instead of prerequisites, describe a learning space by its
learning sequences: orderings in which all concepts in the
space could be learned

I States = unions of prefixes of the learning sequences

Ø

A C

AB AC BC

ABC

This example has four learning
sequences:
A–B–C, A–C–B, C–A–B, and C–B–A

Only two, A–B–C and C–B–A,
suffice to define the whole space



Advantages of the learning sequence formulation

I Capable of representing every learning space that is
accessible (can be learned one concept at a time)
and closed under unions

Mathematically, such a space forms an antimatroid

I As with quasi-ordinal spaces, can list all states quickly
(the key step in student assessment)

I Still quite concise

I Can construct a description using the smallest possible set of
learning sequences in time polynomial in the number of states



Relation to quasi-ordinal spaces and partial orders

A learning sequence of a quasi-ordinal space is a linear extension of
its underlying partial order, or equivalently a topological ordering
of its prerequisite relation. (A sequence of the vertices of a
directed acyclic graph such that each edge is oriented from earlier
to later in the sequence.)

Thus, learning sequences provide a natural method of generalizing
linear extensions and topological orderings to more general spaces



Lesson II

Antimatroids are a good way of describing sets of orderings.

When a problem involves linear extensions of partial orders
or topological orders of directed acyclic graphs,

generalize to antimatroids and learning sequences.



Example: Burr puzzle disassembly sequences



Application of Lesson II: The 1/3–2/3 conjecture

Conjecture: every partial order that is not a total order has two
elements x and y such that the number of linear extensions
with x earlier than y is between 1/3 and 2/3 of the total number

Formulated independently by Kislitsyn (1968),

Fredman (circa 1976), and Linial (1984)

Equivalently, in comparison sorting, it is always possible to reduce
the number of potential output sorted orderings by a 2/3 factor,
by making a single well-chosen comparison

(As a consequence, every partial order can be sorted in a number
of comparisons logarithmic in its number of linear extensions.)



The 1/3–2/3 conjecture for antimatroids

Conjecture: every antimatroid that is not a total order has two
elements x and y such that the number of learning sequences
with x earlier than y is between 1/3 and 2/3 of the total number

[E., “Antimatroids and balanced pairs”, Order 2014]

Ø

{a}

{a,c}

{a,c,d} {a,b,c}

{a,b,c,d}
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{a,b}

{a,b,d}
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Three antimatroids for which the conjecture is tight



Partial results on the conjecture

True for:

I Antimatroids defined by two learning sequences (generalizing
width-two partial orders)

I Antimatroids of height two (generalizing height-two partial
orders)

I Antimatroids with at most six elements (by computer search)

I Several classes of antimatroids defined from graph searching

Example: Elimination orderings of
maximal planar graphs

The red vertices have ≤ 2 neighbors
and can safely be removed.

The yellow vertices have to wait until
some neighbors have been removed.



Beyond learning spaces

Media: systems of states and transitions that can be embedded in
a distance-preserving way into a Hamming cube {0, 1}n

Every learning space is a medium, but not conversely

a < b < c

b < a < c

a,b < c

b < a,c

b,c < c

c < a,b

a,c < b

a < b,c

a,b,c

b < c < a

c < b < a

c < a < ba < c < b

Medium of voter preferences with “frozen” states⇒ {0, 1}19
From Falmagne, Regenwetter, and Grofman, 1997



Fast shortest paths in media

The medium structure makes finding shortest paths between all
pairs of states easier than in arbitrary state-transition systems

E. & Falmagne, Disc. Appl. Math. 2008

By combining a bit-parallel breadth-first-search based labeling
phase with the fast shortest path algorithm, can recognize whether
a state-transition system forms a medium in quadratic time

E., SODA 2008 & J. Graph. Alg. Appl. 2011





Lesson III

Large numbers of different state-transition systems have the
structure of a medium

When they do, the underlying hypercube embedding allows fast
construction of shortest paths



Unexplained dichotomy in computational complexity

Three important classes of computational problems

I P: problems that can be solved in polynomial time

I NP: problems that can be solved in exponential time by a
simple brute-force search

I NP-hard: at least as difficult as all problems in NP

Most computational problems that have been studied are either
known to be in P or known to be NP-hard

One of the rare exceptions: rotation distance in binary trees / flip
distance in polygon triangulations



Rotation in binary trees

States: binary trees having a given ordered sequence of keys

Transitions: swap parent-child relation between two nodes
(rearranging their three other children to preserve key sequence)

CC-BY-SA-image Tree rotation.png by Ramasamy from Wikimedia commons



Binary trees and polygon triangulations

Binary trees with n leaves
correspond by planar graph
duality to triangulations of an
(n + 1)-sided polygon

The one extra side marks the
root of the tree

Tree rotations ⇔ flips in the
triangulation

Flip: retriangulate the
quadrilateral formed by two
adjacent triangles



Flip distance: Distance in the flip graph



Generalize flip distance to non-convex point sets

E.g. in this case the
point set is a 3× 3 grid

The generalized
problem is NP-hard
Lubiw & Pathak, CCCG 2012

Pilz, Comp. Geom. 2014

But maybe some other
special cases are easier?



Application of Lesson III to flip distance

Triangulations and flips form a medium if and only if the point set
does not include the vertices of an empty convex pentagon

Includes all convex subsets of an integer grid, and some other sets:

When this is true, we can compute flip distance in polynomial time

E., SoCG 2007 & J. Comp. Geom. 2010



Conclusions

To compute efficiently with large state spaces, one must
understand their mathematical structure

The structures identified by JCF — including quasi-ordinal spaces,
learning spaces, and media — appear ubiquitously both in social

science applications and beyond

Identifying one of these structures in an application is the first step
to finding efficient algorithms for that application

Thank you, Jean-Claude!


