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Abstract

We show that any polyhedron forming a topologi-
cal ball with an even number of quadrilateral sides
can be partitioned into O(n) topological cubes,
meeting face to face. The result generalizes to
non-simply-connected polyhedra satisfying an ad-
ditional bipartiteness condition. The same tech-
niques can also be used to reduce the geometric
version of the hexahedral mesh generation prob-
lem to a �nite case analysis amenable to machine
solution.

1 Introduction

There has recently been a great deal of theoreti-
cal work on unstructured mesh generation for �-
nite element methods, largely concentrating on
triangulations and higher dimensional simplicial
complexes [3]. However in the numerical commu-
nity, where these meshes have been actually used,
meshes of quadrilaterals or hexahedra (cuboids)
are often preferred due to their numerical prop-
erties [1]. For this reason many mesh generation
researchers are working on systems for construc-
tion of hexahedral meshes. (At the 4th Annual
Meshing Roundtable, Sandia, 1995, 13 of the 28
titles on the agenda related to hexahedral mesh-
ing.) There has also been some theoretical work
on such meshes [8, 9, 10] but much more remains
to be done.

There is a straightforward method for gener-
ating hexahedral meshes, if one allows additional
Steiner points: simply �nd a tetrahedralization of
the domain, then subdivide each tetrahedron into
four hexahedra as shown in Figure 7(c). But as
Mitchell [9] notes, this type of boundary subdivi-
sion can make it di�cult to mesh several adjoining
domains simultanously (either because the prob-
lem is de�ned in terms of multiple domains, or as
part of a parallel mesh generation process).

We consider here a common variant of the hex-
ahedral mesh generation problem, in which we
avoid these problems by restricting the location
of new Steiner points to the interior of the do-
main. The boundary (which is assumed to be
a planar quadrilateral mesh) must remain unsub-
divided. Although various authors have studied
heuristics for this version of hexahedral mesh gen-
eration, its theoretical properties are not well un-
derstood and pose many interesting problems. In
particular the computatational complexity of de-
termining whether a polyhedron admits a mesh
of convex hexahedra respecting the polyhedron's
boundary is unknown. Even some very simple
cases, such as the eight-sided polyhedron shown
in Figure 1, remain open [12].

For the planar case, the corresponding problem
is easy: a polygon can be subdivided into convex
quadrilaterals, meeting face to face, without extra
subdivision points on the boundary, if and only if
the polygon has an even number of sides. It may
di�cult to �nd the smallest number of quadrilat-
erals needed for this task (or equivalently to op-
timize the number of Steiner points) but one can
e�ciently �nd a set of O(n) Steiner points that
su�ce for this problem [10].

Thurston [13] and Mitchell [9] recently indepen-
dently showed a similar characterization for the ex-
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Figure 1. Does this octahedron have a hexahedral mesh?

istence of hexahedral meshes, with some caveats.
First, the polyhedron to be meshed has to be a
topological ball (although the method generalizes
to certain polyhedra with holes). And second,
the mesh is topological: the elements have curved
boundaries and are not necessarily convex. How-
ever they must still be combinatially equivalent to
cubes, and must still meet face to face. Thurston
and Mitchell both showed that any polyhedron
forming a topological ball has a topological hexahe-
dral mesh, without further boundary subdivision,
if and only if there are an even number of bound-
ary faces all of which are quadrilaterals. (Indeed,
even parity of the number of faces is a necessary
condition for the existance of cubical meshes in any
dimension, regardless of the connectivity of the in-
put, since each individual cube has evenly many
faces which either contribute to the boundary or
are paired up in the interior.) However Thurston
and Mitchell's method may produce meshes with
high complexity (nonlinear in the number of fea-
tures of the original polyhedral domain).

In this paper we discuss an alternate method for
hexahedral grid generation. Our method combines
re�nement of a tetrahedral mesh with some local
manipulation near the boundary based on planar
graph theory. It is similar in spirit to mesh gen-
eration heuristics of Schneiders [11] and others, in
which one �rst �lls the interior of the domain with
cubes before attempting to patch the remaining
regions between these cubes and the boundary. A
similar idea of \bu�ering" the boundary of the

input from subdivisions occurring in the interior
was also used in a tetrahedralization algorithm of
Bern [2].

Our new hexahedral meshing technique has
three advantages over that of Mitchell and
Thurston. First, we prove an O(n) bound on the
number of cells needed for a topological hexahedral
mesh. Second, because our method avoids duality,
it seems easier to extend it to the more practically
relevant geometric version of the mesh generation
problem: we exhibit a �nite collection of polyhedra
(formed by subdividing the boundary of a cube)
such that if these polyhedra can all be geometri-
cally meshed, any polyhedron forming a topologi-
cal ball with an even number of quadrilateral sides
can also be geometrically meshed, with O(n2) cells.
Third, the method generalizes to a di�erent class of
non-simply connected polyhedra than those han-
dled by Mitchell and Thurston's method.

These results are not practical in themselves:
the number of elements is too high and we have not
satisfactorily completed the solution to the geo-
metric case. Practical hexahedral mesh generation
methods are still largely heuristic and will often
fail or require the input boundary to be modi�ed.
There is a possibility here of a two way interaction
between theory and practice: as heuristic mesh
generators improve they may soon be good enough
to solve the �nite number of cases remaining in our
geometric mesh generation method, and thereby
prove that all even-quadrilateral polyhedra can be
meshed. In the other direction, even an impracti-
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Figure 2. Topological mesh: (a) cell complex; (b) individual faces, edges, and vertices.

cal proof of the existence of meshes can be help-
ful, by guaranteeing that an incremental heuristic
method such as Mitchell's whisker-weaving idea [8]
will not get stuck in a bad con�guration.

2 Statement of the problem

Let us de�ne more formally the topological mesh
generation problem solved here. We assume we
are given a domain topologically equivalent to the
closed ball in three dimensions (later we will con-
sider other more complicated domain topologies).
The boundary of the domain is assumed to be cov-
ered by a �nite cell complex; that is, a collection of
�nitely many cells: sets equivalent to closed balls
of various dimensions, with disjoint relative interi-
ors, such that the boundary of any cell is covered
by lower dimensional cells, and any nontrivial in-
tersection of two cells is another lower-dimensional
cell. Our task is to extend this partition to a �nite
cell complex covering the overall domain.
We assume the boundary cell complex is a

quadrilateralization; in particular, every edge

(one-dimensional cell) has two vertices (zero-
dimensional cells) as its endpoints, and every face

(two-dimensional cell) has a cycle of four edges as
its boundary. (Figure 2.)
We wish the cell complex produced by our algo-

rithm to be a hexahedral mesh: the same conditions
as above apply to every edge and face of the com-
plex, but in addition every three-dimensional cell
must be a hexahedron: it should have six quadri-
lateral faces on its boundary, meeting in edges and
vertices with the same combinatorial structure as
the faces, edges, and vertices of a cube.
Any simply-connected polyhedron with quadri-

lateral faces satis�es the input conditions. Any
partition of that polyhedron into convex cuboids

meeting face-to-face satis�es our output condi-
tions. However our de�nition allows partitions into
non-convex and non-polyhedral cells.

3 Thurston and Mitchell

Before describing our own methods, we brie
y dis-
cuss those of Thurston [13] and Mitchell [9].
The method of both these authors is to treat a

hexahedral mesh as being the dual to an arrange-
ment of surfaces [8], and a quadrilateral mesh such
as the one on the boundary of the polyhedron as
being the dual to an arrangement of curves. Given
a mesh of quadrilaterals, one can �nd this curve
arrangement simply by connecting the midpoints
of opposite sides of each quadrilateral by curves
(Figure 3(a)). Similarly, given a mesh of hex-
ahedra, one can �nd these dual curves on each
boundary facet of each hexahedron, and connect
them by quadrilaterals to form surfaces, meeting
in triple points at the center of each hexahedron
(Figure 3(b)).
The problem then becomes one of performing

the opposite transformation: extending the given
surface curve arrangement to an interior surface
arrangement, and then �nding a collection of topo-
logical hexahedra dual to this surface arrangement.
Thurston and Mitchell solve the �rst part of

this problem (extending the boundary curve ar-
rangement to an interior surface arrangement) by
extending curves with an even number of self-
intersections to surfaces independently of each
other; they pair up curves with an odd number of
self-intersections and form a surface for each pair.
For the second part (transforming these surfaces

to dual hexahedra), note that, for surfaces in gen-
eral position, the structure of the surface arrange-
ment can be represented as a collection of ver-
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Figure 3. Dual of a mesh: (a) quadrilaterals and dual curves; (b) hexahedron and dual surfaces.

tices (for each triple intersection of surfaces) and
edges (segments of pairwise intersections of sur-
faces). Each vertex should correspond to a dual
hexahedron and each edge should correspond to a
pair of hexahedra sharing a common face. How-
ever not every set of surfaces determines a dual
cell complex in this way, because some of the ver-
tices may be connected by multiple edges, result-
ing in hexahedra that do not intersect in a single
face. Thurston and Mitchell solve this problem by
surrounding problematic regions of the surface ar-
rangement with spheres. The result is a collection
of surfaces with a dual hexahedral mesh solving
our mesh generation problem.

Theorem 1 (Mitchell, Thurston) Any simply

connected three-dimensional domain with an even

number of quadrilateral boundary faces can be

partitioned into a hexahedral mesh respecting the

boundary.

However this method does not provide much of a
guarantee on the complexity of the resulting mesh,
that is, of the number of hexahedral cells in it.
This complexity is very important, as it directly
a�ects the time spent by any numerical method
using the mesh; even small constant factors can be
critical.
It is not hard to provide examples in which this

dual surface method constructs meshes with more
than linearly many elements (measured in terms of
the complexity of the polyhedron boundary). We
provide two:

� A cube in which each square is subdivided into
an O(

p
n) by O(

p
n) grid (Figure 4(a)). The

boundary curve arrangement dual to these
grids consists of 
(

p
n) Jordan curves without

self-intersections. The method of Thurston
and Mitchell extends each of these to a plane;
these 
(

p
n) curves will have 
(n3=2) triple in-

tersection points, so this method will produce
a mesh of total complexity 
(n3=2).

� A cube in which four of the boundary squares
are subdivided into 
(n) rectangles, forming

(n) non-self-intersecting boundary curves,
and the remaining two squares have 
(n)
quadrilaterals arranged in a pattern to form

(n) curves with one self-intersection each
(Figure 4(b)). If one incautiously matches
these one-intersection curves into pairs of one
from each side of the cube, and extends them
to surfaces crossing from one side of the cube
to the other, the overall complexity can be

(n2).

4 Linear-complexity mesh gen-

eration

As we saw above, the mesh generation method of
Thurston and Mitchell can produce meshes with

(n3=2) or 
(n2) hexahedra. We now describe our
new topological mesh generation method, which
will always give meshes with O(n) complexity.

Our method has the following main steps:

1. We separate the boundary B of the polyhe-
dron from its interior by a \bu�er layer" of
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Figure 4. Bad examples for Thurston and Mitchell: (a) 
(n3=2); (b) 
(n2).

Figure 5. Partition of hexagons into two and three quadrilaterals.

cubes. We do this by �nding a surface S in-
side the polyhedron, isomorphic to the poly-
hedron's boundary, and sitting in the same
orientation. We then connect correspond-
ing pairs of vertices on the two surfaces with
edges, corresponding pairs of edges on the
two surfaces with quadrilateral faces spanning
pairs of connecting edges, and corresponding
pairs of faces on the two surfaces with hexa-
hedra.

2. We triangulate the inner surface of the bu�er
layer, and tetrahedralize the region inside this
triangulated surface. A (topological) tetra-
hedralization with O(n) complexity can be
found by connecting each triangle on S to a
common interior vertex.

3. We split each interior tetrahedron into four
hexahedra (Figure 7(c)). This subdivision
should be done in such a way that any two te-
trahedra that meet in a facet or edge are sub-
divided consistently with each other. As a re-

sult, each edge in S becomes subdivided, and
each quadrilateral connecting B to S gains an
additional subdivision point and so becomes
combinatorially equivalent to a pentagon.

4. Because B is by assumption a planar graph
with all faces even, it is bipartite. (The well-
known fact that even faces implies bipartite-
ness is the planar dual to the fact that even
vertex degree implies the existence of an Euler
tour, but it can easily be proved directly.) Let
U and V be the two vertex sets of a bipartition
of B (without loss of generality, jU j < jV j).
Each vertex of B corresponds to an edge in
the bu�er layer connecting B to S. We subdi-
vide the subset of those edges corresponding
to vertices in U . Each of the quadrilaterals
connecting B to S has one such edge, so (to-
gether with the subdivided edge in S itself)
these subdivisions cause each such quadrilat-
eral to become combinatorially a hexagon.

5. After these subdivision steps, each of the cells
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in the bu�er layer is now combinatorially
a polyhedron with seven quadrilateral facets
and four hexagon facets. We subdivide the
hexagons into either two or three quadrilater-
als each, as shown in Figure 5. We explain
below how to do this in such a way that each
cell of the bu�er layer has an odd number
of hexagons subdivided into each type; either
one hexagon is subdivided into two quadrilat-
erals and three hexagons are subdivided into
three quadrilaterals each, or three hexagons
are subdivided into two quadrilaterals and one
hexagon is subdivided into three quadrilater-
als.

6. At this point, all the bu�er cells are combina-
torially polyhedra with either 16 or 18 quadri-
lateral boundary facets. We partition each cell
into a mesh ofO(1) hexahedra. (The existence
of such a mesh is guaranteed by Mitchell and
Thurston's results. Alternately, if the triangu-
lation of S is chosen carefully using the same
bipartition used above, there will only be two
combinatorial types of cell; it is an amusing
exercise to �ll out these cases by hand.)

The remaining step that has not been described
is how we choose whether to subdivide each of the
faces connecting B to S into two or three quadri-
laterals, so that each bu�er cell has an odd number
of subdivided faces of each type.

Lemma 1 Given any planar graph G with evenly

many quadrilateral faces, we can in polynomial

time �nd a set S of edges of G such that each face

of G is bounded by an odd number of edges in S.

Proof: We use a technique familiar from the
solution to the Chinese postman problem. Con-
struct the dual graph G0, and form a metric on the
vertices of G0 with distances equal to the lengths
of shortest paths in G0. By assumption G0 has
an even number of faces, so G0 has evenly many
vertices and there are perfect matchings in this
metric; take the minimum weight perfect match-
ing. This corresponds to a collection of paths in
G0; any two paths must be edge-disjoint since oth-
erwise one could perform a swap and �nd a shorter
matching. The union of these paths is a subgraph
S0 of G0 (actually a forest) in which every vertex

has odd degree. (Each vertex has odd degree in
the path in which it is an endpoint, and even de-
gree in all other paths, so the total is odd.) Taking
the corresponding edges in G gives a set S of edges
having an odd number of incidences with each face,
as was required in the statement of the lemma. 2

In fact, it is not hard to see that this procedure
�nds the set S of smallest cardinality. This pro-
cess is depicted in Figure 6, which depicts for the
skeleton of the polyhedron in Figure 1 the mini-
mum weight matching on the shortest-path metric
of the dual graph, and the resulting set of edges
on the original graph. In this example, the paths
in G0 coming from the matching consist of a single
edge each.
We apply this lemma to choose how to subdivide

the hexagonal faces of the bu�er layer between B
and S. Recall that B is a planar graph with evenly
many quadrilateral faces. Further, each face of B
corresponds to a cell of the bu�er layer, and edge of
B corresponds to one of the hexagons that we wish
to subdivide. We use the method of the lemma to
�nd a set S of edges of B incident an odd num-
ber of times to each face of G; equivalently this
corresponds to a set of hexagonal faces incident
an odd number of times to each cell in the bu�er
layer. We subdivide that set of faces into three
quadrilaterals each, and the remaining faces into
two quadrilaterals, as shown in Figure 5.
We summarize the results of this section.

Theorem 2 Given any polyhedron P forming a

topological ball with an even number n of faces,

all quadrilaterals, it is possible to partition P into

O(n) topological cubes meeting face-to-face, such

that each face of P is a face of some cube.

Proof: The correctness of this method is
sketched above. If P has n faces, there are 2n
tetrahedra in the interior of S, subdivided into 8n
hexahedra. In addition the n cubes connecting B
with S are subdivided into O(1) hexahedra each,
so the total complexity is O(n). 2

5 Geometric mesh generation

We would like to extend the topological mesh gen-
eration method described above to the more prac-

6



Figure 6. (a) Dual to quadrilateral mesh, with highlighted minimum-weight matching; (b) corresponding set of

edges meeting each quadrilateral an odd number of times.

tically relevant problem of geometric mesh gener-
ation (partition into convex polyhedra combinato-
rially equivalent to cubes). Although our exten-
sion seems unlikely to be practical itself, because
of its high complexity and the poor shape of the
hexahedra it produces, it would be of great inter-
est to complete a proof that all polyhedra (with
evenly many quadrilateral faces) can be meshed.
Also, it might make sense to include a powerful but
impractical theoretical method as part of a more
heuristic mesher, to deal with the di�cult cases
that might sometimes arise.

In any case, we have made some progress to-
wards a geometrical mesh generation algorithm,
but have not solved the entire problem. We have
been able to solve the seemingly harder unbounded
parts of the problem, leaving only a bounded
amount of case analysis to be done. It seems likely
that heuristic mesh generation methods may soon
be capable of performing this case analysis and �n-
ishing the proof.

We go through the steps of our topological mesh
generation algorithm, and describe for each step
what changes need to be made to perform the anal-
ogous step in a geometric setting. However since
our results here are incomplete, we do not �ll in
the method in too much detail.

1. Our topological method separates the bound-
ary B of the polyhedron from its interior by
a single bu�er layer of cuboids connecting B
to an isomorphic surface S inside the poly-
hedron. Unfortunately there exist polyhedra
for which no isomorphic interior surface can

be connected to the boundary; Figure 7(a)
shows an example of a vertex surrounded by
six quadrilaterals in such a way that, no mat-
ter where the corresponding interior vertex is
placed, some faces are invisible to it and hence
can not be connected by geometric hexahedra.
This example is easily completed to a polyhe-
dron with the same property. Instead we form
a more complicated bu�er layer in the follow-
ing way.

We �rst cover each face f of B by a con-
vex hexahedron, with the opposite hexahe-
dron face parallel to f , very close to f , and
somewhat smaller than f , so that the other
four sides of f are \beveled" to be nearly par-
allel to f . As shown in Figure 7(b), this causes
the face to be replaced by a set of �ve quadri-
laterals, slightly indented into the polyhedron.

For any two faces f and f 0 sharing an edge of
B, we then add two more cuboids, both also
sharing the same edge, connecting the sides of
the two cuboids attached to f and f 0. The
faces of these cuboids attached to edges can
be classi�ed into three types: two are adja-
cent to other such cuboids or to the cuboids
on f and f 0. Two more are incident to the
endpoints of the shared edge and are again
beveled to be nearly parallel to that edge.
The �nal two point towards the interior of the
polygon. These two faces are very close to
parallel to each other, so that the two faces
incident to the endpoints of the shared edge
have a \kite"-like shape resembling a slightly

7



Figure 7. Geometric hexahedralization: (a) a vertex neighborhood which can not be extended by a single layer of

cuboids; (b) 
at cuboid placed on each face replaces it by an indented set of �ve quadrilaterals; (c) the partition of

tetrahedra into hexahedra on planes through edges and opposite midpoints.

dented triangle.

Finally, we must cover the region near each
vertex of B. As seen from the vertex, the
faces of the cuboids we have already added
form a vertex �gure that can be represented
as an even polygon on the surface of a small
sphere centered at the vertex. Each of the
sides of this polygon corresponds to one of
the kite-shaped faces incident to the vertex.
For instance the vertex neighborhood shown
in Figure 7(a) could have arisen in this way,
and the intersection of this neighborhood with
a su�ciently small sphere centered at the ver-
tex produces a hexagon. We triangulate this
even polygon, and add for each interior diag-
onal of the triangulation another kite-shaped
face, so that the vertex neighborhood is par-
titioned into regions bounded by three such
faces. These regions correspond one-for-one
with the triangles in the triangulationWe then
add to our boundary region a small cuboid
in each such region. Three faces and seven
vertices of the cuboid are already determined;
the eighth vertex is then �xed geometrically
by the positions of the other seven. Since the
three faces incident to the vertex of B are all
kite-shaped, the three opposite faces are close
to parallel to each other. By making all these
cuboids attached to B small enough, and by
making their faces close enough to parallel,
this can all be done in such a way that no two
cuboids interfere with each other.

2. The second step of our topological method
was to triangulate the inner surface of the
bu�er layer, and tetrahedralize the region in-
side this triangulated surface. A tetrahedral-
ization with O(n2) complexity can be found
using a method of Bern [2]. (The bound
claimed in that paper is O(n+ r2) where r is
the number of re
ex edges, however our �rst
step creates 
(n) re
ex edges. Perhaps it is
possible to use the information that many of
these edges are very close to 
at, to reduce the
complexity to depend only on the re
ex edges
of B.)

3. We third step of our topological method was
to split each interior tetrahedron into four
hexahedra. In order to do this geometrically
in a way consistent across adjacent pairs of te-
trahedra, we subdivide each tetrahedron using
planes through each edge and opposite mid-
point (Figure 7(c)). It is not hard to show
that these four planes meet in a common point
(e.g. by a�ne transformation from the regular
tetrahedron). The subdivision on each tetra-
hedron face is therefore along lines through
each vertex and opposite midpoint.

4. The next step of our topological method was
to �nd a bipartition of B, and subdivide the
interior edges incident to one of the two ver-
tex classes of the bipartition. This step re-
mains unchanged except that each vertex in
the given class may be incident to many inte-
rior edges; all are subdivided.
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5. At this point, the cells of the bu�er layer fall
into several classes. The cells coming from
faces of B are like those of our topological
construction, polyhedra with seven quadrilat-
eral facets and four hexagon facets. The cells
coming from edges of B have four quadrilat-
erals, three hexagons, and an octagon. The
cells coming from vertices of B on one side
of the bipartition have 18 quadrilaterals and
three hexagons. The cells coming from the
other side of the bipartition have 18 quadri-
laterals and three octagons. In any case, the
hexagon and octagon sides need to be subdi-
vided, in such a way that all cells end up with
an even number of sides. We can use the same
idea of matching here; in fact the cells at each
vertex can be matched independently, leaving
one larger matching connecting the cells on
faces and edges.

6. Finally, each bu�er cell needs to be meshed.
This can be done independently for each cell,
but it would require a case analysis (which we
have not done) to show that each possible type
cell can be meshed.

Thus of the steps in our topological mesh gen-
eration procedure, it is only the �nal �nite case
analysis which we have been unable to extend to
the geometric problem.

6 Generalizations

The only important property we used of topolog-
ical balls (with quadrilateral faces) is that their
boundaries form bipartite graphs; but the same ex-
tends to simply connected domains with cubically
meshed surfaces in any dimension, as can easily
be seen via homology theory. (Hetyai [6] has an
alternate proof of bipartiteness for shellable com-
plexes.) Thus there seems no conceptual obstacle
to extending this technique to higher dimensional
meshing problems, although it again requires a
case analysis or other technique such as that of
Thurston and Mitchell to prove that the resulting
bu�er cells are meshable.
An alternate direction for generalization is to

more topologically complicated polyhedra in three
dimensions. Mitchell [9] describes a generalization

of his method which applies whenever the input
polyhedron forms a handlebody that can be cut
along evenly-many-sided disks to reduce its com-
plexity. (Clearly, such a simpli�cation can be used
independently of the mesh generation method to
be used.) Our method can handle an alternate
class of polyhedra, such as knot complements or
bodies with disconnected boundaries, for which no
simplifying disk cut exists. The only step where we
used the connectivity of the input boundary was
in the result that a planar graph with even faces is
bipartite; instead we can simply require that the
input polyhedron be bipartite with evenly many
sides in each boundary component. We can topo-
logically mesh any such polyhedron; alternately,
if we could solve the same �nite set of cases as
before we can geometrically mesh any such poly-
hedron. (The geometric case needs an extension
of Bern's surface-preserving tetrahedralization to
non-simply-connected polyhedra, due to Chazelle
and Shouraboura [4].)
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