
Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Quasiconvex Analysis of Backtracking Algorithms

David Eppstein

Univ. of California, Irvine
School of Information and Computer Science

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

T (n,h)≤max






2T (n+1,h+1)+T (n+2,h+1), 2T (n+1,h+4)+3T (n+2,h+2)+3T (n+2,h+3),
6T (n+2,h+2), 2T (n+2,h)+T (n+3,h+1)+T (n+4,h)+T (n+4,h+1),
T (n+2,h)+T (n+3,h−2)+T (n+3,h−1), 2T (n+2,h)+2T (n+2,h+3),
T (n+3,h−2)+T (n+3,h−1)+T (n+5,h−3)+T (n+5,h−2)+T (n+7,h−3),
T (n+1,h−1)+T (n+4,h−1), T (n+1,h)+T (n+3,h−1)+3T (n+3,h+3),
T (n+3,h−2)+T (n+3,h−1)+T (n+4,h−2), T (n+3,h−2)+6T (n+3,h+2),
T (n+3,h−2)+T (n+3,h−1)+4T (n+5,h−1), T (n+1,h−1)+T (n+4,h−1),
T (n+1,h)+T (n+1,h+1), T (n+2,h+2)+5T (n+3,h+1)+T (n+4,h),
2T (n+3,h−1)+2T (n+3,h)+2T (n+3,h+3), T (n,h+1)+T (n+4,h−3),
T (n+3,h−2)+2T (n+3,h−1)+T (n+6,h−3), 3T (n+1,h+2)+2T (n+1,h+5),
T (n+1,h), 2T (n+3,h)+2T (n+3,h+3)+T (n+4,h−3)+T (n+4,h−2),
T (n+1,h+2)+T (n+3,h−2)+T (n+3,h−1), T (n+2,h−1)+2T (n+3,h−1),
T (n+1,h)+T (n+3,h−1)+T (n+3,h+3)+T (n+5,h)+T (n+6,h−1), T (n−1,h+2),
T (n+3,h−2)+T (n+3,h−1)+T (n+5,h−3)+T (n+6,h−3)+T (n+7,h−4),
2T (n+3,h−1)+T (n+3,h+2)+T (n+5,h−2)+T (n+5,h−1)+T (n+5,h)+2T (n+7,h−3),
T (n+2,h−1)+T (n+2,h)+T (n+4,h−2), T (n+2,h−1)+T (n+3,h−1)+T (n+4,h−2),
T (n+3,h−2)+2T (n+3,h−1), 4T (n+2,h+3)+3T (n+4,h)+3T (n+4,h+1),
8T (n+1,h+4), 2T (n+2,h)+T (n+3,h)+T (n+4,h)+T (n+5,h−1),
T (n+2,h)+T (n+3,h−2)+T (n+3,h−1), T (n+3,h−2)+2T (n+4,h−2)+T (n+5,h−3),
T (n,h+1), T (n+1,h−1), 2T (n+2,h)+T (n+2,h+3)+T (n+3,h)+T (n+3,h+2),
2T (n+3,h−1)+T (n+3,h+2)+T (n+5,h−2)+T (n+5,h−1)+T (n+5,h)+T (n+6,h−2)+T (n+7,h−2),
9T (n+9,h−5)+9T (n+9,h−4), 2T (n+2,h+1)+3T (n+2,h+3)+2T (n+2,h+4),
T (n+2,h−1)+T (n+2,h), T (n+3,h−2)+T (n+3,h−1)+T (n+5,h−2)+2T (n+6,h−3),
T (n+4,h−3)+2T (n+4,h−2)+T (n+7,h−4), T (n+3,h−2)+T (n+3,h−1)+2T (n+5,h−2),
2T (n+2,h−1), 2T (n,h+2), T (n+2,h+2)+2T (n+3,h)+T (n+3,h+1)+3T (n+4,h),
T (n+2,h−1)+T (n+2,h)+T (n+5,h−2), T (n+1,h−1)+T (n+2,h+2),
T (n+2,h)+T (n+3,h), 10T (n+3,h+2), 5T (n+2,h+2)+2T (n+2,h+3),
T (n+3,h−2)+T (n+3,h−1)+T (n+4,h−2)+T (n+6,h−3), 3T (n,h+3),
6T (n+3,h+1), 9T (n+2,h+3), T (n,h+1)+T (n+2,h), 2T (n+5,h−3)+5T (n+5,h−2)

A scary recurrence

from unpublished joint work with J. Byskov on graph coloring algorithms

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Outline

Where do these recurrences come from and what are they good for?

A method for calculating upper bounds

Algorithms for performing the upper bound technique

Matching lower bounds

Conclusions and open problems

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Where does this recurrence come from?

Backtracking algorithms for NP-hard problems such as graph coloring or SAT

Repeat:
 Find a decision to be made
 Split into subproblems
 Solve each subproblem recursively

E.g. for listing all independent subsets of a path:
either exclude the path endpoint (one fewer vertex)

or include the endpoint and exclude its neighbor (two fewer vertices)
T(n) = T(n – 1) + T(n – 2) = Fibonacci numbers

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Why is the recurrence so complicated?

Intricate case analysis to find decision leading to small subproblems

Each case leads to term like T(n – 1) + T(n – 2)
Worst case analysis means we have to take max of terms

Multiple measures of subproblem instance size
lead to recurrences in more than one variable

E.g. modify independent set problem to list independent sets of ≤ k vertices
Parameters are number of vertices (n), target set size (k)

Graph coloring: count numbers of vertices with different available colors

Traveling salesman problem: vertices, forced edges, more complex features

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

What do we want to find out?

Upper bounds: T(n, h) = O(1.7780544n + 0.660703h)

Lower bounds: upper bound is within polynomial factor of tight when h = 0

Sensitivity analysis: solution is dominated by two terms
T(n – 2, h) + T(n, h – 1)

and
2 T(n – 3, h + 1) + T(n – 3, h + 2) + T(n – 6, h + 3)

Two modes of operation:

Exploratory research: need fast solution, numerical approximation ok

Published worst case bounds: correctness critical (exact real arithmetic)

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Upper bound technique

Given recurrence T(x)=..., x in Zd, and given test vector x0
we want asymptotic behavior of T(n x0) for large n

Assume solution has form T(x) = t(w • x)
where w • x is some weighted combination of recurrence variables

and replace T by t on both sides of recurrence

Resulting single-variable recurrence is easy to solve (e.g. generating fns)
resulting in valid but non-tight upper bound

Different choices of w give different bounds, so choose w carefully

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Upper bound technique (details)

For each term ti in the recurrence maximization,
form single-variable linear recurrence with just that term,

having solution O(fi(w)w • x)

Solution to combined recurrence t(w • x) is O(cw • x) where c = maxi fi(w)

Search for w with w • x0 = 1 minimizing max fi(w)

The functions fi are quasiconvex
This is a quasiconvex program

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Quasiconvex Functions

Function f from Rd to R is quasiconvex
if the lower level sets {x: f(x) ≤ r} are convex

Examples: convex functions,
step functions (1 inside halfspace, 0 outside)

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Quasiconvex program:

Input: family of quasiconvex functions fi(x), x in Rd

Output: x that minimizes maxi fi(x)

Introduced & applied by Amenta, Bern, Eppstein for
mesh smoothing, graph drawing, brain flat mapping, color gamut optimization...

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Quasiconvex program as generalized linear program

For any subset S of input, let f(S) = solution to QCP for S

This satisfies GLP axioms:

If S ⊂ T, then f(S) ≤ f(T)

If f(S) = f(S ∪ {x}) and f(S) = f(S ∪ {y}), then f(S) = f(S ∪ {x, y})

For some constant d, if |S| > d, there exists x ∈ S with f(S) = f(S \ {x})

Any such function can be evaluated by randomized dual-simplex algorithms
[Matousek, Sharir, and Welzl, 1992; Amenta, 1994; Gärtner, 1995]

Typically: O(n) feasibility tests (evaluation of an input function at a point)
o(n) basis change operations (solve QCP for constant size subset)

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Alternative QCP solution technique: hill climbing

Objective function maxi fi(x) is itself quasiconvex

No local optima to get stuck in, so
local improvement techniques will reach global optimum

How to find improvement direction?

May get trapped in sharp corner

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Smooth quasiconvex programming (multi-gradient descent)

Suppose level sets have unique tangents at all boundary points
e.g. differentiable functions, step functions of smooth convex sets

(in 2d, use left & right tangents without smoothness assumption)

Then can find gradient v s.t. w is improvement direction iff v•w < 0

Repeat:

Find gradients of functions within numerical tolerance of current max

Find simultaneous improvement direction w for all gradients
(lower dimensional minimum enclosing disk of few points)

If not found, algorithm has converged to solution

Replace x by x + Δ w for sufficiently small Δ

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Implementation

Implemented multi-gradient numerical solution in Python
for low-dimensional QCP (two- and three- variable recurrences)

Two versions:

Floating point

Finds upper bounds for recurrences such as the one on the first slide
interactively (1-2 seconds on a modern laptop)

Exact real arithmetic
(Keith Briggs’ XR package)

Provides results with guaranteed precision
Several hours per solution

Significant speedups likely (e.g. by using a compiled language)

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Lower bound technique

Interpret recurrence as #paths to origin in an infinite graph on Zd

Connection pattern from vertex x is determined by term giving max for x

Modify graph by choosing connection pattern randomly
Perform random walk from x0 on replacement graph

Gradiants from smooth QCP algorithm surround origin →
can choose appropriate connection pattern and walk probabilities →

polynomial fraction of random walks from n x0 reach the origin
and probability of taking any particular walk is cw • x

�� �� � �� ��

� �� � �� ��

� �� � ���

� �� � ����

� �� � ��

��

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Conclusions

Technique for upper-bounding backtracking algorithm recurrences,
suitable for computer implementation

Bounds found by this technique are within a polynomial factor of tight
(a logarithmic factor compared to overall exponential solution)

Floating point implementation is usable for exploratory analysis

Exact real arithmetic implementation is usable for published results
but further efficiency improvement desirable

Quasiconvex analysis of backtracking algorithms D. Eppstein, UC Irvine, SODA 2004

Open problems

Generalized Voronoi diagram of optimal bases for parametrized problem?
e.g. in recurrence problem avoid need for test vector

Ellipsoid method or other more sophisticated LP techniques?
Can confine optimal point to low-volume ellipsoid

But when is volume small enough to jump to unique basis?

Can automated analysis of backtracking algorithms
be extended to automatic design?

