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Problem: list all maximal independent sets of an undirected graph
(equivalently, list all cliques in the graph complement)
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Previously known results

O(3n/3)
matches lower bound on max possible output size

[Moon, Moser 1965; Lawler 1976]

O(mn) per generated independent set
[Tsukiyama, Ide, Ariyoshi, Shirakawa 1977; Johnson, Yannakakis, Papadimitriou 1988]

O(n2.376) per generated independent set
[Makino, Uno 2004]

Many additional heuristics
Many algorithms for special graph classes...
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Main new results: faster generation for sparse graphs

O(1) per generated independent set
for bounded degree graphs

O(n) per generated independent set
for minor-closed graph families

including planar graphs

O(n2-1/k) per generated independent set
for k-orientable graphs

(each subgraph with q vertices has ≤ kq edges;
e.g. planar graphs are 3-orientable)
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Additional new results: dynamic domination

Maintain dynamic subset of graph vertices
Updates: insert or delete vertex into subset

Query: does subset dominate all remaining vertices?

O(1) time per update for bounded degree graphs (trivial)

O(1) time per update
for minor-closed graph families

including planar graphs

O(n1-1/k) time per update
for k-orientable graphs
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Main idea: Reverse Search [Avis, Fukuda 1992]

Given a family of objects to be enumerated

Find transformation f: object —> object
s.t. repeatedly applying f eventually leads to a canonical object

Form tree:   nodes = objects    parent = f(child)

Perform depth-first traversal of tree starting from canonical object

Example: n-bit words with k ones

f: replace leftmost 01 by 10

canonical object: 1k0n-k

1100

1010

0110 1001

0101

0011
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Canonical object for maximal independent sets:
Lexicographically First Maximal Independent Set (LFMIS)

Number the vertices arbitrarily

Include a vertex in the LFMIS
iff no lower-numbered neighbors
are included

Can be constructed by simple
linear-time greedy algorithm
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Transforming a maximal independent set towards the LFMIS

1. Find first missing LFMIS vertex v

2. Add v to set, make independent by removing neighbors of v

3. Complete to new maximal independent set greedily

Each transformation increases length of common prefix between set and LFMIS
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Basic reverse search algorithm (recursive version)

def search(MIS):
output MIS
for each v in common prefix of MIS and LFMIS:

S = higher-numbered neighbors of v
for each nonempty independent subset I of S:

child = (MIS union I) \ (neighbors of I)
if child is a maximal independent set:

search(child)

choose an ordering for graph’s vertices
compute LFMIS
search(LFMIS)

Order by greedily removing min-degree vertices: |S|=O(1) for sparse graphs
therefore, can list independent subsets of S in time O(1)

Nonrecursive version uses storage for O(1) sets, avoids call stack
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Speeding up the basic algorithm

Basic algorithm time: O(n2) per output
n potential children checked, O(n) per check
slow when many non-maximal children per maximal child

Bounded degree graphs:
Maintain dynamic set of triples (v,I,S)
leading only to children that are maximal independent sets

Each step of algorithm adds/removes O(1) triples from set
Children don’t need checking, O(1) time per child

Minor-closed and more general sparse graphs:
Bottleneck is maximality test

An independent set is maximal iff it is dominating
Apply dynamic domination data structure
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Dynamic domination for sparse graphs

Orient graph so outdegree = k = O(1)

Set degree threshhold
“high degree”: degree ≥ n1-1/k

Maintain easy dominance information
lowdom(v) = #dominating in-neighbors 

+ #dominating low-degree out-neighbors

Group vertices according to their set of high-degree out-neighbors
Each high-degree vertex is adjacent to O(n1-1/k) groups

Maintain dominance information about groups
#members with lowdom=0
#dominating high-degree out-neighbors

Set is dominating iff no group has
#undominated members > 0 and #dominating neighbors = 0
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Dynamic domination for minor-closed graph families

Similar idea of grouping according to high-degree neighbors

#groups = O(# high degree)

With constant degree threshhold, subgraph of groups
is smaller by a constant factor than original graph

Continue grouping recursively to form hierarchical grouping structure

Each original vertex belongs to O(1) groups in hierarchical structure
so can maintain counts in all levels affected by update in O(1) time
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Conclusions

Efficient reverse search for all maximal independent sets in sparse graphs

Complementary problem: cliques in dense graphs
(cliques in sparse, independent in dense are much easier)

Key subroutine: dynamic dominance data structure

Improved dynamic dominance for other sparse graph classes
would also improve independent set listing for those classes

Maybe can be extended to some non-sparse classes e.g. chordal graphs?


