
        

Average Case Analysis of Dynamic Geometric Optimization
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Abstract

We maintain the maximum spanning tree of a planar
point set, as points are inserted or deleted, in O(log3 n)
time per update in Mulmuley’s expected-case model of
dynamic geometric computation. We use as subroutines
dynamic algorithms for two other geometric graphs:
the farthest neighbor forest and the rotating caliper
graph related to an algorithm for static computation
of point set widths and diameters. We maintain the
former graph in time O(log2 n) per update and the
latter in time O(log n) per update. We also use the
rotating caliper graph to maintain the diameter, width,
and minimum enclosing rectangle in time O(log n) per
update.

1 Introduction

Randomized incremental algorithms have become an in-
creasingly popular method for constructing geometric
structures such as convex hulls and arrangements. Such
algorithms can also be used to maintain structures for
dynamic input, in which points are inserted one at a
time. Mulmuley [22, 23, 24] and Schwarzkopf [29] gen-
eralized this expected case model to fully dynamic ge-
ometric algorithms, in which deletions as well as inser-
tions are allowed, and showed that many randomized
incremental algorithms can be extended to this fully
dynamic model. The resulting model makes only weak
assumptions about the input distribution: the order in
which points are inserted or deleted is assumed to be
random, but both the points themselves and the times
at which insertions and deletions occur are assumed to
be a worst case. The model subsumes any situation in
which points are drawn from some fixed but unknown
distribution, and in this sense it is distributionless.

In many dynamic geometry problems a worst case
efficient dynamic algorithm is impossible because the
given geometric structure can undergo enormous change
in a single update. In such a case the much smaller time
bounds given by the average case analysis provide an in-
dication that such pathological behavior is unlikely, and
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that a worst case analysis may therefore be inappropri-
ate. The design of average case efficient algorithms then
shows how to take advantage of this situation. But we
would argue that average case analysis is important even
when worst case algorithms are possible. The average
case algorithms are often simpler, have better theoreti-
cal time bounds, and seem more likely to be practical.

Previous studies of average case updates in this
model have focused on problems of computing geometric
structures: convex hulls, arrangements, and the like.
However problems of geometric optimization have been
neglected; indeed Mulmuley’s recent text on randomized
geometric algorithms [24] does not even mention such
basic optimization problems as minimum spanning trees
or diameter. In this paper we show that the same model
of average case analysis can be used to solve a number
of problems of dynamic geometric optimization. We
also address some fundamental data structure issues
raised by such optimization problems. In particular,
many worst case geometric optimization algorithms use
a variety of reductions from one problem to another,
such as the static-to-dynamic reduction of Bentley and
Saxe [8]; we examine methods for performing this sort
of reduction in a way that preserves the average case
behavior of the update sequence.

1.1 MotivationTo further motivate the average case
analysis model, and point out some of its applications to
geometric optimization, we first describe three problems
for which an average case dynamic algorithm is an
immediate corollary of known results, but for which the
known worst case efficient algorithms were considerably
more complicated.

Diameter. The dynamic planar diameter problem can
be reduced (with logarithmic overhead) to finding
farthest neighbors to query points in dynamic point
sets. This farthest neighbor problem can be further
reduced by parametric search to a problem of test-
ing halfspace emptiness in three dimensions. The
latter problem can be solved using a complicated
range query data structure based on deterministic
sampling techniques. Thus in the worst case we
have time O(nε) per update [2]. But the diameter
is also the longest edge in the farthest point De-
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launay triangulation, which can be maintained in
O(log n) average time per update using techniques
of Mulmuley [23]. We will see that an even sim-
pler algorithm can also maintain the diameter in
O(log n) time.

Linear programming. In a previous paper [13], we
described randomized algorithms for the dynamic
linear programming problem in three dimensions.
Our bounds have since been improved by Agarwal
et al. [2] to O(n logO(1) n/m1/dd/2e) query time and
O(m1+ε/n) update time in any dimension. But in
the average case, if the objective function is fixed,
Seidel’s algorithm [30] can easily be adapted to
provide a constant time bound per update. The
same result applies to the many related nonlinear
optimization problems which can be solved by the
same algorithm [5].

Minimum spanning tree. The planar minimum span-
ning tree problem can be reduced to a graph prob-
lem in a graph formed by a number of bichromatic
closest pair problems, which could then be solved
with the same techniques used for diameter. Using
clustering techniques for graph minimum spanning
trees [14, 15, 18], we were able to solve the mini-
mum spanning tree problem in time O(n1/2 log2 n)
per update [2]. In the average case, the minimum
spanning tree can be maintained much more easily
in time O(log n) per update by combining a dy-
namic Delaunay triangulation algorithm [23] with
a dynamic planar graph minimum spanning tree
algorithm [16].

1.2 New ResultsWe provide the first dynamic algo-
rithms for the following problems:

Maximum spanning tree. Like the minimum spanning
tree, the maximum spanning tree has applications
in cluster analysis [6]. For graphs, the maximum
spanning tree problem can be transformed to a
minimum spanning tree problem and vice versa
simply by negating edge weights. For geometric
input, the maximum spanning tree is very different
from the minimum spanning tree; for instance,
although the minimum spanning tree is contained
in the Delaunay triangulation [31] the maximum
spanning tree is not contained in the farthest point
Delaunay triangulation [21]. Another important
difference from the minimum spanning tree is that,
whereas the minimum spanning tree changes by
O(1) edges per update, the maximum spanning
tree may change by Ω(n) edges. Hence a worst
case efficient algorithm is impossible. But in the

expected case, the maximum spanning tree changes
by O(1) edges per update, so efficient algorithms
may be possible. Monma et al. [21] compute a
static maximum spanning tree in time O(n log n).
We dynamize their algorithm, and produce a data
structure which can update the maximum spanning
tree in expected time O(log3 n) per update.

Width. The problem of maintaining width appears to
be much more difficult than that of maintaining
diameter, and no satisfactory worst case solutions
are known. Agarwal and Sharir [4] describe an al-
gorithm for testing whether the width is above or
below some threshhold, in the offline setting for
which the entire update sequence is known in ad-
vance. Janardan [20] maintains an approximation
to the width in time O(log2 n) per update. But nei-
ther of these results is a fully dynamic algorithm for
the exact width. We describe a very simple algo-
rithm for maintaining the exact width in our fully
dynamic expected-case model, in time O(log n) per
update. The same techniques can also be used to
maintain the diameter as well as the minimum area
or perimeter enclosing (non-axis-aligned) rectangle.
The diameter result could also be achieved using
farthest point Voronoi diagrams, but our algorithm
may be simpler. We are unaware of any dynamic
algorithm for enclosing rectangles.

As part of our maximum spanning tree algorithm,
we describe dynamic algorithms for two other geomet-
ric graphs: the farthest neighbor forest and also the
rotating caliper graph related to an algorithm for static
computation of widths and diameters. We maintain the
former graph in expected time O(log2 n) per update and
the latter in expected time O(log n) per update. We also
use the rotating caliper graph to maintain the width.

One further feature of our maximum spanning tree
algorithm is of interest. The known dynamic mini-
mum spanning tree algorithms all use some geometry to
construct a subgraph of the complete graph, and then
use a dynamic graph algorithm to compute spanning
trees in that subgraph. The subgraphs for incremen-
tal and offline geometric minimum spanning trees [17]
are found by computing nearest neighbors in certain di-
rections from each point [33]; the subgraph for fully dy-
namic minimum spanning trees uses bichromatic closest
pairs [1]; and the fully dynamic average case algorithm
uses as its subgraph the Delaunay triangulation [31].
In our maximum spanning tree algorithm, as in that of
Monma et al. [21], no such strategy is used. Instead,
the maximum spanning tree is computed directly from
the geometry, with no need to use a graph minimum
spanning tree algorithm.
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2 The Model of Expected Case Input

Define a signature of size n to be a set S of n input
points, together with a string s of length at most 2n
consisting of the two characters “+” and “−”. Each
“+” represents an insertion, and each “−” represents
a deletion. In each prefix of s, there must be at least
as many “+” characters as there are “−” characters,
corresponding to the fact that one can only delete
as many points as one has already inserted. Each
signature determines a space of as many as (n!)2 update
sequences, as follows. One goes through the string s
from left to right, one character at a time, determining
one update per character. For each “+” character,
one chooses a point x from S uniformly at random
among those points that have not yet been inserted,
and inserts it as an update in the dynamic problem.
For each “−” character, one chooses a point uniformly
at random among those points still part of the problem,
and updates the problem by deleting that point.

The expected time for an algorithm on a given
signature is the time averaged over all possible update
sequences determined by the signature, and over all
random choices made by the algorithm. The expected
time on inputs of size n is the maximum expected time
on any signature of size n. We choose the signature
to force the worst case behavior of the algorithm, but
once the signature is chosen the algorithm can expect
the update sequence to be chosen randomly from all
sequences consistent with the signature. As a special
case, the expected case for randomized incremental
algorithms is generated by signatures containing only
the “+” character.

Lemma 2.1. The expected number of edges that
change per update in the maximum spanning tree, far-
thest point Delaunay triangulation, or farthest neighbor
forest is O(1).

Proof. We first bound the change per insertion. Con-
sider the system after insertion i, consisting of some set
of j points. Among all sequences of updates leading to
the present configuration, any of the j points is equally
likely to have been the point just inserted. Each of the
three graphs has O(n) edges. Each edge will have just
been added to the graph if and only if one of its end-
points was the point just inserted, which will be true
with probability 2/j. So the expected number of addi-
tional edges per insertion is at most O(j) · 2/j = O(1).
The number of existing edges removed in the insertion
is at most proportional to the number of edges added,
and can possible be even smaller if the convex hull be-
comes less complex as a result of the insertion. Thus the
total change per insertion is O(1). The total change per

deletion can be analysed by a similar argument that ex-
amines the graph before the deletion, and computes the
probability of each edge being removed in the deletion.
2

We also need the following special case of more
general convex hull bounds [12].

Lemma 2.2. The expected number of convex hull
vertices that change per update is O(1).

Proof. We bound the change per insertion; deletions
follow a symmetric argument. In each insertion, the
only vertex that can be added is the inserted point, so
we need only worry about removed vertices. Consider
the point set after the insertion. For each convex hull
vertex v form a triangle connecting v to its neighbors
on either side. Each input point is in at most two such
triangles, and can only have been just removed as a
hull vertex if the newly added point was one of two
triangle apexes. This is true with probability 2/n so the
expected number of vertices removed is no more than
two. 2

A similar bound on the change in a fifth geometric
graph, the rotating caliper graph, is proved later in
Lemma 5.1.

We next describe a method for transforming any
efficient data structure in this expected case model, to
one which combines its queries with orthogonal range
searching. I.e., we wish to ask for the answer to a query
such as a farthest neighbor problem, with the queried
set being a subspace of the input within some rectangle
or higher dimensional box given as part of the query. We
consider any decomposable search problem [8] for which
the answer for a given input set can be found quickly by
combining answers in disjoint subsets of the input. We
describe a solution for one-dimensional interval range
searching; higher dimensional box range queries can be
solved by iterating our construction once per dimension.

Many techniques are known for performing orthog-
onal range searching in decomposable search problems,
but these techniques often partition the problems into
subproblems in a way which destroys the expected case
behavior of the subproblem updates. We add average
case orthogonal range search capabilities to decompos-
able search problems by a generalization of a technique
which Mulmuley [24] used to answer some interval range
line segment intersection queries.

Lemma 2.3. Let P be a decomposable search prob-
lem for which queries and updates can be performed
in expected time T (n). Then there is a dynamic data
structure that can perform interval range queries of P ,

3



     

in expected time O(T (n) logn) per query and update,
or better O(T (n)) if T (n) = O(n) and T (n) = Ω(nε) for
some fixed ε.

Proof. We partition the problem into a number of
subproblems using a skip list [28], as follows. We sort
the coordinates of the input points, giving a partition
of the line into n + 1 open intervals, and provide an
(empty) subproblem for each such interval. Then for
each point we flip a fair coin independently of all other
points. If the coin is heads, the point is removed from
the sorted list. The remaining points again partition
the line into a sequence of open intervals; the expected
number of intervals is n/2 + 1. For each such interval
we provide a subproblem for all input points contained
in the interval.

With high probability after O(log n) iterations all
points will have flipped a head, and the single subprob-
lem will include all points, so there are O(log n) levels
of subproblems. With high probability any query inter-
val can be composed of O(log n) subproblems (the ex-
pected number of subproblems at any level of the skip
list is O(1); some levels may use more but the overall
expectation is O(log n)). So any query can be answered
in expected time O(T (n) logn).

When we insert a new point, we repeatedly flip a
coin until a head is flipped, to determine the number of
levels for which the new point is a partition boundary.
At each such level the point is inserted and some
subproblem is split to make two new subproblems. The
data structure for each new subproblem is rebuilt by
inserting its points in a random order. The expected
size of a subproblem at level i is 2i, so the expected time
to rebuild the subproblem is 2iT (2i), but the probability
of having to do so at level i is 2−i so the expected total
work in rebuilding is

∑log n
i=1 T (2i) = O(T (n) logn).

Each inserted point must then be inserted into one
subproblem for each level higher than the one for which
it flipped a head. Each such insertion is done using the
data structure for that subproblem. After any insertion
to a subproblem, given some particular set of points
now existing in the subproblem, any permutation of
those points is equally likely as the insertion order, so
the expected-case nature of the input sequence holds for
each subproblem and the expected time per subproblem
insertion at level i is T (2i). Again the total expected
time is O(T (n) logn).

Deletions are similar to insertions, and the time
for deletions can be shown to be O(T (n) logn) using
a similar argument. The improved bounds for T (n) =
Ω(nε) follow from the observation that in that case∑logn
i=1 T (2i) = O(T (n)). 2

3 Maximum Spanning Tree Analysis

We now examine the edges that can occur in the
maximum spanning tree. Most of the material in this
section is due to Monma et al. [21], and the proofs of
the following facts can be found in that paper. The first
fact we need is a standard property of graph minimum
or maximum spanning trees.

Lemma 3.1. The farthest neighbor forest is a sub-
graph of the maximum spanning tree.

Lemma 3.2. Let each tree of the farthest neighbor
forest be two-colored. Then for each such tree, the
points of any one color form a contiguous nonempty
interval of the convex hull vertices. The trees of
the forest can be given a cyclic ordering such that
the intervals adjacent to any such interval come from
adjacent trees in the ordering.

Lemma 3.3. Let e = (x, y) be an edge in the max-
imum spanning tree but not in the farthest neighbor
forest, with x in some farthest point neighbor tree T .
Then x and y are both convex hull vertices, and y is in
a tree adjacent to T in the cyclic ordering of Lemma 3.2.

Summarizing the above Lemmas, we have the fol-
lowing algorithm outline, again due to Monma et
al. [21].

Lemma 3.4. The maximum spanning tree can be
constructed by computing the farthest neighbor forest,
determining the cyclic ordering of Lemma 3.2, finding
the longest edge between each adjacent pair of trees
in the cyclic ordering, and removing the shortest such
edge.

Monma et al. show that each of these steps can
be performed in time O(n log n), and hence that a
static maximum spanning tree can be found in that
time bound. Our algorithm performs a similar sequence
of steps dynamically: we maintain a dynamic farthest
neighbor forest, keep track of the intervals induced
on the convex hull and of the cyclic ordering of the
intervals, and recompute longest edges as necessary
between adjacent intervals using a dynamic geometric
graph defined using the rotating caliper algorithm for
static diameter computation.

4 The Farthest Neighbor Forest

As the first part of our dynamic maximum spanning
tree algorithm, we show how to maintain the farthest
neighbor forest. As shown in Lemma 2.1, the expected
number of edges per update by which this graph changes
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is O(1). We find the farthest neighbor to any point
by determining the region in the farthest point Voronoi
diagram containing that point.

Lemma 4.1. We can maintain the farthest point
Voronoi diagram in expected time O(log n) per update.

Proof. Since the farthest point Delaunay triangulation
is the projection of a three-dimensional convex hull [9],
we can maintain it using Mulmuley’s dynamic convex
hull algorithm [23]. The Voronoi diagram is dual to the
Delaunay triangulation, so each change in the Voronoi
diagram can be found from a corresponding change in
the Delaunay triangulation. 2

Along with the farthest point Voronoi diagram
itself, we keep track of the set of input points within each
diagram cell. When the diagram is updated, these sets
need to be recomputed, and when a point is added to
the input it must be added to the appropriate set. The
latter operation can be performed using the following
point location data structure:

Lemma 4.2. We can maintain a point location data
structure in the farthest point Voronoi diagram in
expected time O(log2 n) per update or query.

Proof. We can achieve these bounds per change and per
query using any of a number of algorithms [7, 10, 11, 19,
27]. By Lemma 2.1, the amount of change per update
is O(1). 2

We note that the O(log n) time dynamic Voronoi di-
agram algorithm maintains a point location data struc-
ture in the dual triangulation, however this does not
provide the point location in the Voronoi diagram itself
that is supplied by Lemma 4.2. It is open [24] whether
Voronoi diagram point location can be performed more
quickly than the above O(log2 n) bound on average.

Lemma 4.3. We can maintain the farthest neighbor
forest of a dynamically changing input in expected time
O(log2 n) per update.

Proof. We have seen how to maintain the farthest point
Voronoi diagram, and a point location data structure
for that diagram. We are then left with the problem
of updating the sets of points in each diagram cell,
after each change to the diagram. We no longer use
the expected-case model for these updates, since our
analysis does not indicate when such an update is likely
to occur or how many points are likely to be in the
sets. However, we do know that few points are likely to
change farthest neighbors as a result of the update.

Two types of changes may occur. If a point is added
to the input, a corresponding region may be added to
the diagram, covering portions of the diagram that were
previously parts of other regions. If a point is removed
from the input, its region is also removed, and split up
among the remaining regions of the diagram.

In the first case, we must find the input points
covered by the new region. For each of the old regions
partially covered by the new region, we can find from
the Voronoi diagram a line separating the old and new
regions. We query the set of points corresponding to the
old region, to find those points on the far side of this
line from the new point. All such points will change
their farthest neighbor to be the new point. We can
perform the queries with an algorithm for maintaining
the convex hull of the set of points in a region. We
test whether the line crosses the convex hull; if not, all
or none of the points are in the new region. If it does
cross, we can find a convex hull vertex in the new region,
remove it from the set of points in the old region, and
repeat the process. In this way we perform a number
of convex hull operations proportional to the number of
points which change farthest neighbors. We can not use
a fast expected-time convex hull algorithm, because we
do not expect the behavior of the point set in a region
to be random, but we can solve the planar dynamic
convex hull problem in worst case time O(log2 n) per
update [25].

In the second case, we must recompute the farthest
neighbors of all the points covered by the removed
region. We compute the new farthest neighbors in
O(log2 n) time each, using the same point location
structure used when a new point is inserted. The total
expected time per farthest neighbor change is O(log2 n).
Each point is then inserted in the dynamic convex
hull structure used for handling the first case, in time
O(log2 n). 2

Lemma 3.2 shows that each tree in the farthest
neighbor forest gives rise to two intervals on the perime-
ter of the convex hull, one for each color of vertices if
the tree is 2-colored. We wish to be able to find those
intervals quickly, so that we can use the convex hull
subinterval diameter algorithm of the next section to
find the remaining maximum spanning tree edges not
in the farthest neighbor forest. The difficulty is that,
even though the farthest neighbor forest changes by a
small amount per update, many points may be moved
by that change from one tree in the forest to another.

Lemma 4.4. We can determine the endpoints of the
two intervals described in Lemma 3.2, for any tree in the
farthest neighbor forest specified by any vertex in that
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tree, in expected time O(log2 n) per query and O(log n)
per update.

Proof. We maintain a balanced binary tree representa-
tion of the convex hull in O(log n) expected time per
update. We find a single point in one interval by look-
ing at the root of the given tree, and a point not in
the interval by taking the other root of the same tree.
We can then find the interval by binary search, using
a dynamic tree data structure [32] to test whether each
searched point is of the given color in the given tree. 2

5 The Rotating Caliper Graph

In order to compute the longest edge between two trees
of the farthest neighbor forest, we use another dynamic
geometric graph, which we call the rotating caliper graph
after its relation to the rotating caliper algorithm for
computing width and diameter [26].

Recall that the diameter of a point set, the longest
distance between any two points, is also the longest
distance between any pair of parallel lines tangent to the
convex hull. The rotating caliper algorithm considers
the sequence of convex hull vertices tangent to lines of
different slopes. As the slope varies, the tangent points
move monotonically around the convex hull perimeter.
The diameter can be computed by comparing lengths of
segments formed by a tangent on one side of the convex
hull and a tangent of the same slope on the other side.
The width, or shortest distance between two parallel
tangent lines, can be computed by a similar process that
also considers lines tangent to convex hull edges.

The rotating caliper graph is the collection of tan-
gent point pairs considered by the rotating caliper al-
gorithm. Equivalently edge xy is in the rotating caliper
graph exactly when all input points lie between two
parallel lines through x and y. Like the farthest point
Delaunay triangulation the rotating caliper graph only
connects convex hull vertices.

Lemma 5.1. The expected change per update in the
rotating caliper graph is O(1).

Proof. The effect of an insertion is exactly the reverse
of the effect of a deletion, so by symmetry we need
only discuss insertions. The number of edges in the
rotating caliper graph is equal to the cardinality of the
convex hull, so by Lemma 2.2 the expected change in
the number of edges is O(1). Thus the expected total
change in the graph is in expectation proportional to
the number of new edges added to the graph. Each
such new edge must be adjacent to the newly added
point, and as in Lemma 2.1 the expected degree of that
new point is O(1). 2

Lemma 5.2. We can maintain the rotating caliper
graph in expected time O(log n) per update.

Proof. We keep a search tree of convex hull vertices.
When a new point is added to the convex hull perimeter,
it forms a certain angle with its two neighbors. Its new
neighbors are then the k points on the other side of
the convex hull with angles of tangency in the same
range, which can be found in O(k + logn) time by
binary search. When a point is deleted, each neighbor
is reconnected to either side of the deleted point. 2

Corollary 5.1. We can maintain the width and diam-
eter of a point set in expected time O(log n) per update.

Proof. The diameter is the longest edge in the rotating
caliper graph. For the width, note that if a tangent
line supports an edge xy on the convex hull perimeter
then the point z of tangency for a parallel tangent line
is exactly that convex hull vertex for which both xz
and yz are edges in the rotating caliper graph. So
for each adjacent pair of edges in the rotating caliper
graph we maintain the distance between the common
endpoint of the edges and the convex hull perimeter
edge connecting the other endpoints of the edges. Each
edge in the rotating caliper graph is associated with
two such distances, so each graph update causes O(1)
changes in the set of distances. The width can be found
by selecting the smallest among these distances using a
priority queue. 2

A similar technique using a hypergraph defined by
rotating calipers of four lines at right angles to each
other can be used to maintain the minimum area or
perimeter rectangle (not necessarily aligned with the
coordinate axes) that encloses the point set.

6 Diameter of Convex Hull Intervals

We now describe a data structure to be used to find
edges connecting disjoint trees of the farthest neighbor
forest. Recall that each such edge connects two convex
hull vertices, and that the convex hull vertices in each
tree form two intervals in the cyclically ordered list of
all convex hull vertices.

We solve the following abstract generalization of the
problem. We are given a dynamically changing point
set. We wish to answer queries of the form: given two
intervals on the convex hull of the point set (specified by
their endpoints) find the longest edge from one interval
to the other. The updates to the point set can be
expected to be randomly distributed according to some
signature in Mulmuley’s expected-case model, but we
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can make no such assumption about the sequence of
queries.

With such a data structure, we can answer our
original problem by determining the two intervals for
each tree and pairing them up in two queries to the data
structure. As a subroutine for these interval farthest
pair problems, we would need a subroutine that could
answer interval farthest neighbor queries (this is simply
the special case of the two interval farthest pair problem
in which one interval is a single point). This problem
can be solved in time O(nε) by combining a weight-
balanced tree of the convex hull vertices with a farthest
neighbor data structure of Agarwal and Matoušek [2].
However such a bound is too large for our algorithm.

Instead we show certain properties of the intervals
determined by the farthest neighbor forest, that allow
us to answer the desired interval farthest pair problem
using a faster data subroutine for the simpler problem of
orthogonal halfspace farthest neighbor range searching.

Lemma 6.1. Let v be a convex hull vertex, in a given
tree T of the farthest neighbor forest. Then the farthest
neighbor of v outside T is in a tree adjacent to T in the
cyclic order of Lemma 3.2.

Proof. Remove all points from T but v. The only change
to the farthest neighbor forest will be that v is added
as a leaf to some other tree. By Lemma 3.2, it must be
added to an adjacent tree. 2

In light of this lemma, we can solve our desired
interval queries using a dynamic algorithm for the
following included and excluded interval query problem:
we are given a point v on the convex hull of the input set,
and two intervals I and E of the convex hull perimeter.
I, E, and v are mutually disjoint. We must find a
farthest neighbor among a set of convex hull vertices
that includes all vertices of I but excludes all vertices
of E. Other convex hull vertices may be either included
or excluded arbitrarily. Points that are not convex hull
vertices must not be included.

Lemma 6.2. We can solve the dynamic included
and excluded interval query problem in expected time
O(log3 n) per update or query.

Proof. We show that each query can be solved by com-
bining at most two orthogonal halfspace range queries
that find the farthest input point in the given range.
By Lemmas 2.3 and 4.2, we can perform these queries
in update and query time O(log3 n).

We assume without loss of generality that the query
intervals occur in clockwise cyclic order vEI. Since v

is a convex hull vertex, if we consider v the origin of a
cartesian coordinate system then the input set is entirely
contained in three quadrants of the plane, without loss
of generality the upper left, upper right, and lower right.

First consider the case that I has some nonempty
intersection I ′ with the upper left quadrant. We can
assume that all convex hull boundary segments in I ′

have positive slope. For if a segment uw occurs below
the leftmost convex hull vertex, the portion of I ′ below
that segment will be nearer v than u and w, and
will never be the answer to the included and excluded
segment problem. Similarly if a segment occurs after
the topmost convex hull vertex, the portion of I ′ to the
right but within the top left quadrant can be discarded.
I ′ can be restricted to the portion with positive slope in
O(log n) time by binary search. Let u be the point in
I ′ with least y coordinate. We claim that E is entirely
below the horizontal line through u. This follows since
E is counterclockwise of I in the same quadrant and
since u must be the point of I ′ closest to E in the cyclic
order.

We combine the results of one range query in the
halfplane above a horizontal line through u, and a
second range query in the halfplane right of a vertical
line through v. These ranges both exclude E, which
is entirely within the upper left quadrant. The only
portion of I that can be excluded from both ranges is
in the upper left quadrant and has negative slope, so
cannot contain the desired answer. We claim that the
farthest point in the two ranges will be a convex hull
vertex (even though this is not necessarily true just of
the first range). There are two possibilities. First, if
the quarterplanar region of the input excluded from the
two queries does not cross the convex hull boundary, the
convex hull of all points in the two ranges is formed from
the overall convex hull simply by cutting off line segment
uv, and we know the farthest point from v in this
smaller convex hull must itself be a convex hull vertex.
Second, if the convex hull boundary is crossed, insert for
sake of argument two artificial points at the crossings.
Then with these new points, the two range queries cover
disjoint point sets with convex hulls exactly equal to the
intersection of the original convex hull with the range
query halfplanes, so each returns a convex hull vertex.
The uppermost convex hull vertex is farther than either
artificial point, so neither would be returned if it were
part of the input and instead a true convex hull vertex
would result. But then that vertex must also be the
result of the actual queries that are performed.

In the second case, I misses the upper left quadrant
but intersects the upper right quadrant. This case
can be treated exactly the same as the first case,
by restricting I to segments with negative slope, and
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combining two range queries, one with a halfplane right
of a vertical through the leftmost point in I ′, and
another with a halfplane below the horizontal through
v.

In the final case, I is entirely contained in the
lower right quadrant. As in the first case, we can
restrict our attention to a portion of I having positive
slope. We then perform a single halfspace farthest point
range query, with the halfspace below a horizontal line
through the uppermost point of I. This must be the
point of I closest to E in the cyclic order, so E is
excluded from the query. The query result is a convex
hull vertex of the full input set since the range restriction
doesn’t change the portion of the convex hull boundary
having positive slope. 2

We next need the following fact which justifies the
correctness of the “rotating caliper” algorithm.

Lemma 6.3. Let (x, y) be the farthest pair of points
drawn from two convex hull intervals. Then x and y are
both extrema within their own intervals with respect to
their projected positions on some line `.

Proof. Take ` to be parallel to xy. Then if x and y were
not extrema, we could replace them by other points and
produce a farther pair. 2

Note that e.g. x may not necessarily be an ex-
tremum among all points in both intervals; the lemma
only claims that it is an extremum among points in its
own interval. However any point interior to the interval
that is an extremum in the interval is also an extremum
of the overall point set.

Lemma 6.4. With the aid of the included and ex-
cluded interval data structure described above, we can
compute the farthest pair of points in a pair of farthest
neighbor forest intervals in expected time O(log3 n).

Proof. We conceptually rotate line ` through 360◦ of
motion, tracking the pairs of points that arise as ex-
trema on `. As ` rotates, the extrema in each interval
pass monotonically along the perimeter of the convex
hull, including each convex hull vertex in turn. The
pairs involved are thus edges in the rotating caliper
graph defined in the previous section, except for those
pairs involving one or two endpoints of intervals. We
keep a balanced binary tree of all edges in the rotating
caliper graph, sorted by slope; for each node in the tree
we track the longest rotating caliper graph edge among
all descendants of that node. With this structure we
can find the longest edge connecting internal vertices of
the two intervals, in time O(log n). The longest edge
involving interval boundary vertices can be found with
the data structure of Lemma 6.2. 2

7 The Maximum Spanning Tree

Theorem 7.1. The Euclidean maximum spanning
tree can be maintained in expected time O(log3 n) per
update.

Proof. We maintain the farthest neighbor forest in
expected time O(log2 n) per update as described in
Lemma 4.3. We keep a list of the roots of the trees,
and a priority queue of the edges connecting trees with
adjacent intervals with pointers from the tree roots to
the corresponding edges. For each of the O(1) expected
changes in the farthest neighbor forest, we find the
corresponding tree root using the dynamic tree data
structure of Sleator and Tarjan [32], remove the root
of the old tree from the list of tree roots, and remove
its edges from the priority queue. We then make a
list of changed trees by again using the dynamic tree
data structure and sorting the resulting list of tree roots
to eliminate duplicates. For each changed tree, we
recompute the two intervals described in Lemma 3.2,
using the algorithm of Lemma 4.4. We determine the
identities of the two adjacent trees in the cyclic order
of Lemma 3.2 by looking up the points adjancent to
the interval boundaries using again the dynamic tree
data structure. We find the intervals for those trees
(this can either be information stored with the tree
roots, or recomputed as needed). We compute the edges
connecting the changed tree with its two adjacent trees,
using the interval query data structure described in the
previous section, and add these edges to the priority
queue.

We can now make a list of all edges removed from
the tree (edges no longer in the farthest neighbor forest
as well as edges connecting changed trees in the forest
and the new smallest edge in the priority queue) as
well as another list of newly added edges (edges added
to the farthest neighbor forest, new edges connecting
trees in the forest, and the old smallest edge in the
priority queue). By sorting these lists together we can
resolve conflicts occurring when an edge appears in both
lists, and generate a list of all changes in the maximum
spanning tree. 2

8 Conclusions

We have seen how to maintain the maximum spanning
tree of a planar point set in the expected case. Our
algorithm is based on that of Monma et al. [21] and uses
as subroutines algorithms for maintaining the farthest
neighbor forest and for answering farthest pair queries
between intervals on the convex hull perimeter. We also
solved the problem of maintaining the width in expected
time O(log n) per update.
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However some open problems remain. In particular,
can we say anything about higher dimensional minimum
or maximum spanning trees? Our present algorithm
for maximum spanning trees depends strongly on pla-
nar properties such as the cyclic ordering of convex hull
vertices, and the algorithm for minimum spanning trees
depends on the planarity and sparsity of the Delaunay
triangulation. The higher dimensional static problem
can be solved by repeatedly merging pairs of trees us-
ing a bichromatic farthest pair algorithm [3, 21] but
it is unclear whether such an algorithm could be dy-
namized efficiently. It is also open whether width and
diameter can be maintained quickly in higher dimen-
sions. Another open problem in average case geometric
optimization is whether we can handle dynamic linear
programming queries with variable objective functions.
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