Speed-ups in
Constructive Solid Geometry

David Eppstein

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 92-87

August 25, 1992

Abstract

We convert constructive solid geometry input to explicit represen-
tations of polygons, polyhedra, or more generally d-dimensional poly-
hedra, in time O(n?), improving a previous O(n%logn) bound. We
then show that any Boolean formula can be preprocessed in time
O(nlogn/loglogn) so that the value of the formula can be main-
tained, as variables are changed one by one, in time O(logn/loglogn)
per change; this speeds up certain output-sensitive algorithms for con-
structive solid geometry.



1 Introduction

Computational geometry typically deals with explicit representations of geo-
metric input (polygons, polyhedra, etc) as cell complexes of facets. However
another representation is possible: a shape may be described implicitly, in
terms of the method of its construction. Such a representation is the Con-
structive Solid Geometry (CSG) formula, in which a shape is built up from
primitive shapes such as halfspaces and spheres, by means of Boolean com-
binations such as set union, set intersection, and complementation.

If we are given such an input, in order to apply many geometric algo-
rithms, we must convert it to an explicit representation. This is the CSG
evaluation problem, studied by several authers [8, 10, 11]. Many other prob-
lems, such as testing whether a given object is non-empty [11], can also be
expressed as CSG evaluation. The dual problem of converting an explicit
polygon or polyhedron to a CSG representation has also been studied [4, 9].

In general, n surfaces in dimension d can form O(n?) points of inter-
section, and a CSG formula involving n variables can thus give rise to
polygons of complexity at most O(n?). This is tight: it is easy to form
a “checkerboard” of Q(n?) disconnected cubes. By connecting the cubes
by thin “wires” one can achieve a simply-connected figure with complexity
Q(n%). Thus, if we are concerned with the worst case complexity of CSG
evaluation, we cannot hope to do better than O(n?). The best known result,
a bound of O(n?logn) by Goodrich [8], comes close to this, but is off by
a logarithmic factor. Our first result is that we can avoid this factor, and
achieve an optimal worst-case time of O(n?) for CSG evaluation.

In practice, CSG input will not have complexity near that of the the
worst case. If an input has small complexity, the lower bound of Q(n?) no
longer holds. It makes sense, then, to ask for an algorithm for which the
time complexity depends on the complexity of the output. If the output
involved k facets the time might be something like O(nlogn + k). No such
algorithm is known. However, Goodrich [8] proposed an intermediate mea-~
sure of complexity. Given a CSG formula in the plane, let o be the number
of vertices formed by pairwise intersections between geometric primitives.
The primitives must be triangles or similar bounded objects, since n half-
planes always determine ©(n?) intersections. Then k < a = O(n?), so a is a
weak measure of output complexity. Goodrich proposed an algorithm with
time complexity O((n+ «)logn) for CSG evaluation; this matched the best
known worst case complexity while allowing a speed-up for inputs composed
of infrequently-intersecting primitives. Similarly, in R3 let 3 be the number



of vertices formed by intersecting three primitives; then Goodrich gave an
algorithm for CSG evaluation in time O((n? + ) logn).

Goodrich’s algorithms are based on a data structure, the dwarf CSG tree,
which enables him to change the value of a single variable in the CSG formula
and update the formula value in O(logn) time. Our second result is a data
structure which performs the same operations in O(logn/loglogn) time. As
a consequence, we can improve Goodrich’s intersection-sensitive results. We
solve the planar CSG evaluation in time O(nlogn + alogn/loglogn), and
the R3 problem in time O(n?logn+ Blogn/loglogn). We can add a second
form of intersection sensitivity to further improve the last result. Let v be
the number of line segments formed by the intersection of two primitives;
then we solve the 3d CSG problem in time O(n?+~logn+Blogn/loglogn).

2 'Tree partitions

Our algorithms use a technique of partitioning trees into smaller subtrees,
introduced by Frederickson [7]. We will apply this technique to trees repre-
senting CSG formulae.

Definition 1 (Frederickson [7]). A restricted partition of order z with
respect to a binary tree I' is a partition of the vertices of V such that:

1. Each set in the partition contains at most z vertices.
2. FEach set in the partition induces a connected subtree of T'.

3. For each set S in the partition, if S contains more than one vertex,
then there are at most two tree edges having one endpoint in S.

4. No two sets can be combined and still satisfy the other conditions.

Such a partition can easily be found in linear time by merging sets until
we get stuck. Restricted partitions have the important property that the
number of sets in the partition must be small.

Lemma 1 (Frederickson [7]). There are at most 6n/z sets in any re-
stricted partition of order z with respect to a binary tree with n vertices.

Proof: If we contract each set of the partition down to a single vertex,
we form a smaller rooted tree with outdegree at most two. We classify the
vertices of this contracted tree (i.e. the sets of the partition) into four types:



1. Vertices of outdegree zero (leaves of the contracted tree).

2. Vertices of outdegree one, with a child also of outdegree one.
3. Other vertices of outdegree one.

4. Vertices of outdegree two (corresponding to singleton sets).

Denote the number of vertices of type one by m. Since this is a binary
tree, there are m — 1 vertices of type four. Each vertex of type three has
a child of type one or four, so the number of vertices of type three is at
most 2m — 1.

If a vertex of type one has a type four parent, it must correspond to a
set in the partition containing z vertices, since otherwise it could be merged
with its parent. Similarly, if it has a type three parent, it and its parent
together must have cardinality greater than z. So for each vertex of type
one, we can find a set of vertices in the original binary tree of cardinality at
least z; all these sets are disjoint from each other. Thus m < n/z and the
number of sets in types one, three, and four is at most 4n/z.

We now consider the sets of type two. These can be grouped into chains
of such sets, together with sets of type three at the bases of the chains. No
two adjacent sets can contain fewer than z tree vertices (since otherwise the
two sets could be merged). So if ¢ denotes the number of sets of type two,
we can find at least ¢/2 sets containing at least z vertices each, and t is at
most 2n/z.

Adding the at most 2n/z sets of type two with the at most 4n/z sets of
other types gives our result. O

The same argument proves that there can be at most 5n/z non-singleton
sets in the partition.

3 Subtree values

Suppose we are given a CSG formula f, with n variables representing basic
geometric objects such as halfspaces which are to be combined by the for-
mula into some more complicated object. We wish to construct an explicit
representation for this object. Our algorithms for this task first manipulate
the CSG formula as a formula of Boolean algebra, ignoring the geometric
content of its variables. We split operations taking more than two arguments
into an appropriate number of binary operations. This gives us a formula



with the same number of variables, in which all operations are binary. The
formula defines a binary tree with 2n — 1 vertices.

Our algorithms will involve restricted partitions of this tree. To simplify
matters, we assume that the tree root forms a singleton set in this partition.
Recall that such a partition involves sets of three types:

1. Sets connected by a single edge to the rest of the tree.

2. Sets connected by two edges, one upward to the root of the tree and
one downward to a subtree.

3. Singleton sets with one upward edge and two downward edges.

Given a partition of the CSG formula tree, and given an assignment
of values to the variables in the formula, we will extend the assignment
to values defined on the sets in the partition. The value of each set will
depend only on the variables corresponding to tree leaves that are part of
the set. Just as the value of the formula can be determined from the values
of its variables, we wish the value of the formula to be determined from the
values of each set in the partition. Thus if we contract each partition set
to a single node, the resulting contracted tree can still be interpreted as a
formula involving the values of contracted node.

In the original CSG formula, the variables have Boolean values; that is,
they are either true or false (geometrically, a point is either inside or outside
the basic object corresponding to the variable). We can similarly assign a
value to each partition set of the first type (a subtree connected by a single
edge to the rest of the tree): each such set corresponds to a subformula of
the boolean formula, and the value of the set can be found as the value of
the subformula.

The second type of partition set has two edges, one up to the root of
the tree and one down to a subtree. The possible values of the set will
instead be functions of a single Boolean variable. There are four such val-
ues: the constant false function, the constant true function, the identity
function, and the complement function. The subtree rooted at the upward
edge corresponds to a subformula s of the CSG formula, which contains as
a sub-sub-formula ¢ the subtree rooted at the downward edge. Given an
assignment to the variables of the partition set, we can compute for each
possible value of ¢ the resulting value of s. The value of the set is this
function mapping values of ¢ to values of s.



The final type of partition set is a singleton tree node, corresponding to
a binary Boolean operation without any variables. We do not define values
for such sets.

As an example, let f be (aA1b)V1(cA2(dVae)). We have assigned numbers
to the Boolean operations to distinguish between two operations of the same
type. T is a tree with five leaves corresponding to the five variables, and four
internal nodes corresponding to the four Boolean operations. Let the sets of
the partition be S1 = {a, A1,b}, So = {V1}, S5 = {c, N2}, S4 = {d, V2}, and
S5 = {e}. Sj is of the first type, so given values of a and b we can compute
the value of S as the Boolean value a A b. Ss is of the third type, and has
no value. S5 is of the second type, since it has an upward edge connecting
it to So and a downward edge connecting it to Sy. The subformulae s and ¢
described above are ¢ A (dV e) and d V e respectively. If ¢ is true, the value
of s will be d Ve = t. If c is false, the value of s will be false no matter
what value ¢ takes. Thus the value of S3 is either the identity function (if ¢
is true) or the constant false function (if ¢ is false). Similarly, the value of
Sy is either the constant true function or the identity function, depending
on the value of d. The value of S5 is just that of e.

Let us verify that we can compute the value of f from the values of the
partition sets. Suppose a is false, b is false, ¢ is true, d is false, and e is
false. Then S; has value false, S3 and S4 have the identity function as their
values and Sy has value false. To determine the value of the subformula
corresponding to subtree Sy U S5, we apply the value of Sy (identity) as a
function to the value of S5 (false). This subformula is thus false. Similarly,
the value of subformula S3 U S, U S5 is also false. The value of S1isaAb =
false. The value of the entire formula is then computed by performing the
Boolean operation at Sy = V1, resulting in a value of false.

The same technique computes the values of all subtrees rooted at the
upward edges of the partition sets. We can also compute values of sets in
coarser partitions: e.g. the set S3USy, if it were part of a partition, would be
of the second type. Its value is a function which can be found by composing
the values of S3 and S;. In the example above, the composition of two
identity functions is again the identity function.

Lemma 2. Let S be a set in a restricted partition of a CSG formula tree
T, and let P be a restricted partition of the subtree induced by the nodes
in S. Then the value of S can be determined by the values of each set in P,
in time proportional to the number of sets in P. O



As a special case, the value of the entire formula can be determined from
the values of the sets of a restricted partition of the whole tree.

4 Worst-case optimal CSG

We are now ready to describe our algorithm for computing an explicit rep-
resentation of a CSG polytope, in worst-case optimal time. For simplicity of
exposition we start with the planar case, but our methods extend without
difficulty to any higher dimension.

We are given a CSG formula f, involving n variables (halfplanes), and we
wish to convert this into an explicit description of the polygon it represents.
We split operations taking more than two arguments into an appropriate
number of binary operations. This gives us a formula with the same number
of variables, in which all operations are binary. The formula defines a binary
tree with 2n — 1 vertices. We find a restricted partition of order 22n/log, n,
with respect to this tree, in time O(n).

By Lemma 1, we know that there are O(logn) sets in the restricted
partition, of which at most 5/11 logy n are non-singletons. The singleton
sets correspond to solitary binary operations in our original formula. The
non-singleton sets of type one, that is, the sets connected by a single edge
to the rest of the tree, form subformulae of our original formula. If we know
the value of each such subformula, we can deduce the value of the formula
as a whole, without knowing how each subformula value is derived.

Any remaining non-singleton set S is connected to the rest of the tree
by two edges. One such edge connects S to a portion of the computation
tree not containing the tree root; this edge carries the value of a subformula
f! into the portion of our main formula corresponding to S. The other edge
connects S to the rest of the tree, and carries the value of the subformula
formed by S together with f/. Thus the effect of S is to combine the value
of f’ with the variables in S itself, producing another Boolean value. This
effect can be represented as a unary Boolean function, of which there are
four possibilities: S can pass the value of f’ unchanged, it can invert that
value, or it can be one of two constant functions, producing the value true
or false no matter what value f’ takes.

Since each non-singleton set can have one of at most four possible ef-
fects, and since there are at most 5/11 logy n such sets, there are at most
45/1 logon — p10/11 wavg these effects can be combined to produce the total
formula value. Each such combination can be represented with O(logn) bits,



which (in the standard PRAM model of computation) can fit in a single com-
puter word. For each possible combination, we compute the total formula
value in O(logn) time, giving a total time for this stage of preprocessing of
O(n'%logn) = o(n).

The halfplanes corresponding to the variables correspond to a planar line
arrangement of complexity O(n?). This arrangement can be constructed in
time O(n?). Within a cell of the arrangement, the formula value is constant;
that is, each cell is either entirely contained in the CSG polygon or it is
entirely exterior to the polygon. Our goal is to determine the formula value
within each cell; then the polygon itself will be the union of those cells within
which the formula is true.

Each set of the restricted partition also gives us a set of O(n/logn)
halfplanes, one for each variable appearing in the set. We can again construct
an arrangement, of complexity O((n/logn)?), in time proportional to the
complexity. Thus the time to compute each such smaller arrangement, for
each of the O(logn) partition sets, is O(n?/logn).

Recall that each partition set can affect the entire formula in one of
four ways. Within each cell of the smaller arrangement corresponding to
the partition set, this effect is constant. We can compute this effect for each
cell, by traversing the arrangement and updating the values in the portion of
the formula involved in the partition set, using the algorithm of Goodrich [8],
in time O(logn) per cell. Thus the total time to compute all these effects
for all the partition sets is O(n?).

By combining these effects, we will compute the formula values in each
cell of the main arrangement of all halfplanes. We therefore need to be able
to relate locations in the main arrangement to locations in the smaller ar-
rangements. Each line in the main arrangement corresponds to a halfplane
in one set of the partition, and hence to a line in a single smaller arrange-
ment. Any line is partitioned segments by the main arrangment, and into
larger segments by the smaller arrangement containing it. We construct a
data structure consisting of a pointer from each segment in the main ar-
rangement to the segment containing it in the smaller arrangement. This
can be done in time proportional to the complexity of the main arrange-
ment, which is O(n?). With this structure, we can determine in constant
time, whenever we move from cell to cell in the main arrangement, the
corresponding movement in the smaller arrangement.

Finally, we traverse the cells of the main arrangement. We maintain,
in a single O(logn) bit word, the effects of each of the O(logn) sets in the
partition. These effects change only when we cross a line corresponding



to a variable in a given set, in which case we can look up the new cell in
the corresponding smaller arrangement, and thus update the effect for that
partition set, in constant time. We then look up the total formula value in
the table we computed of the O(n'%/!') possible values, again in constant
time. The time per cell is O(1), so the total time is O(n?).

This completes the proof of the following result.

Theorem 1. If we are given a planar CSG formula with n variables, each
of which corresponds to a halfplane, we can construct an explicit description
of the polygon represented by the formula, in time O(n?). O

This is optimal, since it is not difficult to find formulae for which the
corresponding polygons have complexity ©(n?).

The only points at which we used planarity were (1) the complexity anal-
ysis and time bounds for constructing arrangements of halfspaces, and (2)
the data structure for relating smaller arrangements to larger arrangements.

The first point is answered by noting that in any dimension d, arrange-
ments have complexity O(n?), and can be constructed in that time [6].

For the second point, each cell in a traversal of an arrangement is reached
by crossing a (d — 1)-face. We maintain a data structure mapping each
(d — 1)-face on a hyperplane of the main arrangement to the (d — 1)-face
containing it in the appropriate smaller arrangement. The data structure
can be constructed in O(n?) time, and answers queries in constant time.

Thus the same techniques extend to any higher dimension. In any di-
mension, we can convert a CSG formula to an explicit description of the
corresponding polytope, in time O(n?). As in the planar case, this is tight.

5 Dynamic maintenance of formula values

Goodrich’s [8] algorithm for testing CSG emptiness (and for constructing an
explicit representation of a CSG polygon) traverses the space in which the
polygon is defined, maintaining the value of the CSG formula at each point
in space. The traversal will at certain times cross the boundary between
regions in which a particular variable is true, and in which it is false; at each
such boundary the algorithm updates the value of the formula to determine
whether the points across the boundary are in or out of the CSG polygon.

The most simple method for updating Boolean formulae is to maintain
the value of subformulae, and update in constant time each such value that



depends on the changing variable. If we represent the formula as a binary
tree, with leaves representing variables and nodes representing Boolean op-
erations, such an update can be seen as following a path in the tree, from
leaf to root, updating the values at each node in the path. The time for this
computation is proportional to the path length, so the worst case time is
simply the depth of the tree. However in general a formula may have depth
proportional to its size, so this method might not be faster than recomputing
the formula from scratch.

Goodrich improves this method using a dwarf tree with depth O(logn),
constructed from the CSG formula using techniques originally developed in
the context of parallel algorithms. A dwarf tree can be thought of as a
formula involving values that are themselves Boolean functions. Using the
method of dwarf trees, the value of the Boolean function can be updated
in O(logn) time per variable change. A similar result can be obtained
using a data structure for dynamic trees [3]; this has the further advantage
(unneeded in our application) that certain changes to the structure of the
formula can also be performed in logarithmic time.

Our approach is similar to that of Goodrich. As in Goodrich’s approach,
our algorithm can be thought of as constructing formulae defined over a non-
Boolean domain (the values of sets in a restricted partition). We restructure
the original CSG formula into a new tree with smaller depth. Each node
corresponds to a subtree of the original CSG formula, and its children form
a restricted partition of that subtree. Our approach differs in that our tree
is not binary. We allow the tree to have non-constant degree: each internal
node may have log®n children, for some constant ¢. This allows us to form a
tree in which the maximum depth is O(logn/loglogn), leading to a savings
in formula update time.

The restricted partition of any subtree of our formula itself forms a binary
tree, in which the nodes are the sets of the partition, and the edges are the
edges of T that connect two partition sets. If there are not many sets in
the partition, there can not be many topologically different partition trees.
More specifically, let 2 = log®n; then there are 20(=) different trees involving
that many nodes, and for each such tree there are 20(*) ways that values
can be assigned to the nodes of the tree. For each such assignment of values,
we can compute the value of the entire tree, in time O(x). If ¢ < 1, we can
precompute a table of all such results in time o(n).

Then, given a restricted partition of our CSG formula, of order n/z, we
can represent the values of the O(x) partition sets using a description of
O(1) bits each; the entire description fits into a single machine word. We



can then look up the value of the formula in constant time by using that
description as an index into our precomputed table.

Similarly, each set in the partition, involving m < n/x nodes, forms a
subtree of the original tree. If we form a restricted partition of order m/z,
we can compute the set’s value from the values in its partition, by composing
functions in a bottom-up manner similar to that of Lemma 2. This value
can be looked up in constant time from a representation of the partition
values, using the same table precomputed above.

Repeating this construction gives us a partition of the formula into par-
tition sets, each of which is further partitioned recursively until each set
has at most x nodes in it. At each level of the recursion, the number
of nodes in the sets shrinks by a factor of x, so the number of levels is
O(log, n) = O(log n/loglogn). Each level can be constructed in linear time,
so the total time for constructing this structure is O(nlogn/loglogn).

If a variable changes in the formula, we need to recompute the values
of the sets containing that node at each level of the recursive decompo-
sition. Each such update takes constant time, so the time per update is
O(logn/loglogn).

We have proved the following theorem:

Theorem 2. Given a Boolean formula f with n variables, we can in time
O(nlogn/ loglogn) construct a data structure of size O(n), with which we
can update the value of the formula in time O(logn/loglogn) per variable
change. O

6 Output-sensitive CSG evaluation

Now suppose we have a formula in which the variables (geometric primitives)
consist of shapes that do not intersect very often. For instance in the plane,
the shapes might be polygons that are often disjoint from each other. As
in [8], let a be the number of vertices formed by the intersection of two
polygon boundaries. Then the lower bound of €2(n?) may no longer apply,
because the output complexity is limited by a. Goodrich [8] was able to
exploit this observation: if there are n polygonal primitives with m total
facets, he gave an O(mlogm + alogn) time algorithm for CSG evaluation.
We can improve this, using the data structure of Theorem 2.

Goodrich’s algorithm is as follows. We first form the arrangement of the
m line segments bounding the polygonal primitives. This can be done in

10



time O(mlogm + «), using the output-sensitive line segment arrangement
algorithm of Chazelle and Edelsbrunner [2]. Within a single cell, the CSG
formula takes on a constant value. Goodrich computes these values by
traversing the cells of the arrangement, updating the formula value each
time he crosses a cell boundary using his dwarf CSG tree representation in
time O(logn). Thus the time for this stage of the computation is O(alogn).
If we replace the dwarf tree used in this stage with the data structure of
Theorem 2, we get the following improvement:

Theorem 3. If we are given a planar CSG formula with n variables, each
of which corresponds to a polygon, such that there are m polygon facets
and « intersections of facets, we can construct an explicit description of the
polygon represented by the formula, in time O(m log m+alogn/loglogn). O

Similarly, in R? suppose the primitives are convex polyhedra with a total
of m facets, and 3 vertices formed by the intersection of three facets. In gen-
eral, 3 = O(mn?) but B may be much smaller. We can compute the arrange-
ment of all facets, by constructing separately the portion of the arrangement
that lies in each facet. Thus the first stage of the CSG evaluation algorithm
can be performed in O(m?logm + 3). Goodrich performs the second stage
in time O(Blogn), resulting in a total bound of O(m?logm + Blogn).

We improve this bound in two ways. First, of course, we can replace
Goodrich’s dwarf trees by our data structure. Second, we can use a fur-
ther form of intersection dependence. Let v be the number of line seg-
ments formed by intersecting two facets of the input polyhedra; v = O(mn).
We enumerate these segments by intersecting each pair of polyhedra, using
Chazelle’s linear time algorithm [1], in total time O(mn). Then we can com-
pute the arrangement of segments within each facet, using Chazelle’s output-
sensitive line segment arrangement algorithm as we did in the planar case.
The time for constructing the facet arrangement is thus O(mn+-~logm+ ),
which can significantly improve the previous O(m?logm + 3) when there
are many more polyhedra than facets, or when « is small. Thus we have our
final result:

Theorem 4. If we are given a three dimensional CSG formula with n
variables, each of which corresponds to a convex polyhedron, such that
there are m polyhedron facets, v line segments formed by intersecting two
facets, and (3 vertices formed by intersecting three facets, we can construct
an explicit description of the polygon represented by the formula, in time
O(mn + vylogm + Blogn/loglogn). O

11



References

1]

B. Chazelle. An optimal algorithm for intersecting three-dimensional
convex polyhedra. 30th IEEE Symp. Foundations of Computer Science
(1989) 38-48.

B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting
line segments in the plane. J. ACM 39 (1992) 1-54.

R.F. Cohen and R. Tamassia. Dynamic expression trees and their ap-
plications. 2nd ACM/SIAM Symp. Discrete Algorithms (1991) 52-61.

D. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink. An efficient al-
gorithm for finding the CSG representation of a simple polygon. Com-
puter Graphics 22 (1988) 31-40.

D.P. Dobkin and D.G. Kirkpatrick. Fast detection of polyhedral in-
tersection. 9th Int. Colloq. Automata, Languages, and Programming,
Springer-Verlag LNCS 140 (1982) 154-165.

H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS
Monog. Theor. Comput. Sci., Springer-Verlag, Berlin, 1987.

G.N. Frederickson. Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. 32nd IEEE Symp. Foun-
dations of Computer Science (1991) 632-641.

M.T. Goodrich. Applying parallel processing techniques to classifica-
tion problems in constrictive solid geometry. 1st ACM/SIAM Symp.
Discrete Algorithms (1990) 118-128.

M.S. Paterson and F.F. Yao. Binary partitions with applications to
hidden-surface removal and solid modelling. 5th ACM Symp. Compu-
tational Geometry (1989) 23-32.

R.B. Tilove. Set membership classification: a unified approach to geo-
metric intersection problems. IEEE Trans. Comput. C-29 (1980) 874—
883.

R.B. Tilove. A null-object detection algorithm for constructive solid
geometry. Commun. ACM 27 (1984) 684-694.

12



