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Abstract

We maintain the maximum spanning tree of a planar point set, as
points are inserted or deleted, in O(log3 n) time per update in Mul-
muley’s expected-case model of dynamic geometric computation. We
use as subroutines dynamic algorithms for two other geometric graphs:
the farthest neighbor forest and the rotating caliper graph related to
an algorithm for static computation of point set widths and diameters.
We maintain the former graph in time O(log2 n) per update and the
latter in time O(logn) per update. We also use the rotating caliper
graph to maintain the diameter, width, and minimum enclosing rect-
angle in time O(logn) per update. A subproblem uses a technique for
expected-case orthogonal range search that may also be of interest.

*Work supported in part by NSF grant CCR-9258355.



1 Introduction

Many applications perform computations on the Fuclidean graph of a point
set, which connects each pair of points by an edge weighted by the Euclidean
distance between the points. In a dynamic geometric graph problem, the
geometric input undergoes changes such as point insertion and deletion, and
we must modify the solution to the problem accordingly. Each update may
cause many changes in the corresponding graph.

The most important geometric graph problem in practice is surely the
construction of a minimum spanning tree [1, 2, 9, 16, 17, 18, 34, 36]. This
can be maintained in time O(nl/ 2 Jog? n) per fully dynamic update, by us-
ing a technique for maintaining bichromatic closest pairs [2, 17]. If only
insertions are allowed, or if the update sequence is known in advance [16]
the minimum spanning tree can instead be maintained in time O(log?n)
per update. Even more efficiently, for fully dynamic updates in Mulmuley’s
expected case model [25, 26, 27, 32|, the minimum spanning tree can be
maintained in O(logn) expected time per update by using a dynamic De-
launay triangulation algorithm [13, 25, 32] together with a dynamic planar
graph minimum spanning tree algorithm [15].

In this paper we provide the first dynamic algorithm for the apparently
similar planar maximum spanning tree. Like the minimum spanning tree,
the maximum spanning tree has applications in cluster analysis [5]. Monma
et al. [23] compute the maximum spanning tree in time O(nlogn). We
dynamize their algorithm, and produce a data structure which can update
the maximum spanning tree in expected time O(log®n) per update.

For graphs, the maximum spanning tree problem can be transformed to
a minimum spanning tree problem and vice versa simply by negating edge
weights. For geometric input, the maximum spanning tree is very differ-
ent from the minimum spanning tree; for instance, although the minimum
spanning tree is contained in the Delaunay triangulation [34] the maximum
spanning tree is not contained in the farthest point Delaunay triangula-
tion [23]. Another important difference from the minimum spanning tree is
that, whereas the minimum spanning tree can change by at most O(1) edges
per update, the maximum spanning tree may change by (n) edges. Indeed,
if a point is added further from any point than the previous diameter, then
all old maximum spanning tree edges will be removed and each point will be
connected to the newly added point. Hence there would seem to be no hope
of an efficient dynamic maximum spanning tree algorithm, even for inser-
tions only. To avoid this difficulty, we resort to an expected case analysis, in



a model popularized by Mulmuley [25, 26, 27] for which the overall point set
may be chosen to be a worst case but for which the order of insertions and
deletions is randomized. In this model, the maximum spanning tree (like
many other geometric graphs) changes by O(1) edges per update.

As part of our maximum spanning tree algorithm, we also describe dy-
namic expected-case algorithms for two other geometric graphs: the farthest
neighbor forest and also the rotating caliper graph related to an algorithm
for static computation of point set widths and diameters. We maintain the
former graph in expected time O(log?n) per update and the latter in ex-
pected time O(logn) per update. The rotating caliper graph can also be
used to maintain the width and diameter of the point set, as well as its min-
imum area or perimeter enclosing (non-axis-aligned) rectangle, in O(logn)
expected time per update. The diameter result could also be achieved using
farthest point Voronoi diagrams, but our algorithm may be simpler. We
are unaware of any dynamic algorithm for enclosing rectangles. The only
known algorithm for maintaining width takes time O(log®n) time per up-
date in the offline setting for which the entire update sequence is known
in advance. Rather than exactly computing the width, it tests whether the
width is above or below some threshhold [4]. Janardan [21] maintains an
approximation to the width in time O(log?n) per update. By contrast our
algorithm is exact and fully dynamic but relies on expected case analysis.

One further feature of our maximum spanning tree algorithm is of in-
terest. The known dynamic minimum spanning tree algorithms all work
by using some geometry to construct a subgraph of the complete graph,
and then use a dynamic graph algorithm to compute spanning trees in that
subgraph. The subgraphs for incremental and offline geometric minimum
spanning trees are found in relatives of the Yao graph formed by computing
nearest neighbors in certain directions from each point [36]; the subgraph
for fully dynamic minimum spanning trees uses bichromatic closest pairs [1];
and the fully dynamic algorithm efficient in the expected case uses as its
subgraph the Delaunay triangulation [34]. In our maximum spanning tree
algorithm, as in that of Monma et al. [23], no such strategy is used. Instead,
the maximum spanning tree is computed directly from the geometry, with
no need to use a graph minimum spanning tree algorithm.

This paper is organized as follows. We first describe Mulmuley’s expected
case model of dynamic geometry problems, and use the model to bound
the expected change per update of the maximum spanning tree. Next, we
describe a characterization of the maximum spanning tree, due to Monma et
al. [23], in terms of farthest neighbors of points and diameters of certain sets



of convex hull vertices. Finally, we describe the three parts of our algorithm:
maintainance of the farthest neighbor forest, computation of the components
of that forest among the convex hull vertices, and computation of diameters
for sets of convex hull vertices using the dynamic rotating caliper graph.

2 The Model of Expected Case Input

We now define a notion of the expected case for a dynamic geometry prob-
lem. The definition we use has been popularized in a sequence of pa-
pers by Mulmuley [25, 26, 27], and is a generalization of the commonly
occurring randomized incremental algorithms from computational geome-
try [12, 14, 20, 22, 24, 33]. We discuss the latter concept first, to motivate
our definition of the expected case.

A randomized incremental algorithm is just an incremental algorithm
(in which points are added one at a time while the solution is maintained
for the set of points seen so far) which may or may not behave well in the
worst case, but which has good behavior when the order in which the points
are added is chosen uniformly among all possible permutations. This sort
of algorithm has been to construct a number of geometric configurations
including convex hulls [12, 14, 33|, Voronoi diagrams and Delaunay trian-
gulations [20, 22], linear programming optima [33], and intersection graphs
of line segments [24]. An important feature of these algorithms is that they
do not depend on any special properties of the input point set, such as
even distribution on the unit square, that might arise from other random
input distributions. The behavior is in the expected case over all random
permutations of a worst-case point set.

These algorithms have typically been studied as static algorithms, which
compute a random order and then perform incremental insertions using that
order. Often the randomized incremental algorithm for a problem is simpler
than the best known deterministic algorithms, and it may either match or
improve the performance of those algorithms. However, such algorithms can
also be used as dynamic incremental algorithms: if the input comes from
some random distribution such that any permutation of the input points is
equally likely, then the algorithms will perform well in expectation, taking
as much time to compute the entire sequence of problem solutions as a
static algorithm would take to compute a single solution. This expected
case input model is distributionless, in that it subsumes any model in which
input points are drawn independently from some particular distribution.



Mulmuley [25, 26, 27] and Schwarzkopf [32] generalized this notion of
expected case from incremental algorithms to fully dynamic geometric algo-
rithms. They also showed that many randomized incremental algorithms can
be extended to this fully dynamic model, by techniques involving searches
through the history of the update sequence.

We define a signature of size n to be a set S of n input points, together
with a string s of length at most 2n consisting of the two characters “+” and
“—”_ Each “+” represents an insertion, and each “—” represents a deletion.
In each prefix of s, there must be at least as many “+4” characters as there are
“—” characters, corresponding to the fact that one can only delete as many
points as one has already inserted. Each signature determines a space of as
many as (n!)? update sequences, as follows. One goes through the string
s from left to right, one character at a time, determining one update per
character. For each “+” character, one chooses a point x from S uniformly
at random among those points that have not yet been inserted, and inserts it
as an update in the dynamic problem. For each “—” character, one chooses
a point uniformly at random among those points still part of the problem,
and updates the problem by deleting that point.

The expected time for an algorithm on a given signature is the aver-
age of the time taken by that algorithm over all possible update sequences
determined by the signature. Only the sequence of updates, and not the
signature, is available to the algorithm. The expected time on inputs of size
n is the maximum expected time on any signature of size n. We choose the
signature to force the worst case behavior of the algorithm, but once the
signature is chosen the algorithm can expect the update sequence to be cho-
sen randomly from all sequences consistent with the signature. As a special
case, the expected case for randomized incremental algorithms is generated
by restricting our attention to signatures containing only the “4+” character.

This expected case model can be used in situations for which no worst-
case efficient algorithm is possible; for instance, the Delaunay triangulation
may change Q(n) times per update in the worst case, but in the expected
case this bound is O(1), and in fact an O(logn) expected time algorithm is
possible [13, 25]. Alternately, it can be used to speed up the solution to prob-
lems for which the best known worst-case bound is too large; as an example,
the minimum spanning tree has an O(n'/?log?n) time algorithm [2, 17] but
can be solved in O(logn) expected time.

Our application is of the former type: the maximum spanning tree can
change by Q(n) edges in the worst case but only O(1) in the expected case.
To demonstrate the power of this expected case model, and derive a fact we



will need in our maximum spanning tree algorithm, we prove this result, and
several related results. We have already discussed the maximum spanning
tree. The farthest point Voronoi diagram is a subdivision of the plane into
regions, within which the farthest input point is a constant; its planar dual
is the farthest point Delaunay triangulation. The farthest neighbor forest is
formed by connecting each point with its farthest neighbor.

Lemma 1. The expected number of edges that change per update in the
maximum spanning tree, farthest point Delaunay triangulation, or farthest
neighbor forest is O(1).

Proof: We first consider the change per insertion. Consider the state
of the system after insertion 4, consisting of some set of j points. Among
all sequences of updates leading to the present configuration, any of the j
points is equally likely to have been the point just inserted.

Each of the three graphs has O(n) edges. Each edge will have just been
added to the graph if and only if one of its endpoints was the point just
inserted, which will be true with probability 2/j. So the expected number
of additional edges per insertion is at most O(j) - 2/j = O(1). The number
of existing edges removed in the insertion is at most proportional to the
number of edges added, and can possible be even smaller if the convex hull
becomes less complex as a result of the insertion. Thus the total change per
insertion is O(1). The total change per deletion can be analysed by a similar
argument that examines the graph before the deletion, and computes the
probability of each edge being removed in the deletion. O

We will also need the following result. Similar bounds on the convex hull
change per update are known in any dimension [14].

Lemma 2. The expected number of convex hull vertices that change per
update is O(1).

Proof: We bound the change per insertion; deletions follow a symmetric
argument. In each insertion, the only vertex that can be added is the inserted
point, so we need only worry about removed vertices. Consider the point set
after the insertion. For each convex hull vertex v form a triangle connecting
v to its neighbors on either side. Each input point is in at most two such
triangles, and can only have been just removed as a hull vertex if the newly
added point was one of two triangle apexes. This is true with probability
2/n so the expected number of vertices removed is no more than two. O



A similar bound on the change in a fifth geometric graph, the rotating
caliper graph, is proved later in Lemma 12.

We next describe a method for transforming any efficient data structure
in this expected case model, to one which combines its queries with orthog-
onal range searching. l.e., we wish to ask for the answer to a query such
as a farthest neighbor problem, with the queried set being a subspace of
the input within some rectangle or higher dimensional box given as part of
the query. We consider any decomposable search problem [7] for which the
answer for a given input set can be found quickly by combining answers in
disjoint subsets of the input. We describe a solution for the one-dimensional
case, interval range searching; higher dimensional box range queries can be
solved by iterating our construction once per dimension.

Many techniques are known for performing orthogonal range searching in
decomposable search problems, but these techniques often are based on com-
plicated balanced binary tree data structures that do not lend themselves to
easy expected case analysis. We generalize a technique which Mulmuley [27]
used to answer some interval range line segment intersection queries, but for
which he apparently did not consider the extension to orthogonal range
search in general decomposable search problems.

Lemma 3. Let P be a decomposable search problem for which queries and
updates can be performed in expected time T'(n). Then there is a dynamic
data structure that can perform interval range queries of P, in expected time
O(T'(n)logn) per query and update, or better O(T'(n)) if T'(n) = Q(n¢) for
some fixed e.

Proof: We partition the problem into a number of subproblems using a
skip list [31], as follows. We sort the coordinates of the input points, giving
a partition of the line into n + 1 open intervals, and provide an (empty)
subproblem for each such interval. Then for each point we flip a fair coin
independently of all other points. If the coin is heads, the point is removed
from the sorted list. The remaining points again partition the line into a
sequence of open intervals; the expected number of intervals is n/2 + 1. For
each such interval we provide a subproblem for all input points contained in
the interval.

With high probability after O(logn) iterations all points will have flipped
a head, and the single subproblem will include all points, so there are
O(logn) levels of subproblems. With high probability any query interval
can be composed of O(logn) subproblems (the expected number of sub-
problems at any level of the skip list is O(1); some levels may use more



but the overall expectation is O(logn)). So any query can be answered in
expected time O(T'(n)logn).

When we insert a new point, we repeatedly flip a coin until a head
is flipped, to determine the number of levels for which the new point is
a partition boundary. At each such level the point is inserted and some
subproblem is split to make two new subproblems. The data structure for
each new subproblem is rebuilt by inserting its points in a random order. The
expected size of a subproblem at level i is 2¢, so the expected time to rebuild
the subproblem is 2°7°(2%), but the probability of having to do so at level 7 is
27 50 the expected total work in rebuilding is S"1°8™ T'(2%) = O(T'(n) log n).

Each inserted point must then be inserted into one subproblem for each
level higher than the one for which it flipped a head. Each such insertion
is done using the data structure for that subproblem. After any insertion
to a subproblem, given some particular set of points now existing in the
subproblem, any permutation of those points is equally likely as the insertion
order, so the expected-case nature of the input sequence holds for each
subproblem and the expected time per subproblem insertion at level 7 is
T(2%). Again the total expected time is O(T(n)logn).

Deletions are performed analogously to insertions, and the time for dele-
tions can be shown to be O(T'(n) logn) using a symmetric argument to that
for insertions.

The improved bounds for T'(n) = Q(n¢) follow from the observation that
in that case 18" T'(2') = O(T(n)). O

3 Analysis of the Maximum Spanning Tree

We now examine the edges that can occur in the maximum spanning tree.
One might guess, by analogy to the fact that the minimum spanning tree is
a subgraph of the Delaunay triangulation, that the maximum spanning tree
is a subgraph of the farthest point Delaunay triangulation. Unfortunately
this is far from being the case—the farthest point Delaunay triangulation
can only connect convex hull vertices, and it is planar whereas the maximum
spanning tree has many crossings. However we will make use of the farthest
point Delaunay triangulation in maintaining the farthest neighbor forest.
Most of the material in this section is due to Monma et al. [23], and the
proofs of the following facts can be found in that paper. The first fact we
need is a standard property of graph minimum or maximum spanning trees.



Lemma 4. The farthest neighbor forest is a subgraph of the maximum
spanning tree.

Lemma 5 (Monma et al. [23]). Let each tree of the farthest neighbor for-
est be two-colored. Then for each such tree, the points of any one color form
a contiguous nonempty interval of the convex hull vertices. The trees of the
forest can be given a cyclic ordering such that the intervals adjacent to any
such interval come from adjacent trees in the ordering.

Lemma 6 (Monma et al. [23]). Let e = (z,y) be an edge in the maxi-
mum spanning tree but not in the farthest neighbor forest, with x in some
farthest point neighbor tree T'. Then x and y are both convex hull vertices,
and y is in a tree adjacent to T in the cyclic ordering of Lemma 5.

Lemma 7 (Monma et al. [23]). The maximum spanning tree can be con-
structed by computing the farthest neighbor forest, determining the cyclic
ordering of Lemma 5, finding the longest edge between each adjacent pair
of trees in the cyclic ordering, and removing the shortest such edge.

Monma et al. [23] show that each of these steps can be performed in
time O(nlogn), and hence that a static maximum spanning tree can be
found in that time bound. Our algorithm performs a similar sequence of
steps dynamically: we maintain a dynamic farthest neighbor forest, keep
track of the intervals induced on the convex hull and of the cyclic ordering
of the intervals, and recompute longest edges as necessary between adjacent
intervals using a dynamic geometric graph defined using the rotating caliper
algorithm for static diameter computation.

4 Maintaining the Farthest Neighbor Forest

As the first part of our dynamic maximum spanning tree algorithm, we show
how to maintain the farthest neighbor forest. As shown in Lemma 1, the
expected number of edges per update by which this graph changes is O(1).
We find the farthest neighbor to any point by determining the region in the
farthest point Voronoi diagram containing that point.

Lemma 8. We can maintain the farthest point Voronoi diagram in ex-
pected time O(logn) per update.



Proof: Since the farthest point Delaunay triangulation is the projection
of a three-dimensional convex hull [8], we can maintain it using Mulmuley’s
dynamic convex hull algorithm [26]. The Voronoi diagram is dual to the
Delaunay triangulation, so each change in the Voronoi diagram can be found
from a corresponding change in the Delaunay triangulation. O

Along with the farthest point Voronoi diagram itself, we keep track of
the set of input points within each diagram cell. When the diagram is
updated, these sets need to be recomputed, and when a point is added to
the input it must be added to the appropriate set. The latter operation can
be performed using the following point location data structure:

Lemma 9. We can maintain a point location data structure in the farthest
point Voronoi diagram in expected time O(log?n) per update or query.

Proof: We can achieve these bounds per change and per query using any
of a number of algorithms [6, 10, 11, 19, 30]. By Lemma 1, the amount of
change per update is O(1). O

Thus we are left with the problem of updating the potentially large sets of
points in each diagram cell, after each change to the diagram. We no longer
use the expected-case model for these updates, since our analysis does not
indicate when such an update is likely to occur or how many points are likely
to be in the sets. However, we do know that few points are likely to change
farthest neighbors as a result of the update.

There are two types of changes that may occur in a farthest point Voronoi
diagram update. First, if a point is added to the input, a corresponding
region may be added to the diagram, covering portions of the diagram that
were previously parts of other regions. Second, if a point is removed from
the input, its region is also removed, and split up among the remaining
regions of the diagram.

In the first case, we must find the input points covered by the new region.
For each of the old regions partially covered by the new region, we can find
from the Voronoi diagram a line separating the old and new regions. We
query the set of points corresponding to the old region, to find those points
on the far side of this line from the new point. All such points will change
their farthest neighbor to be the new point. We can perform the queries
with an algorithm for maintaining the convex hull of the set of points in a
region. We test whether the line crosses the convex hull; if not, all or none
of the points are in the new region. If it does cross, we can find a convex



hull vertex in the new region, remove it from the set of points in the old
region, and repeat the process. In this way we perform a number of convex
hull operations proportional to the number of points which change farthest
neighbors. We can not use a fast expected-time convex hull algorithm,
because we do not expect the behavior of the point set in a region to be
random, but we can solve the planar dynamic convex hull problem in worst
case time O(log?n) per update [28].

In the second case, we must recompute the farthest neighbors of all
the points covered by the removed region. We compute the new farthest
neighbors in O(log?n) time each, using the same point location structure
used when a new point is inserted. The total expected time per farthest
neighbor change is O(log®n). Each point is then inserted in the dynamic
convex hull structure used for handling the first case, in time O(log?n).

Lemma 10. We can maintain the farthest neighbor forest of a dynamically
changing input in expected time O(log2 n) per update.

Proof: As explained above, this is the time for updating the data struc-
tures necessary to compute the farthest neighbor forest, measured in time
units per change to the farthest neighbor forest. But as we have seen the
expected change to the farthest neighbor forest is O(1). O

It is possible that this can be improved to O(logn) per update using a
point location technique based more directly on the dynamic farthest point
Voronoi diagram. Mulmuley’s dynamic convex hull algorithm uses implicitly
an O(log n) time point location algorithm, but in the farthest point Delaunay
triangulation rather than the corresponding Voronoi diagram, so this does
not seem to help. Mulmuley [27] gives as an exercise a direct point location
algorithm for nearest neighbor Voronoi diagrams with O(logn) update time,
but the query time is still O(log?n).

5 Components of the Farthest Neighbor Forest

We saw in the previous section how to maintain the farthest neighbor forest
of a point set. Lemma 5 shows that each tree in this forest gives rise to two
intervals on the perimeter of the convex hull, one for each color of vertices
if the tree is 2-colored. We wish to be able to find those intervals quickly,
so that we can use the convex hull subinterval diameter algorithm of the
next section to find the remaining maximum spanning tree edges not in the

10



farthest neighbor forest. The difficulty is that, even though the farthest
neighbor forest changes by a small amount per update, many points may be
moved by that change from one tree in the forest to another.

Lemma 11. We can determine the endpoints of the two intervals described
in Lemma 5, for any tree in the farthest neighbor forest specified by any
vertex in that tree, in expected time O(log®n) per query and O(logn) per
update.

Proof: We will use the following basic data structures: the dynamic tree
data structure of Sleator and Tarjan [35] applied to the farthest neighbor
tree; a dynamic planar convex hull data structure, for instance that of Mul-
muley [26]; and a balanced binary tree representation of the ordered list of
vertices on the convex hull. The dynamic tree can tell us to which color of
which tree a point belongs, in time O(logn) per query. All of these data
structures can be updated in O(logn) time per change, and change O(1)
expected times per update.

We can find a single point in the interval by looking at the root of the
tree. We can find a point not in the interval by taking the other root of
the same tree; it has the wrong color to be in the interval. We can then
find the two boundaries between points in the interval and points not in
the interval by searching the balanced binary tree. Each step in the search
involves a query in the dynamic tree data structure, so the whole search
takes O(log?n) time. O

We use the same dynamic tree data structure later, to determine which
parts of the farthest neighbor forest have been changed and need updating.

6 The Rotating Caliper Graph

In order to compute the longest edge between two trees of the farthest
neighbor forest, we use another dynamic geometric graph, which we call the
rotating caliper graph after its relation to the static algorithm for computing
the width and diameter of planar point sets, known as the rotating caliper
algorithm [29].

Recall that the diameter of a point set, the longest distance between
any two points, is also the longest distance between any pair of parallel
lines tangent to the convex hull. The rotating caliper algorithm considers
the sequence of tangent points (convex hull vertices) touched by lines of
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different slopes. As the slope varies around a circle, the tangent points move
monotonically one vertex at a time around the convex hull perimeter. The
diameter can be computed by computing this sequence of tangent points and
comparing lengths of segments determined by all pairs formed by a tangent
on one side of the convex hull and a tangent of the same slope on the other
side. The width, or shortest distance between two parallel tangent lines, can
be computed by a similar process that also considers lines tangent to convex
hull perimeter edges.

The rotating caliper graph is then simply the collection of tangent point
pairs considered by the rotating caliper algorithm. Equivalently an edge xy
is in the rotating caliper graph exactly when all input points lie between the
two parallel lines through = and y and perpendicular to zy. Like the far-
thest point Delaunay triangulation the rotating caliper graph only connects
convex hull vertices.

Lemma 12. The expected number of edges that change per update in the
rotating caliper graph is O(1).

Proof: The proof is the same as for Lemma 1. That proof only depends
on three facts which all hold for the rotating caliper graph. First, the graph
has O(n) edges. Second, the number of edges can not decrease by more than
O(1) after any insertion. Third, the only edges added in an insertion are
adjacent to the inserted point. O

Lemma 13. We can maintain the rotating caliper graph in expected time
O(logn) per update.

Proof: As in the previous section, we keep a search tree of convex hull
vertices. When a new point is added to the convex hull perimeter, it forms
a certain angle with its two neighbors. All k points on the other side of the
convex hull with angles of tangency in the same range form an interval on
the convex hull perimeter and can be enumerated in O(k + logn) time by
searching the tree. Each of these points is then connected to the newly added
point, and all but the endpoints of the interval lose their edges connecting
them to any other vertices. When a point is deleted, each of its neighbors in
the rotating caliper graph may be reconnected to the points on either side
of the deleted point. O

Corollary 1. We can maintain the width and diameter of a point set in
expected time O(logn) per update.

12



Proof:  For the diameter, we simply maintain a priority queue of the
longest edges in the rotating caliper graph.

For the width, first note that if a tangent line supports an edge zy on
the convex hull perimeter then the point z of tangency for a parallel tangent
line is exactly that convex hull vertex for which both zz and yz are edges in
the rotating caliper graph. So for each adjacent pair of edges in the rotating
caliper graph we maintain the distance between the common endpoint of the
edges and the convex hull perimeter edge connecting the other endpoints of
the edges. Each edge in the rotating caliper graph is associated with two
such distances, so each graph update causes O(1) changes in the set of
distances. The width can be found by selecting the smallest among these
distances using a priority queue. O

A similar technique using a hypergraph defined by rotating calipers of
four lines at right angles to each other can be used to maintain the minimum
area or perimeter rectangle (not necessarily aligned with the coordinate axes)
that encloses the point set, in O(logn) time per update.

7 Diameter of Convex Hull Intervals

We now describe a data structure to be used to find edges connecting disjoint
trees of the farthest neighbor forest. Recall that each such edge connects
two convex hull vertices, and that the convex hull vertices in each tree form
two intervals in the cyclically ordered list of all convex hull vertices.

We solve the following abstract generalization of the problem. We are
given a dynamically changing point set. We wish to answer queries of the
form: given two intervals on the convex hull of the point set (specified
by their endpoints) find the longest edge from one interval to the other.
The updates to the point set can be expected to be randomly distributed
according to some signature in Mulmuley’s expected-case model, but we can
make no such assumption about the sequence of queries.

With such a data structure, we can answer our original problem by
determining the two intervals for each tree and pairing them up in two
queries to the data structure. As a subroutine for these interval farthest pair
problems, we would need a subroutine that could answer interval farthest
neighbor queries (this is simply the special case of the two interval farthest
pair problem in which one interval is a single point). This problem can be
solved in time O(n¢) by combining a weight-balanced tree of the convex hull
vertices with a farthest neighbor data structure of Agarwal and Matousek [2].

13



However such a bound is too large for our algorithm.

Instead we show certain properties of the intervals determined by the
farthest neighbor forest, that allow us to answer the desired interval far-
thest pair problem using a faster data subroutine for the simpler problem of
orthogonal halfspace farthest neighbor range searching.

Lemma 14. Let v be a convex hull vertex, in a given tree T' of the farthest
neighbor forest. Then the farthest neighbor of v outside T is in a tree
adjacent to T in the cyclic order of Lemma 5.

Proof: Remove all points from 7" but v. The only change to the farthest
neighbor forest will be that v is added as a leaf to some other tree. By
Lemma 5, it must be added to an adjacent tree. O

In light of this lemma, we can solve our desired interval queries using
the following included and excluded interval query problem: we are given
a point v on the convex hull of the input set, and two intervals I and F
of the convex hull perimeter. I, E, and v are mutually disjoint. We must
find a farthest neighbor among a set of convex hull vertices that includes all
vertices of I but excludes all vertices of . Other convex hull vertices may
be either included or excluded arbitrarily. Points that are not convex hull
vertices must not be included.

Lemma 15. We can solve the included and excluded interval query prob-
lem in expected time O(log® n) per update or query.

Proof: We show that each query can be solved by combining at most two
orthogonal halfspace range queries that find the farthest input point in the
given range. By Lemmas 3 and 9, we can perform these queries in update
and query time O(log®n).

We assume without loss of generality that the query intervals occur in
clockwise cyclic order vEI. Since v is a convex hull vertex, if we consider
v the origin of a cartesian coordinate system then the input set is entirely
contained in three quadrants of the plane, without loss of generality the
upper left, upper right, and lower right.

First consider the case that I has some nonempty intersection I’ with
the upper left quadrant. We can assume that all convex hull boundary
segments in I’ have positive slope. For if a segment uw occurs below the
leftmost convex hull vertex, the portion of I’ below that segment will be
nearer v than v and w, and will never be the answer to the included and
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excluded segment problem. Similarly if a segment occurs after the topmost
convex hull vertex, the portion of I’ to the right but within the top left
quadrant can be discarded. I’ can be restricted to the portion with positive
slope in O(logn) time by binary search. Let u be the point in I’ with least
y coordinate. We claim that E is entirely below the horizontal line through
u. This follows since E is counterclockwise of I in the same quadrant and
since u must be the point of I’ closest to E in the cyclic order.

We combine the results of one range query in the halfplane above a
horizontal line through u, and a second range query in the halfplane right of a
vertical line through v. These ranges both exclude F, which is entirely within
the upper left quadrant. The only portion of I that can be excluded from
both ranges is in the upper left quadrant and has negative slope, so cannot
contain the desired answer. We claim that the farthest point in the two
ranges will be a convex hull vertex (even though this is not necessarily true
just of the first range). There are two possibilities. First, if the quarterplanar
region of the input excluded from the two queries does not cross the convex
hull boundary, the convex hull of all points in the two ranges is formed from
the overall convex hull simply by cutting off line segment wv, and we know
the farthest point from v in this smaller convex hull must itself be a convex
hull vertex. Second, if the convex hull boundary is crossed, insert for sake of
argument two artificial points at the crossings. Then with these new points,
the two range queries cover disjoint point sets with convex hulls exactly
equal to the intersection of the original convex hull with the range query
halfplanes, so each returns a convex hull vertex. The uppermost convex hull
vertex is farther than either artificial point, so neither would be returned if
it were part of the input and instead a true convex hull vertex would result.
But then that vertex must also be the result of the actual queries that are
performed.

In the second case, I misses the upper left quadrant but intersects the
upper right quadrant. This case can be treated exactly the same as the first
case, by restricting I to segments with negative slope, and combining two
range queries, one with a halfplane right of a vertical through the leftmost
point in I’, and another with a halfplane below the horizontal through v.

In the final case, I is entirely contained in the lower right quadrant. Asin
the first case, we can restrict our attention to a portion of I having positive
slope. We then perform a single halfspace farthest point range query, with
the halfspace below a horizontal line through the uppermost point of I. This
must be the point of I closest to E in the cyclic order, so E is excluded from
the query. The query result is a convex hull vertex of the full input set since
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the range restriction doesn’t change the portion of the convex hull boundary
having positive slope. O

We next need the following fact which justifies the correctness of the
“rotating caliper” algorithm.

Lemma 16. Let (z,y) be the farthest pair of points drawn from two convex
hull intervals. Then x and y are both extrema within their own intervals
with respect to their projected positions on some line £.

Proof: Take ¢ to be parallel to xzy. Then if x and y were not extrema, we
could replace them by other points and produce a farther pair. O

Note that e.g. « may not necessarily be an extremum among all points in
both intervals; the lemma only claims that it is an extremum among points
in its own interval. However any point interior to the interval that is an
extremum in the interval is also an extremum of the overall point set.

Lemma 17. With the aid of the included and excluded interval data struc-
ture described above, we can compute the farthest pair of points in a pair
of farthest neighbor forest intervals in expected time O(log®n).

Proof: We conceptually rotate line £ through 360° of motion, tracking the
pairs of points that arise as extrema on £. As £ rotates, the extrema in each
interval pass monotonically along the perimeter of the convex hull, including
each convex hull vertex in turn. The pairs involved are thus edges in the
rotating caliper graph defined in the previous section, except for those pairs
involving one or two endpoints of intervals. We keep a balanced binary tree
of all edges in the rotating caliper graph, sorted by slope; for each node in the
tree we track the longest rotating caliper graph edge among all descendants
of that node. With this structure we can find the longest edge connecting
internal vertices of the two intervals, in time O(logn). The longest edge
involving interval boundary vertices can be found with the data structure
of Lemma 15. O

We summarize the results of this section.
Lemma 18. In O(log3 n) expected time per update, we can maintain a

data structure that can compute the longest edge connecting any two trees
of the farthest neighbor forest, in time O(log®n) per query.
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8 Maintaining the Maximum Spanning Tree

Theorem 1. The Euclidean maximum spanning tree can be maintained
in expected time O(log®n) per update.

Proof: We maintain the farthest neighbor forest in expected time O(log? n)
per update as described in Lemma 10. We keep a list of the roots of the
trees, and a priority queue of the edges connecting trees with adjacent inter-
vals with pointers from the tree roots to the corresponding edges. For each
of the O(1) expected changes in the farthest neighbor forest, we find the cor-
responding tree root using the dynamic tree data structure of Sleator and
Tarjan [35], remove the root of the old tree from the list of tree roots, and re-
move its edges from the priority queue. We then make a list of changed trees
by again using the dynamic tree data structure and sorting the resulting list
of tree roots to eliminate duplicates. For each changed tree, we recompute
the two intervals described in Lemma 5, using the algorithm of Lemma 11.
We determine the identities of the two adjacent trees in the cyclic order
of Lemma 5 by looking up the points adjancent to the interval boundaries
using again the dynamic tree data structure. We find the intervals for those
trees (this can either be information stored with the tree roots, or recom-
puted as needed). We compute the edges connecting the changed tree with
its two adjacent trees, using the interval query data structure described in
the previous section, and add these edges to the priority queue.

We can now make a list of all edges removed from the tree (edges no
longer in the farthest neighbor forest as well as edges connecting changed
trees in the forest and the new smallest edge in the priority queue) as well
as another list of newly added edges (edges added to the farthest neighbor
forest, new edges connecting trees in the forest, and the old smallest edge in
the priority queue). By sorting these lists together we can resolve conflicts
occurring when an edge appears in both lists, and generate a list of all
changes in the maximum spanning tree. O

9 Conclusions

We have seen how to maintain the maximum spanning tree of a planar
point set in the expected case. Our algorithm is based on that of Monma
et al. [23] and uses as subroutines algorithms for maintaining the farthest
neighbor forest and for answering farthest pair queries between intervals on
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the convex hull perimeter. We also solved the problem of maintaining the
width in expected time O(logn) per update.

However some open problems remain. In particular, can we say anything

about higher dimensional maximum spanning trees? Our present algorithm
depends strongly on planar properties such as the cyclic ordering of convex
hull vertices. The higher dimensional problem can be solved by repeatedly
merging pairs of trees using a bichromatic farthest pair algorithm [3, 23] but
it is unclear whether such an algorithm could be dynamized efficiently.
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