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Abstract

We solve the subgraph isomorphism problem in planar graphs in
linear time, for any pattern of constant size. Our results are based on
a technique of partitioning the planar graph into pieces of small tree-
width, and applying dynamic programming within each piece. The
same methods can be used to solve other planar graph problems in-
cluding diameter, girth, induced subgraph isomorphism, and shortest
paths. We also extend our techniques to other families of graphs in-
cluding the graphs of bounded genus.
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1 Introduction

Subgraph isomorphism is an important and very general form of exact pat-
tern matching. Theoretically, subgraph isomorphism is a common gener-
alization of many important graph problems including finding Hamiltonian
paths, cliques, matchings, girth, and shortest paths. Variations of subgraph
isomorphism have also been used to model such varied practical problems as
molecular structure comparison [2], integrated circuit testing [10], micropro-
grammed controller optimization [21], analysis of Chinese ideographs [14],
robot motion planning [26], semantic network retrieval [28], and polyhedral
object recognition [38].

In the general subgraph isomorphism problem, given a “text” G and a
“pattern” H, one must either detect an occurrence of H as a subgraph of
G, or list all occurrences. For certain choices of G and H there can be ex-
ponentially many occurrences, so listing all occurrences can not be solved
in subexponential time. Because of reductions from Hamiltonian path and
clique finding, the decision problem is NP-complete [20] so subexponential
algorithms are unlikely. However for any fixed pattern H with ` vertices,
both the enumeration and decision problems can easily be solved in poly-
nomial O(n`) time, and for some patterns an even better bound might be
possible. Thus one is led to the problem of determining the algorithmic
complexity of subgraph isomorphism for a fixed pattern.

Here we consider the special case in which G and H are planar graphs,
a restriction naturally occuring in many applications. We show that for any
fixed pattern, planar subgraph isomorphism can be solved very efficiently,
in time linear in |G|. This is the first known algorithm for this problem that
is polynomial in G. Our results extend to some other problems including
induced subgraph isomorphism and shortest paths.

Our algorithm uses a graph decomposition method similar to one used by
Baker [5] to approximate various NP-complete problems on planar graphs.
Her method involves removing vertices from the graph leaving a disjoint
collection of subgraphs of small tree-width; in contrast we find a collection
of non-disjoint subgraphs of small tree-width covering the neighborhood of
every vertex.
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2 New Results

We prove the following results. We assume here some constant bound on
the size of the pattern H; the exact time dependence on H will be described
later but is in general exponential.

• We can test whether any fixed pattern H is a subgraph of a planar
graph G, or count the number of occurrences of H as a subgraph of
G, in time O(n).

• If connected pattern H has k occurrences as a subgraph of a planar
graph G, we can list all occurrences in time O(n + k). If H is 3-
connected, k = O(n) [15], and we can list all occurrences in time O(n).

• We can count the number of induced subgraphs of a planar graph G
isomorphic to any fixed connected pattern H in time O(n), and if there
are k occurrences we can list them in time O(n+ k).

• For any planar graph G for which we know a constant bound on the
diameter, we can compute the exact diameter in time O(n).

• For any constant h we can solve the h-clustering and connected h-
clustering problems [23] in planar graphs in time O(n).

• For any planar graph G for which we know a constant bound on the
girth, we can compute the exact girth in time O(n). The same bound
holds if instead of girth we ask for the shortest nonfacial cycle or the
shortest separating cycle.

• For any planar graph G and any constant `, we construct in time
O(n) a compact routing data structure which can test for any pair of
vertices whether their distance is at most `, and if so find a shortest
path between them, in time O(log n).

Finally, we extend our techniques to other families of graphs. We get lin-
ear or quadratic algorithms for any family having a certain relation between
diameter and treewidth. In particular, we consider the minor-closed families
studied extensively by Robertson and Seymour. We exactly characterize the
minor-closed families with the relation needed to make our approach work:
they are the families which do not include all apex graphs. We use our
characterization to solve subgraph isomorphism in linear time for graphs of
bounded genus, and for graphs with no K3,a minor.
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3 Related Work

For the general subgraph isomorphism problem, nothing better than the
naive O(n`) bound is known. Plehn and Voigt [33] give an algorithm for
subgraph isomorphism which in planar graphs takes time nO(

√
`), but this is

still much larger than the linear bound we achieve.
Several papers have studied planar subgraph isomorphism with restricted

patterns. It has long been known that if the pattern H is either K3 or K4,
then there can be at most O(n) instances of H as a subgraph of a planar
graph G, and that these instances can be listed in linear time [6, 22, 32], a
fact which has been used in algorithms to test connectivity [27], approximate
maximum independent sets [6], and test inscribability [13]. Linear time and
instance bounds for K3 and K4 can be shown to follow solely from the spar-
sity properties of planar graphs [11, 12], and similar methods also generalize
to problems of finding K2,2 and other complete bipartite subgraphs [11, 16].
In [15], we showed how to list all cycles of a given fixed length in outerplanar
graphs, in linear time (see also [29, 30, 31, 39] for similar variants of outer-
planar subgraph isomorphism). We used our outerplanar cycle result to find
any wheel of a given fixed size in planar graphs, in linear time. Our results
here generalize and unify this collection of previously isolated results, and
also give improved dependence on the pattern size in certain cases.

Recently we were able to characterize the graphs occurring O(n) times
as subgraphs of planar graphs: they are exactly the 3-connected planar
graphs [15]. However this result does not extend even to other 3-connected
patterns, and our proof that general 3-connected planar graphs have few
occurrences does not seem to lead to an efficient algorithm for their enu-
meration. In this paper we use different techniques which do not depend on
high-order connectivity.

Itai and Rodeh [22] discuss the problem of finding the girth of a gen-
eral graph, or equivalently that of finding short cycles. The special cases
of finding C3 = K3 and C4 = K2,2 in planar graphs were discussed above.
Richards [34] gives O(n log n) algorithms for finding C5 and C6 subgraphs,
and leaves open the question for larger cycle lengths. Bodlaender [9] dis-
cusses the related problem of finding a path or cycle longer than some given
length in a general graph, which he solves in linear time for a given fixed
length bound. The planar dual to the shortest separating cycle problem
has been related by Bayer and Eisenbud [7] to the Clifford index of certain
algebraic curves. Again, we give linear time algorithms which unify all these
cases.
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Our shortest path data structure combines our methods of bounded tree-
width decomposition with a separator-based divide and conquer technique
due to Frederickson [17]. Obviously all pairs shortest paths can be computed
in time O(nm) after which the queries we describe can be answered in time
O(1), but some faster algorithms are known for approximate shortest paths:
Frederickson and Janardan [18, 19] and Klein and Sairam [24] have described
approximate shortest path data structures in planar graphs.

4 Diameter and Tree-Width

In this section we show a key structural property of planar graphs, that if
they have low diameter they also have low tree-width. Such a result was
implicit already in the work of Baker [5]. With a bound on tree-width we can
use dynamic programming techniques to compute many graph properties in
linear time [8, 40]. A result similar to the one in this section follows easily
from the Robertson-Seymour “wall lemma” [36] (Lemma 5 below). However
we give the following direct proof to make explicit the dependence on the
diameter, and to show that the result does not introduce any of the scary
constants ubiquitous in Robertson-Seymour theory.

We first define the concept of tree-width, introduced by Robertson and
Seymour [35] and now standard in graph theory.

Definition 1. A tree decomposition of a graph G is a representation of G
as a subgraph of a chordal graph G′. The width of the tree decomposition
is one less than the size of the largest clique in G′. The tree-width of G is
the minimum width of any tree decomposition of G.

The maximal cliques of a chordal graph can be arranged in a tree in
such a way that the intersection of any two cliques is a subset of the cliques
occurring along the corresponding path in the tree; this tree can be used
for many efficient dynamic programming algorithms in treewidth-bounded
graphs [8, 40].

The following lemma is the main result of this section.

Lemma 1. Let planar graph G have diameter D. Then G has tree-width
O(D), and a tree-decomposition of G with width O(D) can be found in time
O(Dn).

Proof: We assume without loss of generality that G is maximal planar.
We fix an embedding of G, and find in linear time a breadth first search
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tree T (starting from any vertex) with depth at most D. We will find
a representation of G as a subgraph of a chordal graph G′ in which the
maximal cliques are the subtrees in T connecting triples of vertices. Any
such subtree consists of three paths in T meeting at a single vertex, and
contains at most 3D vertices.

We form the tree decomposition recursively. Initially, we choose any
edge e = (u, v) in G − T , and form a clique connecting all vertices on the
path from u to v in T . The cycle induced in G by e and this path separates
G into two subgraphs, and we will form a decomposition of each subgraph
independently.

In the general situation, we will be decomposing a subgraph G′ separated
from the rest of G by a cycle induced in T by some edge e = (u, v). The
cycle itself and edge e will already be represented by a clique in the tree
decomposition. Since G is by assumption maximal planar, there will be a
single triangular face in G′ adjacent to e. Let e1 and e2 be the two other
edges of G incident to that face. Without loss of generality e1 is incident to
u, e2 is incident to v, and they are both incident to a third vertex w.

If both e1 and e2 are in T , the cycle we are decomposing is simply the
triangle (e, e1, e2) and the recursion terminates. If one of the two is in T
(say e1 is in T ), it is on the path from u to v in T and is already represented
by the previously added clique. We continue recursively in the cycle induced
by e2. In the final case, neither e1 nor e2 is in T . We add a clique to our tree
decomposition, formed by the subtree of T connecting u, v, and w. This
clique represents the two cycles induced by edges e1 and e2, and we can
recursively solve the subproblems within these two cycles.

In time O(n) we can implicitly assign each edge of G to a triple (u, v, w)
corresponding to a clique in which the edge is represented. In a further
O(Dn) time we can explicitly list the vertices involved in each clique. 2

5 Subgraph Isomorphism with Fixed Tree-Width

We next show how to use dynamic programming in graphs of bounded tree-
width to perform subgraph isomorphism testing. The exact statement of the
problem we solve is complicated by the requirement that we count or list
each subgraph isomorph exactly once. For simplicity, we state the lemma
with one parameter measuring both the tree-width of the text and the size
of the pattern.
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Lemma 2. Assume we are given graph G with n vertices along with a tree
decomposition of G with width w. Let S be a subset of the vertices of G, and
let H be a fixed graph with at most w vertices. Then in time O(cw logwn)
for some constant c, we can count all isomorphs of H in G that include some
vertex in S. In time O(cw logwn+ kw) we can list all such isomorphs.

Proof: We perform dynamic programming in a tree coming from the tree
representation of G. Each node in the tree corresponds to a clique in the
tree decomposition of G, and the subtree rooted at that node corresponds
to a subgraph separated from the rest of G by the vertices in that clique.

Let a partial isomorph at a nodeN of the tree be an isomorphism between
an induced subgraph H ′ of the pattern H and a subgraph of the portion of
G corresponding to the subtree rooted at N .

We let G′ be the graph induced in G by the vertices in N , together with
two additional vertices, each connected to all vertices in N . Each of the two
additional vertices also is given a self-loop. Then from any partial isomorph
at N we can derive a graph homomorphism from all of H to G′, which
is one-to-one on vertices of N , maps the rest of H ′ to the first additional
vertex, and maps H−H ′ to the second additional vertex in G′. Let a partial
isomorph boundary be such a map.

There are O(cw logw
1 possible partial isomorph boundaries for a given

node, for some constant c1. For each partial isomorph boundary, in each
node, we compute the number of partial isomorphs which give rise to that
boundary. We also compute a similar count of those partial isomorphs in-
volving a vertex of S. These numbers can be computed in a straightforward
way from the same information at the node’s children, by combining the
O(cw logw

1 ) counts from each children in pairs of children at a time, resulting
in O(cw logw

2 ) work per combined pair and O(c` log `n) overall work.
At the root node of the tree, we simply sum the number of isomorphs

involving S among those partial isomorph boundaries for which none of H
is mapped to the second additional vertex. To recover the isomorphs them-
selves we simply return back through the tree using the already computed
counts to determine which portions of the total sum came from which partial
isomorphs at each level. 2

The same techniques also lead to the same result for counting or listing
induced subgraphs isomorphic to H. As a corollary to Lemma 2, we could
perform planar subgraph isomorphism for connected patterns in O(n2) time,
by letting S = {v} for each vertex v in turn, and by only searching in the
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subgraph of G within distance w of v; by Lemma 1 this subgraph has tree-
width O(w). We will see later how to use techniques similar to those of
neighborhood covers to improve this bound, and how to extend this idea to
disconnected patterns.

The following theorem on computing diameter improves the naive O(n2)
bound for all pairs shortest paths when the diameter is small. Note that
diameter is not a subgraph isomorphism problem but it succumbs to similar
techniques.

Theorem 1. We can compute the diameter D = D(G) of a planar graph
G, in time O(cD logDn) for some constant c.

Proof: We can compute an approximation to the diameter by breadth first
search from any particular vertex, after which by Lemma 1 we can perform
dynamic programming in a tree decomposition of width O(D). We first
sweep the tree decomposition and compute for every node the distances in
the subtree rooted at that node between every vertex associated with the
node. There are O(D2) distances per node, and two matrices of distances
can be combined in O(D3) time, so this phase takes time O(D3n). We
then perform a similar sweep to compute distances in G between the same
pairs of vertices, in the same time bound. We finally sweep through the
tree decomposition a third time, keeping at each node N a set of candidates
to be endpoints of the diametral pair. If two candidate vertices have the
same set of distances to all vertices in N , we only need to keep one of the
two, so O(cD logD) candidates need be kept. At each stage we merge lists
of candidates for adjacent nodes in the tree, using the distances computed
in the first two sweeps to find the true shortest paths between every pair of
candidates. 2

6 Neighborhood Covers

We have seen that we can perform subgraph isomorphism quickly in graphs
of bounded tree-width, and that the subgraph of any planar graph G in-
duced by the vertices near some particular vertex has bounded tree-width.
Therefore we can cover G by the collection of all such subgraphs; such a
cover has the property that the neighborhood of every vertex is contained in
some subgraph of the cover, and that every subgraph of the cover has small
tree-width. However the cover is not efficient: the total size of all subgraphs
is O(n2), larger than we want.
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Awerbuch et al. [3, 4] have introduced the very similar concept of a neigh-
borhood cover, which is a covering of a graph by a collection of subgraphs,
with the properties that the neighborhood of every vertex is containined in
some subgraph, and that every subgraph has small diameter. They showed
that any (nonplanar) graph has a neighborhood cover in which the diameter
of each subgraph is O(w log n), and in which the total size of all subgraphs is
O(m log n); such a cover can be computed in time O(m log n+ n log2 n) [3].

Neighborhood covers were introduced by Awerbuch and Peleg [4] who
used them for distributed computation: one can perform local computations
in each cover rather than in the whole graph, since each neighborhood is
covered, and the computations terminate quickly since each subgraph has
small diameter. Because of the relation between diameter and tree-width
in planar graphs, such a neighborhood cover is also almost exactly what we
want to speed up our subgraph isomorphism algorithm. However there are
two problems. First, the size and construction time of neighborhood covers
are higher than we want (albeit only by logarithmic factors). Second, and
more importantly, the diameter is sufficiently high that we are unable to use
dynamic programming directly in the subgraphs of the cover. We would be
forced to use some additional techniques such as separator-based divide and
conquer, introducing more unwanted logarithmic factors.

Instead, we use a technique similar to that of Baker [5] to form a cover
that has the properties we want directly: the subgraph within distance w of
every vertex is included in some covering subgraph, each covering subgraph
has tree-width O(w), and each vertex of G is included in O(1) subgraphs
(so the total size of all subgraphs is O(n)). One also wants a third property
that the collection of subgraphs is not much larger than the original graph
G. For the distributed computing applications this is expressed in terms of
the maximum number of subgraphs any vertex is contained in, but for our
purposes we will only need a bound on the total size of all subgraphs (or
equivalently on the average number of subgraphs the vertices are contained
in).

Lemma 3. Let G be a planar graph. Then we can find a collection of
subgraphs Gi with the following properties:

• For every vertex v of G, the subgraph G′ induced by the vertices of G
within distance w of v is a subgraph of one of the graphs Gi.

• Every vertex of G is included in at most three subgraphs Gi.
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• Every subgraph Gi has tree-width O(w).

Proof: We choose any vertex v, and form a breadth first search tree from
v. This partitions G into layers, so that each edge connects either a pair
of vertices in a single layer, or a pair of vertices in adjacent layers. The
layers can be numbered by their distance from v. We let the graphs Gi
be the induced subgraphs formed by vertices in layers iw to (i + 3)w − 1.
Each such graph covers the neighborhoods of the points in layers (i + 1)w
to (i + 2)w − 1, so every neighborhood is covered. A point in layer j will
be covered only by the three graphs Gbj/wc+k for k in the set {−2,−1, 0}.
And every graph Gi is a subgraph of the graph G′ formed by removing all
layers higher than (i + 3)w − 1, and collapsing into v all layers below iw;
the breadth first search tree in G induces a breadth first search tree in G′

with radius 3w. Hence by Lemma 1 G′ and its subgraph Gi have tree-width
O(w). 2

The lemma could be strengthened so that each vertex of G is included
in at most two subgraphs, by taking groups of 4w layers in the breadth
first search tree, but this would increase the constant factor in the O(w)
tree-width bound. In fact for our subgraph isomorphism algorithm we could
take groups of 2w layers, and reduce both the tree-width of each Gi and the
total size of all graphs Gi.

7 The Subgraph Isomorphism Algorithm

Theorem 2. We can count the isomorphs or induced isomorphs of a given
connected pattern H, having w vertices, in a planar text graph G with n
vertices, in time O(cw logwn). If there are k such isomorphs we can list them
all in time O(cw logwn+ wk).

Proof: We apply Lemma 3, with S = V (G), to find in time O(n) a
set of disjoint subgraphs Gi with tree-width O(w), covering the radius w
neighborhoods of all vertices in G. We choose one such subgraph Gi, let
S be the vertices in Gi with covered neighborhoods, and find all subgraph
isomorphs involving vertices in S using the algorithm of Lemma 2. We then
remove S from all other covering subgraphs Gj so that the resulting graphs
form a cover of G−S, and we continue to use that cover to find all remaining
subgraph isomorphs in G− S. 2
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Corollary 1. We can compute the girth g = g(G) of a planar graph, in
time O(cg log gn).

Proof: This is equivalent to searching for a pattern H consisting of a
cycle of length at most g. We perform binary search among the set of such
patterns, increasing the total time by a factor of O(log g) which is swamped
by the cg log g factor in the time bound. 2

We note that instead of girth we can find the shortest nonfacial cycle,
in a similar bound, by counting the number of cycles of a given size and
comparing that number to the number of faces of the same size.

8 Disconnected Patterns

The methods we have described so far require that the pattern be connected.
We now describe a general method for handling disconnected patterns. The
technique will enable us to count the number of matching patterns, after
which some sort of separator-based divide and conquer can likely be used
to find an instance of a matching pattern, but we have been unable to
extend this technique to the problem of listing all subgraph isomorphs of a
disconnected pattern.

We illustrate our method for graphs with two components. Suppose H
has two connected components H1 and H2. We can use our algorithm to
count separately the number of occurrences ofH1 andH2; say these numbers
are h1 and h2. Then there are h1h2 ways of embedding H in G such that
both H1 and H2 are isomorphically mapped but their instances may overlap.
There are O(1) planar graphs that could be formed by overlapping H1 and
H2, each of which is connected, and we may count the occurrences of each
by our subgraph isomorphism algorithm. The number of occurrences of
H is then simply h1h2 −

∑
ki, where the numbers ki count the number of

ways each overlapping graph occurs in G. If some overlapping graph could
be formed in multiple ways from H1 and H2 we have to count it with an
appropriate multiplicity.

The result extends easily to higher numbers of components using a simple
inclusion-exclusion principle.

Lemma 4. Let H have as connected components a collection of subgraphs
Hi, and let connected graphs Kj be formed by overlapping sets of the graphs
Hi. Then there is a polynomial p(V ) such that if for any graph G, kj denotes
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the number of occurrences of Kj in G and V is the vector (k1, k2, . . .), then
p(V ) is equal to the number of occurrences of H as a subgraph of G.

Theorem 3. We can count the isomorphs of any (possibly disconnected)
pattern H having a constant number of vertices, in a planar text graph G
with n vertices, in time O(cw logwn)

Proof: Each graph Kj is formed by identifying sets of vertices in H, so
there can be at most cw logw such graphs. For each such graph, we perform
the algorithm of Theorem 2, then plug the results into the polynomial p of
Lemma 4. Each term of p corresponds to a (possibly disconnected) graph
formed by identifying parts of H, so there are cw logw terms and p can be
constructed and evaluated in time O(cw logw). 2

The h-clustering problem is that of approximating the maximum clique
by finding a set of h vertices inducing as many edges as possible. The con-
nected h-clustering problem adds the restriction that the induced subgraph
be connected. Keil and Brecht [23] study these problems, and show that
even though cliques are easy to find in planar graphs [32], the connected
h-clustering problem is NP-complete for planar graphs. See [25] for ap-
proximate h-clustering algorithms in general graphs. One method for exact
solution to the h-clustering problem is simply to test subgraph isomorphism
for all possible planar graphs on h vertices.

Corollary 2. For any h we can solve the planar h-clustering and connected
h-clustering problems in time O(ch log hn).

9 Improvement for Certain Patterns

For certain patterns, such as the wheels, our results can be further improved
to reduce the time dependence on |H|. Note that if the diameter diam(H) is
small, we can use that value instead of |H| in our neighborhood cover of G,
reducing the tree-width of the subgraphs Gi to O(diam(H)). Lemma 2 can
then be improved to have time O(c|H|+diam(H) log |H|n). The c|H| term in this
bound comes from the fact that in the dynamic programming algorithm we
need to keep track not only of how the vertices in a tree-decomposition node
of Gi map to H, but also of the connected components of the subgraph of H
induced by the unmapped vertices. If the removal of O(diam(H)) vertices
from H cannot partition H into many components, this term will vanish.
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Theorem 4. If a given pattern H is Hamiltonian or 3-connected, or if it
has bounded degree, we can count the isomorphs of H in a planar text graph
G with n vertices in time O(cdiam(H) log |H|n).

Proof: We cover G by graphs of treewidth O(diam(H)), and perform
dynamic programming within each graph.

At each node of each tree decomposition we store the set of ways a
subgraph of H could be mapped to that node and its descendents. Each
such map consists of a relation between vertices of the node and vertices of
H, together with a set of those components of the remaining vertices of H
that are covered by nodes lower in the tree decomposition. There are (H +
1)O(diam(H)) possible relations, multiplied by 2k sets of components where k
counts the number of components formed by removing O(diam(H)) vertices
from H. In the classes of graphs stated in the lemma, k = O(diam(H)). 2

For instance we can count the isomorphs of a wheel Wk in a planar text
graph G with n vertices, in time O(nkc) for some constant c. In fact in this
case it is not difficult to come up with an O(nk2) algorithm directly.

Theorem 5. We can count the isomorphs of any wheel Wk in a planar
text graph G with n vertices in time O(nk2).

Proof: For each vertex v, we count the number of cycles of length k in
the neighbors of v. The sum of the sizes of all neighborhoods in G is O(n).
Each neighborhood is outerplanar and therefore has treewidth 2. We use
standard dynamic programming techniques in a tree decomposition of each
neighborhood, storing for each length ` ≤ k the number of paths of length
` connecting the two vertices in each node. 2

10 Shortest Path Data Structure

We next describe a technique for finding shortest paths in planar graphs.
Let a parameter ` be given (typically, a fixed constant). We wish to test,
for any two vertices u and v, whether there is a path from u to v of distance
at most `, and if so return the shortest such path.

Theorem 6. For any planar graph G, and any value of `, we can in time
O(`2n) build a data structure of size O(`n), with which we can perform the
queries described above in time O(`2 log n) each.
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Proof: We first apply the decomposition of Lemma 3. This provides a
cover of G by subgraphs Gi with total size O(n), with tree-width O(`) each,
having the property that one such graph contains the radius-` neighborhood
around each vertex u. Then any query (u, v) need be asked only within that
one graph.

Since eachGi has tree-widthO(`), there is some set ofO(`) vertices which
separate Gi into components of fewer than ni/2 vertices each. Repeating
this separation recursively we can find a separator tree for Gi in which each
separator has size O(`).

We then construct the following data structure [17] using this separator
tree. For each separator of size s we store a dense s × s matrix of the
distances between every pair of separator vertices. These matrices can be
computed in time O(s3) per separator by a two-pass dynamic programming
algorithm. Since each s is O(`), and each vertex of Gi is in one separator,
the total time for this construction is O(`2n) and the matrices take space
O(`n) to store.

To answer a query, we combine the O(log n) matrices from the path
in the separator tree connecting the two vertices. This combination can
be viewed as a weighted shortest path problem in a graph with O(` log n)
vertices and O(`2 log n) edges, each with a weight between 1 and `, which
therefore takes time O(`2 log n). 2

11 General Families of Graphs

We next consider other families of graphs than the planar ones. For which
families does our subgraph isomorphism technique work?

Definition 2. Family F of graphs has the diameter-treewidth property if
there is some function f(D) such that every graph in F with diameter at
most D has tree-width f(D).

Then Lemma 1 can be rephrased as showing that the planar graphs have
the diameter-treewidth property with f(D) = O(D). With such a property,
Lemma 2 can be used to solve subgraph isomorphism in F for any fixed
connected pattern in time O(n2). Lemma 4 applies without regard for F ,
and shows that subgraph isomorphism can always be solved for disconnected
patterns as quickly as it can for connected patterns.

For planar graphs, we were able to use the decomposition into pieces of
low tree-width proved in Lemma 3 to speed up the time from quadratic to
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linear. The proof of Lemma 3 relies on the diameter-treewidth property,
and on another key property of planar graphs: any minor (subgraph of a
contraction) of a planar graph is also planar. Thus we are led to the study of
families closed under minors. These minor-closed families have been studied
extensively by Robertson, Seymour, and others, and include such familiar
graph families as the planar graphs, outerplanar graphs, graphs of bounded
genus, graphs of bounded tree-width, and graphs embeddable in IR3 without
any linked or knotted cycles. In this section we exactly characterize those
minor-closed families of graphs having the diameter-treewidth property, in a
manner similar to Robertson and Seymour’s characterization of the minor-
closed families with bounded treewidth as being those families that do not
include all planar graphs [36].

Definition 3. An apex graph [42] is a graph G such that for some vertex v
(the apex), G− v is planar.

Apex graphs are also known as nearly-planar graphs, and have been
introduced to study linkless 3-dimensional embeddings of graphs [37]. The
significance of apex graphs for us is that they provide examples of graphs
without the diameter-treewidth property: let G be an n × n planar grid,
and let G′ be the apex graph formed by connecting some vertex v to all
vertices of G; then G′ has treewidth n+1 and diameter 2. Apex graphs will
figure prominently in our characterization of families having the diameter-
treewidth property.

Definition 4 (Robertson and Seymour [36]). A wall is a subdivision
of the hexagonal tiling of a region of the plane. The size of a wall is the
number of tiles on the shortest path from some central tile to the boundary
of the tiled region.

Walls are very similar to planar grid graphs but have a slight advantage
of having degree three. Thus we can hope to find them as subgraphs rather
than as minors in other graphs.

Lemma 5 (Robertson and Seymour [36]). For any s there is a number
w = W (s) such that any graph of treewidth w or larger contains as a
subgraph a wall of size s.

Lemma 6 (Robertson and Seymour [36]). Let G be a planar graph.
Then there is some s = s(G) such that any wall of size s has G as a minor.
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Theorem 7. Let F be a minor-closed family of graphs. Then F has the
diameter-treewidth property iff F does not contain all apex graphs.

Proof: One direction is easy: we have seen that the apex graphs do
not have the diameter-treewidth property, so no family containing all apex
graphs can have the property.

In the other direction, we wish to show that if F does not have the
diameter-treewidth property, then it contains all apex graphs. By Lemma 6
it will suffice to find a in F formed by connecting some vertex v to all
the vertices of a wall of size n, for any given n. If F does not have the
diameter-treewidth property, there is some D such that F contains graphs
with diameter D and with arbitrarily large tree-width.

Let G be a graph in F with diameter D and tree-width W (N1) for some
large N1 and for the function W (N) shown to exist in Lemma 5. Then
G contains a wall of size N1. We partition the wall into smaller regions,
themselves walls of size N2 and arranged in the form of a wall of size N3.
Thus there are Θ(N2

3 ) regions. Choose any vertex v ∈ G and find a tree
of shortest paths from v to each of the regions. Since G has diameter D,
the tree will have height D and there must be some level ` of the tree
for which the number N4 of regions reached is larger by a factor of N2/D

3

than the number of regions represented by vertices of all previous tree levels
combined.

We then contract levels 1 through `− 1 of the tree to a single vertex v.
This gives a minor of G in which v is connected to N4 distinct regions of
our original wall, and in which N4/N

2/D
3 other regions are “damaged” by

having a vertex included in the contracted portion of the tree. We find a
subset S of Θ(N4) of the regions connected to v, so that no two regions are
adjacent, and so that no region is adjacent to a damaged region. Thus each
region in S is surrounded by a larger wall, and the edge between v and the
region has its endpoint near the center of the larger wall.

Since S still has many more regions than were damaged, using an isoperi-
metric inequality for grid graphs we can find a subset S′ of at least Ω(N2/D

3 )
regions such that all of S′ can be connected by chains of undamaged re-
gions. If N2 = Ω(n) and |S′| = Ω(n2), we can use this connected series
of wall regions to find a minor M of G consisting of a wall of size n with
each vertex connected to v. These conditions can both be assured by letting
N1 = Ω(n)D+1. We can carry out this construction for any n, and since by
Lemma 6 every apex graph can be found as a minor of graphs of the form of
M , all apex graphs are minors of graphs in F and are therefore themselves
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graphs of F . 2

We next discuss applications of this characterization to standard families
of graphs, including graphs of bounded genus.

Lemma 7. For any g there is an apex graph with genus more than g.

Proof: The graphs of genus g have by Euler’s formula at most 3n+O(g)
edges. Any apex graph formed by connecting the apex to every vertex of a
maximal planar graph will have 4n− 10 edges. By choosing n large enough
one can find an apex graph with too many edges to have genus g. 2

The next family of graphs we consider are those having no K3,a minor
for some fixed a. These are interesting as a generalization of planar graphs
(which are those without a K3,3 or K5 minor) and because our previous
characterization of the subgraphs occurring linearly many times in planar
graphs has the following generalization:

Theorem 8 (Eppstein [15]). Let Fa be the family of graphs having no
K3,a minor, and let pattern H be a graph in Fa. Then there is a bound of
O(n) on the number of times H can occur as subgraphs of graphs graphs in
Fa, iff H is 3-connected.

Lemma 8. There is an apex graph G that is not in Fa.

Proof: Let G = K3,a. 2

Corollary 3. For any fixed pattern H, we can test subgraph isomorphism
for H in graphs with any fixed bound on the genus, or in graphs with no
K3,a minor for any fixed a, in time O(n).

12 Conclusions and Open Problems

We have shown how to solve planar subgraph isomorphism for any pattern
in time O(n). We have also solved certain related problems in similar time
bounds. A number of generalizations of the problem remain open:

• We have shown that we can solve planar subgraph isomorphism even
for disconnected patterns in time O(n). Can we list all occurrences of
a disconnected pattern in time O(n+ k)?
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• Bui and Peck [41] describe an algorithm for finding the smallest set
of edges partitioning a planar graph into two sets of vertices with
specified sizes; if the edge set has bounded size their algorithm has
cubic running time. Can we use our methods to find such a partition
more quickly?

• We have generalized our technique to certain minor-closed families
of graphs, and characterized those minor-closed families for which it
applies. However the relation we showed between diameter and tree-
width was not as strong as for planar graphs: for planar graphs w =
O(d) while for other minor-closed families our proof only shows that
w = W (cd+1)) for some constant c, whereW (x) represents the rapidly-
growing function used by Robertson and Seymour to prove Lemma 5.
Can we prove tighter bounds on tree-width for general minor-closed
families?

• Are there natural families of graphs that are not minor-closed and that
have the diameter-treewidth property?

• Our previous results on subgraph multiplicity [15] included the fact
that in any family of graphs with no Ka,b minor, the a-connected
subgraphs could only have O(n) subgraph isomorphs. How quickly
can we list all such isomorphs? Our results on minor-closed families
cover the case that a = 3, and show that different techniques will be
needed for larger values of a.

• It seems possible that the recently discovered randomized coloring
technique of Alon et al. [1] can improve the dependence on the size of
the pattern fromO(cw logw) toO(cw), but only for the decision problem
of subgraph isomorphism. Can we achieve similar improvements for
the counting and listing versions of the subgraph isomorphism prob-
lem?
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