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Abstract

We show that any simply connected (but not necessarily convex)
polyhedron with an even number of quadrilateral sides can be parti-
tioned into O(n) topological cubes, meeting face to face. The result
generalizes to non-simply-connected polyhedra satisfying an additional
bipartiteness condition. The same techniques can also be used to re-
duce the geometric version of the hexahedral mesh generation problem
to a finite case analysis amenable to machine solution.
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1 Introduction

There has recently been a great deal of theoretical work on unstructured
mesh generation for finite element methods, largely concentrating on trian-
gulations and higher dimensional simplicial complexes [2]. However in the
numerical community, where these meshes have been actually used, meshes
of quadrilaterals or hexahedra (cuboids) are often preferred due to their nu-
merical properties. For this reason many mesh generation researchers are
working on systems for construction of hexahedral meshes. (At the 4th An-
nual Meshing Roundtable, Sandia, 1995, 13 of the 28 titles on the agenda
related to hexahedral meshing.) There has also been some theoretical work
on such meshes [7, 8, 9] but much more remains to be done. In particular
it remains open whether one can determine in polynomial time whether a
polyhedron admits a hexahedral mesh in which all cells are convex. To solve
such a problem, one must typically add Steiner points interior to the polyhe-
dron, but it is less acceptable to subdivide the polyhedron’s boundary, since
that would prevent using the meshing algorithm on domains with internal
boundaries between different subdomains.

For the planar case, the corresponding problem is easy: a polygon can be
subdivided into convex quadrilaterals, meeting face to face, without extra
subdivision points on the boundary, if and only if the polygon has an even
number of sides. It may difficult to find the smallest number of quadrilater-
als needed for this task (or equivalently to optimize the number of Steiner
points) but one can efficiently find a set of O(n) Steiner points that suffice
for this problem [9].

Thurston [10] and Mitchell [8] recently independently showed a similar
characterization for the existence of hexahedral meshes, with some caveats.
First, the polyhedron to be meshed has to be simply connected (although the
method generalizes to certain polyhedra with holes). And second, the mesh
is topological: the elements have curved boundaries and are not necessarily
convex. However they must still be combinatially equivalent to cubes, and
must still meet face to face. Thurston and Mitchell both showed that any
simply connected polyhedron has a topological hexahedral mesh, without
further boundary subdivision, if and only if there are an even number of
faces all of which are quadrilaterals. (Indeed, even parity of the number
of faces is a necessary condition for the existance of cubical meshes in any
dimension, regardless of the connectivity of the input, since each individual
cube has evenly many faces which either contribute to the boundary or are
paired up in the interior.)

The method of both Thurston and Mitchell is to treat a hexahedral mesh
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Figure 1. Bad examples for Thurston and Mitchell: (a) Ω(n3/2); (b) Ω(n2).

as being the dual to an arrangement of surfaces [7], and a quadrilateral
mesh such as the one on the boundary of the polyhedron as being the dual
to an arrangement of curves. The problem then becomes one of extending
the given surface curve arrangement to an interior surface arrangement,
and then fixing up the arrangement locally to satisfy the requirement that
cells meet face-to-face. Curves with an even number of self-intersections are
extended to surfaces independently of each other, and curves with an odd
number of self-intersections are extended to surfaces in pairs.

However this method does not provide much of a guarantee on the com-
plexity of the resulting mesh, that is, of the number of hexahedral cells in
it. This complexity is very important, as it directly affects the time spent
by any numerical method using the mesh; even small constant factors can
be critical. It is not hard to provide examples in which this dual surface
method constructs meshes with more than linearly many elements (mea-
sured in terms of the complexity of the polyhedron boundary); for instance
a cube in which each square is subdivided into an O(

√
n) by O(

√
n) grid

will end up with a mesh of total complexity Ω(n3/2) (Figure 1(a)). If one
incautiously matches odd curves with each other, the complexity can rise
even higher, to Ω(n2) (Figure 1(b)).

In this paper we discuss an alternate method for hexahedral grid gener-
ation, combining refinement of a tetrahedral mesh with some local manip-
ulation near the boundary based on planar graph theory. This technique
has three advantages over that of Mitchell and Thurston. First, we prove
an O(n) bound on the number of cells needed for a topological hexahedral
mesh. Second, because our method avoids duality, it seems easier to extend
it to the more practically relevant geometric version of the mesh generation
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problem. We exhibit a finite collection of polyhedra (formed by subdividing
the boundary of a cube) such that if these polyhedra can all be geometrically
meshed, any simply connected polyhedron with an even number of quadri-
lateral sides can also be geometrically meshed, with O(n2) cells. Third, the
method generalizes to a different class of non-simply connected polyhedra
than those handled by Mitchell and Thurston’s method.

These results are not practical in themselves: the number of elements is
too high and we have not satisfactorily completed the solution to the geo-
metric case. Practical hexahedral mesh generation methods are still largely
heuristic and will often fail or require the input boundary to be modified.
There is a possibility here of a two way interaction between theory and prac-
tice: as heuristic mesh generators improve they may soon be good enough
to solve the finite number of cases remaining in our geometric mesh genera-
tion method, and thereby prove that all even-quadrilateral polyhedra can be
meshed. In the other direction, even an impractical proof of the existence
of meshes can be helpful, by guaranteeing that an incremental heuristic
method such as Mitchell’s whisker-weaving idea [7] will not get stuck in a
bad configuration.

2 Topological mesh generation

We first describe a method for topological mesh generation in simply con-
nected polyhedra, that is, partitioning the polyhedron into a cell complex
in which each cell is combinatorially a cube (but may have curved sides),
any two cells intersect in a single face of some smaller dimension (or in the
empty set), and each boundary facet of the polyhedron is also a face of
some cell. Clearly it is a necessary condition that all polyhedron facets be
quadrilaterals. Mitchell [8] and Thurston [10] showed that it is necessary
and sufficient that there be an even number of (quadrilateral) facets. We
now show that in this problem it is possible to use only a constant factor
more cells than the number of facets in the input polyhedron.

Our method has the following main steps:

1. We separate the boundary B of the polyhedron from its interior by
a “buffer layer” of cubes. We find a surface S inside the polyhedron,
isomorphic to the polyhedron’s boundary, and sitting in the same ori-
entation. We then connect corresponding pairs of vertices on the two
surfaces with edges, corresponding pairs of edges on the two surfaces
with quadrilateral faces spanning pairs of connecting edges, and cor-
responding pairs of faces on the two surfaces with hexahedra.
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Figure 2. Partition of hexagons into two and three quadrilaterals.

2. We triangulate the inner surface of the buffer layer, and tetrahedralize
the region inside this triangulated surface. A tetrahedralization with
O(n) complexity can be found by connecting each triangle on S to a
common interior vertex.

3. We split each interior tetrahedron into four hexahedra (Figure 3(b)).
This subdivision should be done in such a way that any two tetrahedra
that meet in a facet or edge are subdivided consistently with each
other. As a result, each edge in S becomes subdivided, and each
quadrilateral connecting B to S becomes combinatorially a pentagon.

4. Because B is by assumption a planar graph with all faces even, it is
bipartite. Let U and V be the two vertex sets of a bipartition of B
(without loss of generality, |U | < |V |). Each vertex of B corresponds
to an edge connecting B to S. We subdivide the subset of those edges
corresponding to vertices in U . As a result, each original quadrilateral
connecting B to S becomes combinatorially a hexagon.

5. Each of the cells in the buffer layer is now combinatorially a polyhedron
with seven quadrilateral facets and four hexagon facets. We subdivide
the hexagons into either two or three quadrilaterals each, as shown in
Figure 2. We explain below how to do this in such a way that each
cell of the buffer layer has an odd number of hexagons subdivided into
each type; either one hexagon is subdivided into two quadrilaterals and
three hexagons are subdivided into three quadrilaterals each, or three
hexagons are subdivided into two quadrilaterals and one hexagon is
subdivided into three quadrilaterals.

6. At this point, all the buffer cells are combinatorially polyhedra with
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either 16 or 18 boundary facets. If the triangulation of S is chosen
carefully (using the same bipartition used above) there will only be
two combinatorial types of cell. We partition each cell into a mesh
of O(1) hexahedra. (The existence of such a mesh is guaranteed by
Mitchell and Thurston’s results; alternately it is an amusing exercise
to fill out these cases by hand.)

The remaining step that has not been described is how we choose whether
to subdivide each hexagon connecting B to S into two or three quadrilater-
als, so that each buffer cell has an odd number of subdivided faces of each
type. In fact we can do this in such a way as to minimize the total number
of diagonals, using a technique familiar from the solution to the Chinese
postman problem.

Recall that B is a planar graph, and construct the dual graph B′. Con-
struct a metric on the vertices of B′ with distances equal to the lengths of
shortest paths in B′. By assumption B has an even number of faces, so
there are perfect matchings in this metric; take the minimum weight perfect
matching. This corresponds to a collection of paths in B′; any two paths
must be edge-disjoint since otherwise one could perform a swap and find a
shorter matching. The union of these paths is a subgraph G of B′ (actually
a forest) in which every vertex has odd degree. Each face connecting two
buffer cells corresponds to an edge in B′; subdivide that face in three if it
corresponds to an edge in G, and subdivide it in two otherwise.

We summarize the results of this section, without proof.

Theorem 1 Given any simply connected polyhedron P with an even number
n of faces, all quadrilaterals, it is possible to partition P into O(n) topological
cubes meeting face-to-face, such that each face of P is a face of some cube.

3 Geometric mesh generation

We would like to extend the topological mesh generation method described
above to the more practically relevant problem of geometric mesh genera-
tion (partition into convex polyhedra combinatorially equivalent to cubes).
Although our extension seems unlikely to be practical itself, because of its
high complexity and the poor shape of the hexahedra it produces, it would
be of great interest to complete a proof that all polyhedra (with evenly many
quadrilateral faces) can be meshed. Also, it might make sense to include
a powerful but impractical theoretical method as part of a more heuristic
mesher, to deal with the difficult cases that might sometimes arise.
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Figure 3. Geometric hexahedralization: (a) a vertex neighborhood which can not be
extended by a single layer of cubes; (b) the partition of tetrahedra into hexahedra
on planes through edges and opposite midpoints.

In any case, we have made some progress towards a geometrical mesh
generation algorithm, but have not solved the entire problem. We have been
able to solve the seemingly harder unbounded parts of the problem, leaving
only a bounded amount of case analysis to be done. It seems likely that
heuristic mesh generation methods may soon be capable of performing this
case analysis and finishing the proof.

We go through the steps of our topological mesh generation algorithm,
and describe for each step what changes need to be made to perform the
analogous step in a geometric setting.

1. Our topological method separates the boundary B of the polyhedron
from its interior by a single buffer layer of cubes connecting B to an
isomorphic surface S inside the polyhedron. Unfortunately there exist
polyhedra for which no isomorphic interior surface can be connected
to the boundary; Figure 3(a) shows an example of a vertex surrounded
by six quadrilaterals in such a way that, no matter where the corre-
sponding interior vertex is placed, some faces are invisible to it and
hence can not be connected by geometric hexahedra. This example
is easily completed to a polyhedron with the same property. Instead
we form a more complicated buffer layer in the following way. We
first cover each face f of B by a cube, with the opposite cube face
very close to f and somewhat smaller than f , so that the other four
sides of f are “beveled” to be nearly parallel to f . For any two faces
f and f ′ sharing an edge of B, we add two more cubes, both also
sharing the same edge, connecting the two cubes attached to f and
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f ′. The faces of these cubes attached to edges can be classified into
three types: two are adjacent to other such cubes or to the cubes on
f and f ′. Two more are incident to the endpoints of the shared edge
and are again beveled to be nearly parallel to that edge. The final
two point towards the interior of the polygon. These two faces are
very close to parallel to each other, so that the two faces incident to
the endpoints of the shared edge have a “kite”-like shape resembling
a slightly dented triangle. Finally, we must cover the region near each
vertex of B. As seen from the vertex, the faces of the cubes we have
already added form a vertex figure that can be represented as a even
polygon on the surface of a sphere. We triangulate this polygon and
add a small cube corresponding to each triangle, with the three faces
incident to the vertex at B corresponding to the edges of the triangle.
This determines seven of the eight vertices of each cube; the eighth is
then fixed geometrically by the positions of the other seven. Since the
three faces incident to the vertex of B are all kite-shaped, the three
opposite faces are close to parallel to each other. By making all these
cubes attached to B small enough, and by making their faces close
enough to parallel, this can all be done in such a way that no two
cubes interfere with each other.

2. The second step of our topological method was to triangulate the inner
surface of the buffer layer, and tetrahedralize the region inside this
triangulated surface. A tetrahedralization with O(n2) complexity can
be found using a method of Bern [1]. (The bound claimed in that
paper is O(n+ r2) where r is the number of reflex edges, however our
first step creates Ω(n) reflex edges. Perhaps it is possible to use the
information that many of these edges are very close to flat, to reduce
the complexity to depend only on the reflex edges of B.)

3. We third step of our topological method was to split each interior
tetrahedron into four hexahedra. In order to do this geometrically in a
way consistent across adjacent pairs of tetrahedra, we subdivide each
tetrahedron using planes through each edge and opposite midpoint
(Figure 3(b)). It is not hard to show that these four planes meet
in a common point (e.g. by affine transformation from the regular
tetrahedron). The subdivision on each tetrahedron face is therefore
along lines through each vertex and opposite midpoint.

4. The next step of our topological method was to find a bipartition of
B, and subdivide the interior edges incident to one of the two vertex
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classes of the bipartition. This step remains unchanged except that
each vertex in the given class may be incident to many interior edges;
all are subdivided.

5. At this point, the cells of the buffer layer fall into several classes. The
cells coming from faces of B are like those of our topological con-
struction, polyhedra with seven quadrilateral facets and four hexagon
facets. The cells coming from edges of B have four quadrilaterals, three
hexagons, and an octagon. The cells coming from vertices of B on one
side of the bipartition have 18 quadrilaterals and three hexagons. The
cells coming from the other side of the bipartition have 18 quadrilat-
erals and three octagons. In any case, the hexagon and octagon sides
need to be subdivided, in such a way that all cells end up with an
even number of sides. We can use the same idea of matching here;
in fact the cells at each vertex can be matched independently, leaving
one larger matching connecting the cells on faces and edges.

6. Finally, each buffer cell needs to be meshed. This can be done inde-
pendently for each cell, but it would require a case analysis (which we
have not done) to show that each possible type cell can be meshed.

Thus of the steps in our topological mesh generation procedure, it is
only the final finite case analysis which we have been unable to extend to
the geometric problem.

4 Generalizations

The only important property we used of simply connected polyhedra (with
quadrilateral faces) is that their boundaries form bipartite graphs; but the
same extends to simply connected domains with cubically meshed surfaces
in any dimension, as can easily be seen via homology theory. (Hetyai [5]
has an alternate proof of bipartiteness for shellable complexes.) Thus there
seems no conceptual obstacle to extending this technique to higher dimen-
sional meshing problems, although it again requires a case analysis or other
technique such as that of Thurston and Mitchell to prove that the resulting
buffer cells are meshable.

An alternate direction for generalization is to non-simply-connected poly-
hedra in three dimensions. Mitchell [8] describes a generalization of his
method which applies whenever the input polyhedron forms a handlebody
that can be cut along evenly-many-sided disks to reduce its complexity.
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(Clearly, such a simplification can be used independently of the mesh gen-
eration method to be used.) Our method can handle an alternate class of
polyhedra, such as knot complements or bodies with disconnected bound-
aries, for which no simplifying disk cut exists. The only step where we used
the connectivity of the input boundary was in the result that a planar graph
with even faces is bipartite; instead we can simply require that the input
polyhedron be bipartite with evenly many sides. We can topologically mesh
any such polyhedron; alternately, if we could solve the same finite set of cases
as before we can geometrically mesh any such polyhedron. (The geometric
case needs an extension of Bern’s surface-preserving tetrahedralization to
non-simply-connected polyhedra, due to Chazelle and Shouraboura [3].)
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