

Finding Common Ancestors

and Disjoint Paths in DAGs

David Eppstein∗

Department of Information and Computer Science
University of California, Irvine, CA 92717

http://www.ics.uci.edu/∼eppstein/

Tech. Report 95-52

December 15, 1995

Abstract

We consider the problem of finding pairs of vertex-disjoint paths
in a DAG, either connecting two given nodes to a common ancestor,
or connecting two given pairs of terminals. It was known how to find
a single pair of paths, for either type of input, in polynomial time.
We show how to find the k pairs with shortest combined length, in
time O(mn + k). We also show how to count all such pairs of paths
in O(mn) arithmetic operations. These results can be extended to
finding or counting tuples of d disjoint paths, in time O(mnd−1 + k)
or O(mnd−1). We give further results on finding the subset of the
DAG involved in pairs of disjoint paths, and on finding disjoint paths
in linear space.

∗Work supported in part by NSF grant CCR-9258355 and by matching funds from
Xerox Corp.

1 Introduction

We are interested in two problems in directed acyclic graphs (DAGs), both
involving pairs of vertex-disjoint paths. In the first problem, we are given two
nodes in the DAG, and we wish to find pairs of paths connecting those nodes
to common ancestors. In the second, we are given two pairs of terminals
(s1, t1) and (s2, t2), and the task is to connect each pair with a path.

The first problem, finding common ancestors, arises in genealogy: if one
has a database of family relations, one may often wish to determine how
some two individuals in the database are related to each other. Formalizing
this, one may draw a DAG in which nodes represent people, and an arc
connects a parent to each of his or her children. Then each different type
of relationship (such as that of being a half-brother, great-aunt, or third
cousin twice removed) can be represented as a pair of paths from a common
ancestor (or couple forming a pair of common ancestors) to the two related
individuals, with the specific type of relationship being a function of the
numbers of edges in each path, and of whether the paths begin at a couple
or at a single common ancestor. In most families, the DAG one forms in this
way has a tree-like structure, and relationships are easy to find. However
in more complicated families with large amounts of intermarriage, one can
be quickly overwhelmed with many different relationships. For instance, in
the British royal family, Queen Elizabeth and her husband Prince Philip are
related in many ways, the closest few being second cousins once removed
(through King Christian IX of Denmark and his wife Louise), third cousins
(through Queen Victoria of England and her husband Albert), and fourth
cousins (through Duke Ludwig Friedrich Alexander of Württemberg and
his wife Henriette). A program I and my wife Diana wrote, Gene [3], is
capable of finding these relationships quickly using a backtracking search
with heuristic pruning, but Gene starts bogging down when asked to produce
larger numbers of relationships in the same database, hence my interest in
worst-case bounds for the problem.

The problem of finding pairs of disjoint paths between specified pairs of
terminals has been much more well studied. For the DAG version considered
here, the main result is due to Perl and Shiloach [7], who show how to
find such a pair of paths, if one exists, in time O(mn). Their method is
easily generalized to finding a shortest pair of paths (measured by total path
length), or to finding tuples of d disjoint paths between distinct specified
terminals; in the latter case the running time would become O(mnd−1). If
d is not a constant, the problem of finding multiple disjoint paths becomes

1

NP-complete [8]. (Actually this paper considers edge-disjoint paths but the
edge-disjoint and vertex-disjoint problems are easily transformed into one
another.) Li et al [6] give a pseudo-polynomial algorithm for an optimization
version of the two-path problem in which the length of the longer path must
be minimized.

1.1 New Results

We show the following results, all of which assume a directed acyclic graph
with n vertices and m arcs, with real-valued arc lengths.

• In O(mn) time we can construct a data structure such that, given any
two nodes u and v in the DAG, we can list (an implicit representation
of) the k shortest pairs of vertex-disjoint paths from a common ances-
tor to u and v, in time O(k). The same bound holds for listing all pairs
with length less than a given bound (where k is the number of such
paths). Alternately, the pairs of paths can be output in order by total
length, in time O(log i) to list the ith pair. We can find each pair of
paths explicitly from its implicit representation in time proportional
to the number of edges in the pair. Our representation also allows
computation of some simple functions (such as the length or number
of edges of each path in the pair) in constant time.

• In O(mn) arithmetic operations we can count, for each two nodes
in the graph, the number of pairs of disjoint paths from a common
ancestor to those two nodes. Each operation combines numbers of
(pairs of) paths, and hence involves arithmetic on numbers of O(n)
bits. (It is easily shown that any DAG has at most 2n paths.)

• Given any d pairs (si, ti) and (s2, t2) of terminals, we can find in time
O(mnd−1 + k) an implicit representation of the k shortest d-tuples of
vertex-disjoint paths connecting those terminals. As above, the tu-
ples can be output in order in time O(log i) for the ith path, we can
compute explicit representations in linear time, and we can compute
simple functions on the paths in constant time. In O(mnd−1) arith-
metic operations on O(dn) bit numbers we can compute the number
of tuples of vertex-disjoint paths from si to ti.

As in the algorithm of Perl and Shiloach for finding a single pair of dis-
joint paths between specified terminals [7], our method involves construct-
ing a DAG D′ with O(n2) or O(nd) nodes and O(mn) or O(mnd−1) arcs, in

2

which each tuple of paths in the original DAG D is represented by a single
path between a certain pair of nodes in D′. However the method in that
paper allows a tuple of paths in D to be represented by more than one path
in D′; we modify the construction so that the representation is unique. We
then apply dynamic programming to count paths in D′, or use our previous
algorithm [2] to find the k shortest paths.

The time bound of our algorithm is quite reasonable, but its quadratic
space requirement makes it unsuitable for practical implementation. To ease
this problem, we provide the following further results:

• Given any two nodes u and v in a DAG, we can in linear time find the
subset of the DAG consisting of only those nodes and arcs involved in
some pair of disjoint paths from a common ancestor to u and v.

• Given any two nodes u and v in a DAG with nonnegative edge lengths,
we can find the set of pairs of disjoint paths from a common ancestor to
u and v, having length less than some given bound, in time O(kmn)
and space O(m + n), where k represents the number of path pairs
satisfying the length bound. If we desire the k shortest pairs without
a length bound, we can solve the problem again in linear space, with
time either O(k2mn) or O(kmn log x) where in the second bound the
edge lengths are assumed to be integers, and x denotes the length of
the longest pair of paths found.

2 Representing Path Pairs by Paths

We first consider the version of the problem in which we wish to find common
ancestors of a pair (u, v) of nodes. Given a DAG D, we construct a larger
DAG D1 as follows. We first find some topological ordering of D, and let
f(x) represent the position of vertex x in this ordering.

We then construct one vertex of D1 for each ordered pair of vertices
(x, y) (not necessarily distinct) in D. We also add one additional vertex
s in D1. We connect (x, y) to (x, z) in D1 if (y, z) is an arc of D and
f(z) > max(f(x), f(y)). Symmetrically, we connect (x, y) to (z, y) if (x, z)
is an arc of D and f(z) > max(f(x), f(y)). We connect s to all vertices in
D1 of the form (v, v).

Lemma 1. Let vertices u and v be given. Then the pairs of disjoint paths
in D from a common ancestor a to u and v are in one-for-one correspondence
with the paths in D1 from s through (a, a) to (u, v).

3

Proof: If we have such a path in D1 we can find two paths from a to u
and v simply by choosing the left and right sides respectively of each ordered
pair in the path. These two paths must be vertex disjoint, since after the
first time some vertex x appears on one or the other side of an ordered pair,
every succeeding vertex y has f(y) > f(x).

Conversely, suppose we have a pair of disjoint paths from a to u and v.
We form a sequence of ordered pairs, starting from (a, a), by sorting the ver-
tices of both paths according to their topological ordering and successively
replacing one or the other side of each ordered pair by the next vertex in
that order. This produces a path in D1 according to the lemma.

We thus have two maps, one from paths in D1 to pairs of paths in D,
and one in the other direction. To show that these objects are in one-to-one
correspondence, it suffices to show that composing these two maps in either
order gives the identity mapping.

Starting from a path in D1, each arc replaces one vertex of each ordered
pair; the replaced vertices must be already in sorted order according to
the topological ordering, and the two maps preserve the information about
which vertex goes on which side of each ordered pair, so sorting the vertices
and placing them back into ordered pairs recovers the original path.

Starting from a pair of paths, each individual path must again be sorted
according to the topological ordering, so sorting the vertices to make a single
path in D1 simply corresponds to shuffling the two original paths. The map
from a path in D1 back to two paths in D simply undoes that shuffling, so
again the composition is the identity. 2

Thus we can represent paths from a common ancestor in D by single
paths in D1. We now describe a similar construction for the problem of
finding a collection of disjoint paths between terminals (si, ti). We assume
for simplicity that all terminals are distinct; our construction is easily mod-
ified to handle non-distinct terminals as we describe later.

Given a collection of d tuples (si, ti) in D, augment D by adding two
vertices s and t, and arcs (s, si) and (ti, t) for each terminal t. Form a graph
D2 as follows. Form a topological ordering of D, and let f(v) represent
the position of v in this ordering. Let the vertices of D2 consist of ordered
d-tuples of vertices of D.

Connect a tuple v = (v1, v2, . . . vd) with another tuple w = (w1, w2, . . . wd)
exactly when the following conditions hold: (1) some arc connects some pair
(vi, wi), (2) if vi = s then wi = si and if wi = t then vi = ti, (3) for each
j 6= i, vj = wj , and (4) either wi = t or f(wi) > max f(vj). If terminals are

4

non-distinct, the construction must be modified by weakening condition (4)
to allow f(wi) = f(vj) when i > j and wi and vj are terminals of paths i
and j.

Lemma 2. Given D and (si, ti), the construction above produces a DAG
D2 such that d-tuples of disjoint paths connecting the terminals in D cor-
respond one-for-one with paths from (s, s, . . . s) to (t, t, . . . t) in D2.

The proof is essentially the same as that for Lemma 1: we map paths
in D2 to sets of paths in D by keeping only one position in each d-tuple in
D2; we map sets of paths in D to paths in D2 by sorting the vertices and
using the sorted order to change d-tuples of vertices in D2 one position at a
time; the composition of these maps in either order is the identity mapping
for the same reasons as before.

Note that the additional vertices s and t by which we augmented D are
necessary, as there does not always exist a path in D2 from (s1, s2, . . . si) to
(t1, t2, . . . ti). For instance, if f(ti) < f(sj) for some i and j, such a path
can never exist because we would be unable to change the ith position of
the tuple to ti without violating the condition that f(wi) > f(vj).

3 Comparison with Perl and Shiloach

The constructions of the previous section are similar in some respects to
that appearing in a paper by Perl and Shiloach [7], which uses similar ideas
to solve in O(mn) time the problem of finding a single pair of vertex disjoint
paths connecting a specified pair of terminals. However there are some
important differences which we now discuss.

The construction of Perl and Shiloach again forms tuples of vertices from
D, connected by arcs corresponding to changing a single vertex in a tuple.

Instead of a topological ordering, Perl and Shiloach use level numbers
measuring the length of the longest path from each vertex. (Note that
the ordering of these is opposite that of our topological ordering positions.)
Instead of introducing extra vertices s and t, Perl and Shiloach remove edges
out of each terminal ti, so that the level numbers of the ti are all zero and
the situation discussed earlier for which we added s and t does not arise.
And instead of our ordering condition that f(wi) > max(f(vj)), Perl and
Shiloach use the condition that `(vi) ≥ max(`(wj)).

The first change, of using level numbers, causes Perl and Shiloach to use
a ≥ test in the ordering condition, where we use a > test. The fact that

5

our test reverses the roles of v and w is insignificant (equivalently one could
reverse the edges in the input DAG), but the change from strict inequality to
possible equality means that their construction forms a one-to-many rather
than one-to-one representation of the tuples of disjoint paths. Thus it is
unsatisfactory for counting or listing more than one path. The remaining
change, of removing edges rather than our solution of adding extra vertices
s and t, makes it difficult for Perl and Shiloach’s algorithm to be generalized
to allow non-distinct terminals. In particular, it cannot allow some si = tj ,
and it cannot allow the situation which arises in our genealogical application,
in which in one relation one person is an ancestor of another, but in which
the two people have a third common ancestor in other relations.

4 Finding and Counting Disjoint Paths

We use the following, which is a specialization to DAGs of the main result
of our previous paper [2], and is proved in that paper.

Lemma 3. Let D be a DAG with a specified vertex s. Then in time
O(m+ n) we can construct a data structure from D, such that an implicit
representation of the k shortest paths from s to any vertex t can be found
in time O(k). From this implicit representation we can construct each path
in time proportional to its number of edges. We can compute along with
each implicitly represented path, in constant time per path, the value of any
function represented by a monoid combining values at the edges of D (for
example the length, number of edges, or heaviest edge in a path). We can
list all paths with length less than a given bound in the same time bound
above, and we can list the paths in order taking time O(log i) to list the ith
path.

By applying this to the graphs D1 and D2 constructed earlier, we get
the following results.

Theorem 1. Given a DAG D, in O(mn) time we can construct a data
structure such that, for any two nodes u and v in D, we can list an implicit
representation of the k shortest pairs of vertex-disjoint paths from a common
ancestor to u and v, in time O(k). The same bound holds for listing all pairs
with length less than a given bound (where k is the number of such paths).
Alternately, the pairs of paths can be output in order by total length, in
time O(log i) to list the ith pair. We can find each pair of paths explicitly

6

from its implicit representation in time proportional to the number of edges
in the pair. Our representation also allows computation of some simple
functions (such as the length or number of edges of each path in the pair)
in in constant time per pair of paths.

Theorem 2. Given any d pairs (si, ti) and (s2, t2) of terminals in a DAG,
we can find in time O(mnd−1+k) an implicit representation of the k shortest
d-tuples of vertex-disjoint paths connecting those terminals. As above, the
tuples can be output in order in time O(log i) for the ith path, we can
compute explicit representations in linear time, and we can compute simple
functions on the paths in constant time.

For our other results on these problems, we count paths using a standard
dynamic programming technique in acyclic graphs.

Lemma 4. Let D be a DAG with a specified vertex s. Then in O(m+ n)
arithmetic operations we can count all paths from s to each other vertex in
D. Each operation involves integers with at most log2 x bits, where x is the
maximum number of paths from s to any other vertex.

Proof: We process the vertices in order by a topological numbering. For
each vertex the number of paths from s is simply the sum of the correspond-
ing numbers for its immediate predecessors. 2

Again, we apply this lemma to the DAGs D1 and D2 constructed earlier.
Note that (assuming D has no multiple edges or self-loops) the number of
paths in our original DAGD is at most 2n, since any path can be represented
uniquely by a subsequence of some fixed topological ordering of D. Hence
the number of paths in D1 or D2 is at most 22n or 2dn respectively.

Theorem 3. Given a DAG, in O(mn) arithmetic operations we can count,
for each two nodes in the graph, the number of pairs of disjoint paths from
a common ancestor to those two nodes. Each operation involves arithmetic
on numbers of O(n) bits.

Theorem 4. Given any d pairs (si, ti) and (s2, t2) of terminals in a DAGD,
In O(mnd−1) arithmetic operations on O(dn) bit numbers we can compute
the number of tuples of vertex-disjoint paths from si to ti.

7

5 Alternate Methods

As discussed in the introduction, in practice the search for disjoint path
pairs may be limited more by memory availability than time. The algo-
rithms described earlier use quadratic space, which even after the pruning
described in the previous section may be too much. We describe here meth-
ods requiring only linear space. However, to achieve this we must spend
more computation time.

Lemma 5. Given a DAG D with nonnegative edge lengths and a pair u,
v of nodes, we can in time O(m+n) find the shortest pair of vertex-disjoint
paths from a common ancestor to u and v.

Proof: Construct a DAG D′ consisting of a copy of D itself, a second
copy of D with all arcs reversed, and an arc from each node in the second
copy to the corresponding node in the first copy. Then pairs of paths from
an ancestor to two nodes u and v in D correspond one-for-one with paths
from the second copy of u to the first copy of v in D′. This method does not
constrain paths to be vertex-disjoint, but it is easily seen that the shortest
pair of paths in D (corresponding to a shortest path in D′) must be disjoint,
since if any pair of paths share a vertex one can find a shorter pair starting
from that shared vertex. 2

One possible practical heuristic derived from this idea would be simply
to search for short paths in this graph D′, and filter out the ones corre-
sponding to non-disjoint path pairs in D. In fact, if the method used to find
short paths in D′ is that of Byers and Waterman [1], this would resemble a
more sophisticated version of the backtracking search already implemented
in Gene. However the worst case time of such a heuristic would still be ex-
ponential; we are interested here in algorithms with polynomial worst case
behavior and linear space.

We quickly describe such an algorithm, based on Lawler’s [5] method
of partitioning a solution space. First suppose that we know a bound ` on
the length of the path pairs we wish to find, and simply intend to return
all pairs shorter than `. If we are given a bound k on the number of paths
to find, the actual value of ` can be found by binary search, multiplying
the time by a factor of O(log `), or by increasing ` at each step to the next
larger value found in the previous search, instead multiplying the time by
O(k). (The second approach is essentially the same as the standard method
of depth first iterative deepening search [4].)

8

We then use the lemma above to find the best pair in D. If this is already
worse than `, we are done. And if u = v, there can only be the trivial pair
of paths (no others are disjoint). Otherwise, we let (u,w) be the first edge
in one of the paths, and call the algorithm recursively twice: once to find
all path pairs connecting w and v within distance at most ` − d(u,w), in
graph D − u, and secondly to find all path pairs connecting u and v within
distance ` in graph D − (u,w).

Theorem 5. The method above generates all disjoint pairs of paths to u
and v, of length at most `, in time O(mnk) and space O(m+ n).

Proof: The space bound is clear. The time bound follows since each
output path pair causes O(n) recursive calls, each taking linear time. 2

6 Pruning the Input

As one further step towards practicality, we show how to determine those
vertices that are actually part of some pair of disjoint paths. The remaining
vertices can then be removed from the graph, speeding up the construction
of the k shortest disjoint path pairs in practice if not necessarily in theory.

Given a DAGD with nonnegative edge lengths and a pair u, v of terminal
nodes, we first determine for each other vertex w which of the two terminals
can be reached by paths from w. Obviously, we can eliminate all vertices
not able to reach one or the other terminal. From now on we assume that
all nodes can reach at least one terminal.

Next, we construct a bottom-up topological numbering N(w) of the ver-
tices of D, so that the children of any node have smaller numbers than the
node itself. By abuse of notation we identify N(w) with w itself. Define
another number R(w) recursively as follows. First, if w can only reach u,
let R(w) = u, or if w can only reach v, let R(w) = v. Second, if all children
of w have the same value of R, let R(w) be that same value. Finally, if the
children of w have more than one value of R, but w itself can reach both u
and v, let R(w) = w.

Lemma 6. R(w) is the topological number of the lowest node through
which all paths from w to u and v go.

Proof: First, suppose there are two such nodes. Then there is a path
between them (any path from w to u or v) so the lowest of the two is well

9

defined. If w can only reach one terminal, say u, R(w) = u and the result
is clear. If all children of w have the same value of R, the result clearly
follows by induction: all paths from w to a terminal must go through a
child, and hence through R; but for any node lower than R we can get from
w to a child of w and from there to a terminal by a path avoiding that
node. Finally, suppose two children x and y have R(x) 6= R(y). Then we
wish to show that for any node z 6= w, there is a path from w to a terminal
avoiding z. Suppose not; then all paths from both x and y go through z.
But then all such paths would also go through R(z), and there would be
paths from x and y through z and R(z) but avoiding any lower node, so
R(x) = R(y) = R(z) contradicting the assumption that R(x) 6= R(y). 2

Lemma 7. There is a pair of disjoint paths from w to u and v if and only
if R(w) = w and w can reach both terminals.

Proof: Any pair of paths to both terminals must both contain R(w), so
if R(w) 6= w the paths could not be disjoint. In the other direction, choose
some pair of paths p1 and p2 from w that coincide for some number k of
edges, and are disjoint below that point, with k chosen as small as possible.
(Certainly some such pair exists, since from any pair of paths from w to
each terminal we can simply choose the lowest point in common, and use a
common path above that point.) If k > 0, let x be the point where p1 and
p2 diverge. Then by the previous lemma, there is a path p3 from w to some
terminal (say u) that avoids x. Since it avoids x, it must have a minimal
subpath connecting some vertex on the common portion of p1 and p2 to
another vertex on one of the two paths below x (say on p1). By replacing a
portion of p1 with this subpath, we find a pair of paths with a smaller value
of k; but k was chosen as small as possible, therefore k = 0. 2

Lemma 8. A node w is part of some pair of disjoint paths to u and v if
and only if it can reach u or v and some ancestor w′ of w has R(w′) = w′.

Proof: These conditions are clearly necessary. The proof of the other
direction is similar to the previous lemma. Suppose R(w) 6= w (else the
previous lemma applies) and choose some pair of paths p1 and p2 from
some ancestor w′ with R(w′) = w′ that pass through w, coincide for some
number k of edges, and are disjoint below that point, with k chosen as
small as possible. If w is on the disjoint portion of the paths, we are done.
Otherwise, let x be the point where p1 and p2 diverge; there is a path p3

10

from w′ to some terminal that avoids x. By splicing a minimal subpath of
p3 into one path we get a pair of paths with a smaller value of k; but the
other path is unchanged and still contains w. Thus again we can always
reduce k, proving that it must be zero. 2

Theorem 6. In O(m+ n) time we can find the set of nodes in D that are
part of some pair of disjoint paths to u and v.

Proof: The topological sorting of D and the computation of R can clearly
be done in linear time, as can the determination of the set of descendants
of nodes with R(w) = w. The desired set of nodes can then be identified
according to the lemmas above. 2

References

[1] T. H. Byers and M. S. Waterman. Determining all optimal and near-
optimal solutions when solving shortest path problems by dynamic pro-
gramming. Oper. Res. 32, 1984, pp. 1381–1384.

[2] D. Eppstein. Finding the k shortest paths. 35th IEEE Symp. Founda-
tions of Computer Science, 1994, pp. 154–165.

[3] D. Eppstein. Gene 4.1 User Guide. HTML document, 1995, available
online at http://www.ics.uci.edu/∼eppstein/gene/UserGuide.html.

[4] R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree
search. Artificial Intelligence 27, 1985, pp. 97–109.

[5] E. L. Lawler. A procedure for computing theK best solutions to discrete
optimization problems and its application to the shortest path problem.
Management Science 18, 1972, pp. 401–405.

[6] C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The complexity of
finding two disjoint paths with min-max objective function. Discrete
Applied Math. 26, 1990, pp. 105–115.

[7] Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs
of vertices in a graph. J. ACM 25, 1978, pp. 1–9.

[8] J. Vygen. NP-completeness of some edge-disjoint paths problems. Dis-
crete Applied Math. 61, 1995, pp. 83–90.

11

