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Introduction

A zonotope is a set of points in d-dimensional space constructed by the sum of scaled vectors 
a[[i]] v[[i]] where a[[i]] is a scalar between 0 and 1 and v[[i]] is a d-dimensional vector.  
Alternately it can be viewed as a Minkowski sum of line segments connecting the origin to the 
endpoint of each vector.  It is called a zonotope because the faces parallel to each vector form a 
so-called  zone wrapping around the polytope.  A zonohedron is just a three-dimensional 
zonotope.  This notebook contains code for constructing zonotopes and displaying zonohedra.

There is some confusion in the definition of zonotopes; Wells [W91] requires the generating 
vectors to be in general position (all d-tuples of vectors must span the whole space), so that all 
the faces of the zonotope are parallelotopes.  Others [BEG95,Z95] do not make this restriction.  
Coxeter [C73] starts with one definition but soon switches to the other.  We use the unrestricted 
definition here.

The combinatorics of the faces of a zonotope are equivalent to those of an arrangement of 
hyperplanes in a space of one fewer dimension, so for instance zonohedra correspond to planar 
line arrangements.  This can be most easily seen by considering the space of d-dimensional 
hyperplanes tangent to the zonotope.  The space of all d-dimensional unit vectors can be seen as a 
unit sphere, equivalent to oriented projective (d-1)-space. For any given unit vector, there is a 
unique hyperplane normal to the vector and tangent to the zonotope at some kind of face.  One 
can swing a hyperplane tangent to a k-dimensional face through a collection of angles with 
(d-1-k) degrees of freedom; this corresponds to a cell with dimension (d-1-k) in this projective 
space.  Thus the faces of the zonotope correspond to a dual cell decomposition of space (dual 
because the dimensions are reversed — high dimensional faces correspond to low dimensional 
cells).  If there were only a single vector, this decomposition would be given by a single 
hyperplane (partitioning the tangents into those that touch the origin, those that touch the endpoint 
of the vector, and those parallel to the vector that touch both points).  But the decomposition 
corresponding to a Minkowski sum is formed by overlaying the decompositions corresponding 
to the two summands, so the cell decomposition of the tangent space to a zonotope is exactly a 
hyperplane arrangement.  The zone of faces parallel to a given vector corresponds exactly to a 
hyperplane in the arrangement.

Because of this correspondence, we can construct zonotopes in O(n^(d-1)) time.  In particular it 
would take O(n^2) time to construct a zonohedron from an initial set of n vectors.  However our 
implementation uses a slower algorithm better suited to the functional nature of Mathematica 
programming.  We first find the subsets of vectors corresponding to the faces of the zonotope.
These subsets are determined incrementally, by combining each new vector with previously 
generated subsets, and then forming additional faces pairing the new vector with any remaining 
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old vectors.  Once we have generated all faces, we determine coordinates for their vertices 
(recursively, since each face is again a zonotope in one lower dimension) and lift them into 
position by adding appropriate sets of vectors.

Implementation

Manipulation of Individual Faces

In the face generation stage, we represent a face by the indices of the vectors generating it.  When 
we add a new vector to the zonohedron, we test it against each face and determine whether it is 
coplanar (by computing a dxd determinant); if so it gets added to the list of indices.  In the face 
placement stage, we instead represent a face by the coordinates of its vertices, so we need code to 
translate between the two representations.  Once we have found the coordinates of a face 
recursively as a lower-dimensional zonotope, we lift two copies of it in place by using a similar 
determinant computation to determine which vectors to add to each copy.

In order to compute recursive faces we need a way of testing signs of determinants when there 
are fewer than d vectors involved.  We simply add extra vectors on the moment curve 
(x,x^2,x^3,...), so that they are independent of each other and (hopefully) of the inputs.

In [1 ] :=

ZSignTest[vv_,f_] :=

Det [ Part[vv,f] ~Join~

  Table[(i+200)^j,

{i,Length[vv[[1]]]-Length[f]},

{j,Length[vv[[1]]]}]]

This routine tests whether to add a new vector to an existing face.

In [2 ] :=

ZAddToFace[vv_,f_,i_,d_] :=

If[ Length[f] < (d-1) ||

ZSignTest[vv, Append[Take[f,d-1],i]] == 0,

Append[f,i], f ]

The next two routines convert faces from subsets of indices to coordinates.  This is simply a 
recursive call to Zonotope, except that when the face is one-dimensional the result is just a line 
segment and we stop the recursion to compute it more simply.

In [3 ] :=

ZOrigin[vv_] := Table[ 0, {Length[ vv[[1]] ]} ]
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In [4 ] :=

ZFace[vv_,f_,d_] := 

If [d == 2,

{ZOrigin[vv], Plus @@ Part[vv,f]},

Zonotope[ Part[vv,f], d-1 ]]

The remaining routines in this section are concerned with translating the converted faces into their 
appropriate positions in space.  Each face appears in two copies, and each vector not contributing 
to the face is used to shift exactly one of the copies.  Which one is determined by another 
determinant calculation.

In [5 ] :=

ZLiftVector[vv_,f_,i_,d_] :=

If [ MemberQ[f, i], {ZOrigin[vv],ZOrigin[vv]},

 If [ ZSignTest[vv, Append[Take[f,d-1],i]] < 0,

   {vv[[i]], ZOrigin[vv]},

   {ZOrigin[vv], vv[[i]]}]]

I want to add the same vector to all level-one lists in a nested list structure, but Mathematica 
doesn't let Plus work this way (although it does work with scalars...)

In [6 ] :=

ZVecPlus[a_,v_] :=

If[Head[First[a]] === List,

ZVecPlus[#,v]& /@ a, a+v]

In [7 ] :=

ZLiftFace[vv_,f_,d_] :=

{#1 ~ZVecPlus~ #2[[1]], #1 ~ZVecPlus~ #2[[2]]}& [

ZFace[vv,f,d],

Plus @@ Table[ZLiftVector[vv,f,j,d],{j,Length[vv]}]]

Face Generation Stage

As described earlier, we generate faces (as subsets of vectors) incrementally, adding one vector at 
a time to our zonotope.  Adding one vector has two parts: including it in the faces with which it is 
coplanar, and then making new faces with which it is noncoplanar.

In [8 ] :=

ZOldFaces[vv_,ff_,i_,d_] :=

(ZAddToFace[vv, #, i, d])& /@ ff
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To generate the new faces, we make all d-tuples of indices involving index i, and then filter out 
the ones that are subsets of the indices in existing faces.

In [9 ] :=

ZTuples[i_,d_] :=

If[d == 1, {{i}}, 

   (Append[#,i]&) /@ Join @@ 

   Table[ZTuples[j,d-1],{j,i-1}]]

In [10 ] :=

ZSubsetQ[s_,t_] := (Length[t] == Length[Intersection[s,t]])

In [11 ] :=

ZFilterTuple[ff_,t_] :=

Not[Or @@ (ZSubsetQ[#,t]&) /@ ff]

In [12 ] :=

ZAddTuples[vv_,ff_,i_,d_] :=

ff ~Join~ Select[ZTuples[i,d-1], ZFilterTuple[ff,#]&]

In [13 ] :=

ZNewFaces[vv_,ff_,i_,d_] :=

ZAddTuples[vv, ZOldFaces[vv,ff,i,d], i, d]

In [14 ] :=

ZAllFaces[vv_,d_] :=

Fold[ZNewFaces[vv,#1,#2,d]&,

 {{}}, Table[i,{i,Length[vv]}]]

Face Placement Stage

In [15 ] :=

ZLiftAll[vv_,ff_,d_] :=

Join @@ Map[ZLiftFace[vv,#,d]&,ff]

Main Zonohedron Code

In [16 ] :=

Zonotope[vv_,d_] :=

ZLiftAll[vv,ZAllFaces[vv,d],d]
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The general zonotope code will produce a recursive description in which 2d faces are lists of 1d 
edges, etc.  For nice drawings of zonohedra we need to convert these lists of edges into a single 
polygon.

In [17 ] :=

ZNext[f_,e_] :=

Join @@ Map[

If[ e[[2]] == #[[1]] && e[[1]] != #[[2]], #,

If[ e[[2]] == #[[2]] && e[[1]] != #[[1]],

Reverse[#], {}]]&, f]

In [18 ] :=

ZMakePolygon[f_] :=

First /@ NestList[ ZNext[f,#]&, f[[1]], Length[f]-1 ]

In [19 ] :=

Zonohedron[vv_] :=

Show[Graphics3D[Polygon /@ ZMakePolygon /@

Zonotope[N[vv],3]],

 ViewPoint->{12,3,5},

 Boxed -> False]

6



Examples

The Cube

Zonohedron[{{1,0,0},{0,1,0},{0,0,1}}]
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Prisms

Zonohedron[{{1,Sqrt[3],0},{1,-Sqrt[3],0},{2,0,0},{0,0,2}}]

Zonohedron[{{2,0,0},{0,2,0},{0,0,2},

{Sqrt[2],Sqrt[2],0},{Sqrt[2],-Sqrt[2],0}}]

8



The Truncated Octahedron

The octahedron itself is not a zonohedron, since its faces are triangular and do not form zones.  
However if one uses the edges of the octahedron as generators, one gets this zonohedron, in 
which the triangular faces of the octahedron have been truncated to hexagons and squares added 
to connect them.  The twelve octahedron edges come in six pairs, so there are six generators.  
This shape can fill space without leaving any gaps.

Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0,-1},

{0,1,1},{0,1,-1}}]

The Rhombic Dodecahedron

This is the dual to the cuboctahedron, an Archimedean solid formed by combining the six 
squares of a cube with the eight triangles of an octahedron.  The cuboctahedron itself is not a 
zonohedron because of its triangular faces.
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Zonohedron[{{1,1,1},{1,-1,1},{1,1,-1},{1,-1,-1}}]

The Extended Rhombic Dodecahedron

This zonotope is noteworthy for (like the cube, hexagonal prism, truncated octahedron, and 
rhombic dodecahedron) being able to fill space without leaving any gaps.  The one here is drawn 
with different angles from the rhombic dodecahedron itself, to make the hexagonal sides regular.
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Zonohedron[{{0,Sqrt[3],1},{Sqrt[3],0,1},

{0,-Sqrt[3],1},{-Sqrt[3],0,1},

{0,0,2}}]

The Truncated Cuboctahedron

As can be seen from its set of generators, this is the Minkowski sum of a cube and a truncated 
octahedron.  It is also known as the Great Rhombicuboctahedron.
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Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0,-1},

{0,1,1},{0,1,-1},

{Sqrt[2],0,0},{0,Sqrt[2],0},{0,0,Sqrt[2]}}]

The Truncated Rhombic Dodecahedron

This is the Minkowski sum of a cube and a rhombic dodecahedron.  The hexagons can not be 
regular, although they do have all sides the same length, since three regular hexagons would meet 
in a flat solid angle instead of the corners here.  Although this shape does not fill space on its 
own, it can be combined with cubes in a regular space-filling pattern.
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Zonohedron[{{1,1,1},{1,1,-1},{1,-1,1},{1,-1,-1},

{Sqrt[3],0,0},{0,Sqrt[3],0},{0,0,Sqrt[3]}}]

Two non-Archimedean zonohedra

This is the Minkowski sum of a a truncated octahedron and a rhombic dodecahedron.  Its faces 
are squares, regular hexagons, and long irregular hexagons.
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Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0,-1},

{0,1,1},{0,1,-1},

{Sqrt[2/3],Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],-Sqrt[2/3]}}]

This is the Minkowski sum of a cube, a truncated octahedron, and a rhombic dodecahedron.  
Some of the octagonal faces are non-regular.
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Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0,-1},

{0,1,1},{0,1,-1},

{Sqrt[2/3],Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],-Sqrt[2/3]},

{Sqrt[2],0,0},{0,Sqrt[2],0},{0,0,Sqrt[2]}}]

The Rhombic Triacontahedron

This is the dual of the icosidodecahedron, one of the Archimedian solids that (like the 
cuboctahedron) is not a zonohedron as it has odd faces.
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Zonohedron[{{1,0,-GoldenRatio},{1,0,GoldenRatio},

{0,-GoldenRatio,1},{0,GoldenRatio,1},

{-GoldenRatio,1,0},{GoldenRatio,1,0}}]

The Truncated Icosidodecahedron

This is also known as the Great Rhombicosidodecahedron.
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Zonohedron[{

{1,GoldenRatio,GoldenRatio-1},{1,-GoldenRatio,GoldenRatio-1},

{1,-GoldenRatio,1-GoldenRatio},{1,GoldenRatio,1-GoldenRatio},

{GoldenRatio,1-GoldenRatio,1},{GoldenRatio,1-GoldenRatio,-1},

{GoldenRatio,GoldenRatio-1,-1},{GoldenRatio,GoldenRatio-1,1},

{GoldenRatio-1,1,GoldenRatio},{GoldenRatio-1,-1,-GoldenRatio},

{GoldenRatio-1,1,-GoldenRatio},{GoldenRatio-1,-1,GoldenRatio},

{2,0,0},{0,2,0},{0,0,2}}]
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A Ukrainian Easter Egg

The following zonohedron is generated by two sets of vectors, each arranged in a circle, with one 
circle forming a wider angle to the origin and having much longer vectors.  As can be seen from 
the drawing, the overall shape is like that generated only by the larger vectors, but with an 
additional zigzag belt of many long thin faces generated by the other vectors.

This example comes from my paper [BEG95] in which we studied the problem of, given a 
collection of points each having an unknown weight somewhere between two known bounds, 
finding the set of all possible weighted averages of the points.  This turns out to be equivalent to 
finding a perspective projection of a zonohedron (such as the outlines of the drawings constructed 
here by Mathematica).  If one further knows what the sum of the weights should be, the problem 
instead turns into one of finding the shape formed by a slice through a zonohedron.  And if this 
sum is known but bounds on it are known, the problem becomes one of taking two parallel slices 
through a zonohedron and performing a perspective projection on the resulting shape.  Zonotopes 
resembling the shape below were used to show that the latter two problems could have 
complexity n^d, even though the first problem's complexity is only O(n^(d-1)) owing to the fact 
that it can be further transformed into one of finding a convex surface in a (d-1)-dimensional 
hyperplane arrangement.

My co-authors and I gave this its name because of its festive appearance, but of course real Easter 
eggs are neither pointy nor centrally symmetric.  For some reason, with the choice of parameters 
below, Mathematica insists on cutting off the shape's top and bottom vertices, adding to the 
egg-like appearance of the image.

ZoneCircle[n_,x_,y_] :=

N[Table[{y Cos[2 Pi (i+.5) / n], y Sin[2 Pi (i+.5)/ n], x},

{i,n}]]
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Zonohedron[ZoneCircle[9,1,1] ~Join~ ZoneCircle[7,.1,.005]]

Permutation Polytopes

For any k, the convex hull of the k-dimensional vectors formed by permuting the coordinates of 
(1,2,...,k) is called a permutation polytope or permutahedron [Z95].  Its edges correspond to 
permutations adjacent by a single transposition, so any two of the k! vertices are connected by a 
path of O(n^2) edges (think of bubble sort).  Although it naturally lives in k-dimensional space, 
the permutation polytope is only (k-1) dimensional because all vertices satisfy the linear relation 
v.(1,1,...,1)=k(k-1)/2.  As it turns out, these polytopes are zonotopes.  We demonstrate for k=4; 
although it is hard to tell from the coordinates, the result is isometric to the truncated octahedron.  
The hexagon faces correspond to transpositions among a triple of values while the square faces 
correspond to pairs of disjoint transpositions.  We shift the polytope with ZVecPlus to make the 
vertices land in the correct places and use ZMakePolygon to show the structure more clearly.
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ZMakePolygon /@

Zonotope[{{1,-1,0,0},{1,0,-1,0},{1,0,0,-1},

  {0,1,-1,0},{0,1,0,-1},{0,0,1,-1}},3] ~ZVecPlus~

{1,2,3,4}
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{{{1, 2, 3, 4}, {2, 1, 3, 4}, {3, 1, 2, 4}, 
 
   {3, 2, 1, 4}, {2, 3, 1, 4}, {1, 3, 2, 4}}, 
 
  {{2, 3, 4, 1}, {3, 2, 4, 1}, {4, 2, 3, 1}, 
 
   {4, 3, 2, 1}, {3, 4, 2, 1}, {2, 4, 3, 1}}, 
 
  {{2, 3, 1, 4}, {3, 2, 1, 4}, {4, 2, 1, 3}, 
 
   {4, 3, 1, 2}, {3, 4, 1, 2}, {2, 4, 1, 3}}, 
 
  {{1, 2, 4, 3}, {2, 1, 4, 3}, {3, 1, 4, 2}, 
 
   {3, 2, 4, 1}, {2, 3, 4, 1}, {1, 3, 4, 2}}, 
 
  {{2, 4, 3, 1}, {3, 4, 2, 1}, {3, 4, 1, 2}, 
 
   {2, 4, 1, 3}, {1, 4, 2, 3}, {1, 4, 3, 2}}, 
 
  {{3, 1, 4, 2}, {4, 1, 3, 2}, {4, 1, 2, 3}, 
 
   {3, 1, 2, 4}, {2, 1, 3, 4}, {2, 1, 4, 3}}, 
 
  {{3, 1, 2, 4}, {4, 1, 2, 3}, {4, 2, 1, 3}, 
 
   {3, 2, 1, 4}}, {{1, 3, 4, 2}, {2, 3, 4, 1}, 
 
   {2, 4, 3, 1}, {1, 4, 3, 2}}, 
 
  {{1, 3, 2, 4}, {2, 3, 1, 4}, {2, 4, 1, 3}, 
 
   {1, 4, 2, 3}}, {{3, 1, 4, 2}, {4, 1, 3, 2}, 
 
   {4, 2, 3, 1}, {3, 2, 4, 1}}, 
 
  {{1, 2, 3, 4}, {1, 3, 2, 4}, {1, 4, 2, 3}, 
 
   {1, 4, 3, 2}, {1, 3, 4, 2}, {1, 2, 4, 3}}, 
 
  {{4, 1, 2, 3}, {4, 2, 1, 3}, {4, 3, 1, 2}, 
 
   {4, 3, 2, 1}, {4, 2, 3, 1}, {4, 1, 3, 2}}, 
 
  {{3, 4, 2, 1}, {4, 3, 2, 1}, {4, 3, 1, 2}, 
 
   {3, 4, 1, 2}}, {{1, 2, 4, 3}, {2, 1, 4, 3}, 
 
   {2, 1, 3, 4}, {1, 2, 3, 4}}}
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