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M | ntroduction

A zonotopeisaset of pointsin d-dimensional space constructed by the sum of scaled vectors
a[[i]] V[[i]] where &[[i]] isascalar between 0 and 1 and v[[i]] isad-dimensional vector.
Alternately it can be viewed as a Minkowski sum of line segments connecting the origin to the
endpoint of each vector. It is called azonotope because the faces parallel to each vector form a
so-called zone wrapping around the polytope. A zonohedron isjust athree-dimensional
zonotope. This notebook contains code for constructing zonotopes and displaying zonohedra.

Thereis some confusion in the definition of zonotopes, Wells [W91] requires the generating
vectorsto be in general position (all d-tuples of vectors must span the whole space), so that all
the faces of the zonotope are parallelotopes. Others [BEG95,295] do not make this restriction.
Coxeter [C73] starts with one definition but soon switchesto the other. We use the unrestricted
definition here.

The combinatorics of the faces of a zonotope are equivalent to those of an arrangement of
hyperplanes in a space of one fewer dimension, so for instance zonohedra correspond to planar
line arrangements. This can be most easily seen by considering the space of d-dimensional
hyperplanes tangent to the zonotope. The space of all d-dimensional unit vectors can be seen asa
unit sphere, equivaent to oriented projective (d-1)-space. For any given unit vector, thereisa
unique hyperplane normal to the vector and tangent to the zonotope at some kind of face. One
can swing a hyperplane tangent to a k-dimensional face through a collection of angles with
(d-1-k) degrees of freedom; this corresponds to a cell with dimension (d-1-k) in this projective
gpace. Thus the faces of the zonotope correspond to adual cell decomposition of space (dual
because the dimensions are reversed — high dimensional faces correspond to low dimensional
cells). If there were only a single vector, this decomposition would be given by asingle
hyperplane (partitioning the tangents into those that touch the origin, those that touch the endpoint
of the vector, and those parallel to the vector that touch both points). But the decomposition
corresponding to a Minkowski sum is formed by overlaying the decompositions corresponding
to the two summands, so the cell decomposition of the tangent space to a zonotope is exactly a
hyperplane arrangement. The zone of faces parallel to a given vector corresponds exactly to a
hyperplane in the arrangement.

Because of this correspondence, we can construct zonotopes in O(n\(d-1)) time. In particular it
would take O(n"*2) time to construct a zonohedron from an initial set of n vectors. However our
implementation uses a slower agorithm better suited to the functional nature of Mathematica
programming. We first find the subsets of vectors corresponding to the faces of the zonotope.
These subsets are determined incrementally, by combining each new vector with previously
generated subsets, and then forming additional faces pairing the new vector with any remaining




old vectors. Once we have generated all faces, we determine coordinates for their vertices
(recursively, since each face is again a zonotope in one lower dimension) and lift them into
position by adding appropriate sets of vectors.

B I mplementation

B Manipulation of Individual Faces

In the face generation stage, we represent aface by the indices of the vectors generating it. When
we add a new vector to the zonohedron, we test it against each face and determine whether it is
coplanar (by computing a dxd determinant); if so it gets added to thelist of indices. In the face
placement stage, we instead represent aface by the coordinates of its vertices, so we need code to
trand ate between the two representations. Once we have found the coordinates of aface
recursively as alower-dimensional zonotope, we lift two copies of it in place by using asimilar
determinant computation to determine which vectorsto add to each copy.

In order to compute recursive faces we need away of testing signs of determinants when there
are fewer than d vectorsinvolved. We simply add extra vectors on the moment curve
(X,x"2,x"3,...), so that they are independent of each other and (hopefully) of the inputs.

In[1]:=
ZSignTest[vv_,f_] :=
Det [ Part[vv,f] ~Join~
Tabl e[ (i +200) 7~} ,
{i,Length[vv[[1]]]-Length[f]},
{i Length[vv[[1]]]}]]

This routine tests whether to add a new vector to an existing face.

In[2]:=
ZAddToFace[vv_,f _,i_,d ] :=
If[ Length[f] < (d-1) ||
ZSi gnTest[vv, Append[ Take[f,d-1],i]] == O,
Append[f,i], f ]
The next two routines convert faces from subsets of indices to coordinates. Thisissimply a
recursive call to Zonotope, except that when the face is one-dimensional the result isjust aline
segment and we stop the recursion to compute it more simply.
In[3]:=
ZOiginfvv_] := Table[ 0, {Length[ vv[[1]] 1} ]




In[4]:=
ZFace[vv_,f_,d ] :=
If [d == 2,
{ZOriginfvv], Plus @@ Part[vv,f]},
Zonotope[ Part[vv,f], d-11]]

The remaining routines in this section are concerned with trand ating the converted faces into their
appropriate positionsin space. Each face appears in two copies, and each vector not contributing
to the face is used to shift exactly one of the copies. Which one is determined by another
determinant calculation.

In[5]:=
ZLiftVector[vv_,f _,i_,d ] :=
If [ Menmberd f, i], {ZOigin[vv],ZOigin[vv]},
If [ ZSignTest[vv, Append[Take[f,d-1],i]] < O,
{vvl[i]], ZOrigin[vv]},
{ZzGigin[vv], v[[i]]}]]

| want to add the same vector to all leval-onelistsin anested list structure, but Mathematica
doesn't let Pluswork thisway (although it does work with scalars...)

In[6]:=
Z\VecPlus[a ,v_ ] :=
If[Head[ First[a]] === List,
Z\ecPlus[#,v] & | @a, a+v]
In[7]:=

ZLiftFace[vv_,f_,d ] :=
{#1 ~ZVecPlus~ #2[[1]], #1 ~ZVecPlus~ #2[[2]]}& [
ZFace[ vv, T, d],
Plus @@ Tabl e[ ZLi ftVector[vv,f,j,d],{j,Length[vv]}]]

M Face Generation Stage

As described earlier, we generate faces (as subsets of vectors) incrementally, adding one vector at
atime to our zonotope. Adding one vector has two parts: including it in the faceswith which it is
coplanar, and then making new faces with which it is noncoplanar.

In[8]:=
Zd dFaces[vv_,ff_,i_,d ] :=
(ZAddToFace[vv, #, i, d])& /@ff




To generate the new faces, we make all d-tuples of indicesinvolving index i, and then filter out
the onesthat are subsets of theindicesin existing faces.

In[9]:=

ZTuples[i_,d ] :=

Ifld ==1, {{i}},
(Append[#,1]& [/ @Join @@
Tabl e[ ZTupl es[j,d-1],{j,i-1}]]

In[10]:=

ZSubset s ,t ] := (Length[t] == Length[Intersection[s,t]])
In[11]:=

ZFilterTuple[ff ,t ] :=
Not[Or @@ (ZSubset@ #,t]& /@ff]

In[12]:=
ZAddTupl es[vv_,ff_,i_,d_ ] :=
ff ~Join~ Select[ZTuples[i,d-1], ZFilterTuple[ff, #] &
In[13]:=
ZNewFaces[vv_,ff i _,d ] :=
ZAddTupl es[ vv, ZA dFaces[vv,ff,i,d], i, d]
In[14]:=

ZAl | Faces[vv_,d_ ] :=
Fol d[ ZNewFaces|[ vv, #1, #2, d] &,
{{}}, Table[i,{i,Length[vv]}]]

M Face Placement Stage

In[15]:=
ZLiftAl Il [vv_,ff_,d ] :=
Join @ Map[ ZLi ft Face[vv, #,d] & ff]

B Main Zonohedron Code

In[16]:=
Zonotope[vv_,d ] :=
ZLift Al [vv, ZAl | Faces[vv, d], d]




The general zonotope code will produce a recursive description in which 2d faces are lists of 1d
edges, etc. For nice drawings of zonohedrawe need to convert these lists of edgesinto asingle

polygon.

In[17]:=
ZNext[f_,e ] :=
Joi n @@ Map|
LE[ e[[2]] == #[[1]] & e[[1]] != #[[2]], #,
Lf[ e[[2]] == #[[2]] & e[[1]] '= #[[1]],
Reverse[#], {}]]& f]
In[18]:=

ZMakePol ygon[f ] :=
First /@NestList] ZNext[f,#]& f[[1]], Length[f]-1 ]

In[19]:=
Zonohedron[vv_] : =
Show[ G- aphi cs300 Pol ygon / @ ZMakePol ygon / @
Zonot ope[ N vv], 3]],
Vi ewPoi nt->{12, 3, 5},
Boxed -> Fal se]




B Examples

M The Cube
Zonohedron[{{1,0,0},{0,1,0},{0,0, 1}}]




B Prisms
Zonohedron[ {{1,Sqgrt[3],0},{1,-Sqgrt[3],0},{2,0,0},{0,0, 2}}]

Zonohedron[{{2,0,0},{0, 2,0},{0,0, 2},
{Sart[2],Sqrt[2],0},{Sart[2],-Sqrt[2], O}}]




B The Truncated Octahedron

The octahedron itself is not a zonohedron, since its faces are triangular and do not form zones.
However if one uses the edges of the octahedron as generators, one gets this zonohedron, in
which the triangular faces of the octahedron have been truncated to hexagons and squares added
to connect them. The twelve octahedron edges comein six pairs, so there are six generators.
This shape can fill space without leaving any gaps.

Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0,-1},
{0,1,1},{0,1,-1}}]

B The Rhombic Dodecahedron

Thisisthe dual to the cuboctahedron, an Archimedean solid formed by combining the six
sguares of a cube with the eight triangles of an octahedron. The cuboctahedron itself isnot a
zonohedron because of itstriangular faces.




Zonohedron[{{1,1,1},{1,-1,1},{1,1,-1},{1,-1,-1}}]

B The Extended Rhombic Dodecahedron

This zonotope is noteworthy for (like the cube, hexagonal prism, truncated octahedron, and
rhombic dodecahedron) being able to fill space without leaving any gaps. The one hereisdrawn
with different angles from the rhombic dodecahedron itself, to make the hexagonal sidesregular.
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Zonohedron[{{0, Sgrt[3],1},{Sqrt[3],0, 1},
{0,'Sqrt[3],1},{-Sqrt[3],0, 1}1
{0,0,2}}]

B The Truncated Cuboctahedron

As can be seen from its set of generators, thisis the Minkowski sum of a cube and a truncated
octahedron. It is also known as the Great Rhombicuboctahedron.
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Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0, -1},
{0,1,1},{0,1, -1},
{Sart[2],0,0},{0,Sqrt[2],0},{0,0,Sart[2]}}]

B The Truncated Rhombic Dodecahedron

Thisisthe Minkowski sum of a cube and arhombic dodecahedron. The hexagons can not be
regular, although they do have all sides the same length, since three regular hexagons would meet
in aflat solid angleinstead of the corners here. Although this shape does not fill space on its
own, it can be combined with cubesin aregular space-filling pattern.
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Zonohedron[{{1,1,1},{1,1,-1},{1,-1,1},{1,-1, -1},
{Sart[3],0,0},{0,Sqrt[3],0},{0,0,Sart[3]}}]

B Two non-Archimedean zonohedra

Thisisthe Minkowski sum of a atruncated octahedron and a rhombic dodecahedron. Itsfaces
are sguares, regular hexagons, and long irregular hexagons.
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Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0, -1},
{0,1,1},{0,1, -1},
{Sqrt[2/3],Sqrt[2/3],Sqrt[2/3]},
{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},
{Sqrt[2/3],-Sqrt[2/3],Sqrt[2/3]},
{Sqrt[2/3],-Sqrt[2/3],-Sqrt[2/3]}}]

Thisisthe Minkowski sum of a cube, atruncated octahedron, and a rhombic dodecahedron.
Some of the octagonal faces are non-regular.
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Zonohedron[{{1,1,0},{1,-1,0},{1,0,1},{1,0, -1},
{0,1,1},{0,1, -1},
{Sqrt[2/3],Sqrt[2/3],Sqrt[2/3]},
{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},
{Sqrt[2/3],-Sqrt[2/3],Sqrt[2/3]},
{Sqrt[2/3],-Sqrt[2/3],-Sqrt[2/3]},
{Sart[2],0,0},{0,Sqrt[2],0},{0,0, Sart[2]}}]

B The Rhombic Triacontahedron

Thisisthe dual of the icosidodecahedron, one of the Archimedian solidsthat (like the
cuboctahedron) is not a zonohedron asit has odd faces.
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Zonohedron[{{1, 0, - Gol denRati o0}, {1, 0, Gol denRati o},
{0, - Gol denRati o, 1}, {0, Gol denRati o, 1},
{-Col denRati o, 1, 0}, { Gol denRati o, 1, 0} }]

B The Truncated | cosidodecahedron

Thisis also known as the Great Rhombicosidodecahedron.
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Zonohedr on[ {

{1, Gol denRati o, Gol denRati o- 1}, {1, - Gol denRat i 0, Gol denRati o- 1},
{1, - Gol denRati o, 1- Gol denRati o}, {1, Gol denRat i o, 1- Col denRat i 0},
{ Gol denRati o, 1- Gol denRati o, 1}, { Gol denRat i o, 1- Gol denRati o, - 1},
{ Gl denRat i 0, Gol denRati o-1, - 1}, { Gol denRat i o, Gol denRati o- 1, 1},
{Gol denRati 0- 1, 1, Col denRati o}, { Gol denRati o-1, - 1, - Gol denRat i o},
{Gol denRati o-1, 1, - Gol denRat i o}, { Gol denRati o- 1, - 1, Gol denRat i o},
{2,0,0},{0,2,0},{0,0,2}}]
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M A Ukrainian Easter Egg

The following zonohedron is generated by two sets of vectors, each arranged in acircle, with one
circle forming awider angle to the origin and having much longer vectors. As can be seen from
the drawing, the overall shapeislike that generated only by the larger vectors, but with an
additional zigzag belt of many long thin faces generated by the other vectors.

This example comes from my paper [BEG95] in which we studied the problem of, given a
collection of points each having an unknown weight somewhere between two known bounds,
finding the set of all possible weighted averages of the points. Thisturns out to be equivalent to
finding a perspective projection of azonohedron (such as the outlines of the drawings constructed
here by Mathematica). If one further knows what the sum of the weights should be, the problem
instead turns into one of finding the shape formed by a dlice through a zonohedron. And if this
sum is known but bounds on it are known, the problem becomes one of taking two parallel slices
through a zonohedron and performing a perspective projection on the resulting shape. Zonotopes
resembling the shape below were used to show that the latter two problems could have
complexity n\d, even though the first problem's complexity is only O(n*(d-1)) owing to the fact
that it can be further transformed into one of finding a convex surface in a (d-1)-dimensional
hyperplane arrangement.

My co-authors and | gave this its name because of its festive appearance, but of course real Easter
eggs are neither pointy nor centrally symmetric. For some reason, with the choice of parameters
below, Mathematica insists on cutting off the shape's top and bottom vertices, adding to the
egg-like appearance of the image.

zZoneGrcle[n ,x ,y ] :=
N[ Tabl e[{y Cos[2 Pi (i+.5) / n], y Sin[2 Pi (i+.5)/ n], x},
{i,n}]
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Zonohedron[ ZoneGircle[9,1,1] ~Join~ ZoneG rcle[7,.1,.005]]

B Permutation Polytopes

For any K, the convex hull of the k-dimensional vectors formed by permuting the coordinates of
(1,2,...,k) is called a permutation polytope or permutahedron [Z295]. Its edges correspond to
permutations adjacent by a single transposition, so any two of the k! vertices are connected by a
path of O(n"2) edges (think of bubble sort). Although it naturally livesin k-dimensional space,
the permutation polytope isonly (k-1) dimensional because all vertices satisfy the linear relation
v.(1,1,...,2)=k(k-1)/2. Asit turns out, these polytopes are zonotopes. We demonstrate for k=4;
although it is hard to tell from the coordinates, the result is isometric to the truncated octahedron.
The hexagon faces correspond to transpositions among atriple of values while the square faces
correspond to pairs of digjoint transpositions. We shift the polytope with ZVecPlus to make the
vertices land in the correct places and use ZMakePolygon to show the structure more clearly.
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ZNMakePol ygon / @
Zonot ope[{{1,-1,0,0},{1,0,-1,0},{2,0,0, -1},
{0,1,-1,0},{0,2,0,-1},{0,0,1,-1}}, 3] ~ZVecPl us~
{1, 2, 3, 4}
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{{{1, 2, 3, 4}, {2, 1, 3, 4}, {3, 1, 2, 4},
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4}, {2, 3, 1, 4}, {1, 3, 2, 4}},
1}, {3, 2, 4, 1}, {4, 2, 3, 1},
1}, {3, 4, 2, 1}, {2, 4, 3, 1}},
4}, {3, 2, 1, 4}, {4, 2, 1, 3},
2}, {3, 4, 1, 2}, {2, 4, 1, 3}},
3}, {2, 1, 4, 3}, {3, 1, 4, 2},
1}, {2, 3, 4, 1}, {1, 3, 4, 2}},
1}, {3, 4, 2, 1}, {3, 4, 1, 2},
3}, {1, 4, 2, 3}, {1, 4, 3, 2}},
2}, {4, 1, 3, 2}, {4, 1, 2, 3},
4}, {2, 1, 3, 4}, {2, 1, 4, 3}},
4}, {4, 1, 2, 3}, {4, 2, 1, 3},

4+ y, {{1, 3, 4, 2}, {2, 3, 4, 1},
1}, {1, 4, 3, 2}},

4}, {2, 3, 1, 4}, {2, 4, 1, 3},
3}y, {{3, 1, 4, 2}, {4, 1, 3, 2},

1}, {3, 2, 4, 1}},

4}, {1, 3, 2, 4}, {1, 4, 2, 3},
2}, {1, 3, 4, 2}, {1, 2, 4, 3}},
3}, {4, 2, 1, 3}, {4, 3, 1, 2},
1}, {4, 2, 3, 1}, {4, 1, 3, 2}},
1}, {4, 3, 2, 1}, {4, 3, 1, 2},

2}}, {{1, 2, 4, 3}, {2, 1, 4, 3},
4}, {1, 2, 3, 4}}}
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