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Abstract

A fractal construction shows that, for anyβ > 0, theβ-skeleton of a point
set can have arbitrarily large dilation:Ä(nc), wherec is a constant depending
onβ and going to zero in the limit asβ goes to zero. In particular this applies
to the Gabriel graph. We also show upper bounds on dilation of the same
form.



          

Figure 1. (a) Diamond property: one of two isosceles triangles on edge is empty. (b) Graph
violating good polygon property: ratio of diagonal to boundary path is high.

1 Introduction

A number of authors have studied questions of thedilation of various geometric
graphs, defined as the maximum ratio between shortest path length and Euclidean
distance.

For instance, Chew [2] showed that the rectilinear Delaunay triangulation has
dilation at most

√
10 and that by placing points around the unit circle, one could find

examples for which the Euclidean Delaunay triangulation was made to have dilation
as much asπ/2. In the journal version of his paper [3], Chew added a further result,
that the graph obtained by Delaunay triangulation for a convex distance function
based on an equilateral triangle has dilation at most 2. Chew’s conjecture that the
Euclidean Delaunay dilation was constant was proved by Dobkin et al. [6], who
showed that the Delaunay triangulation has dilation at mostϕπ whereϕ is the
golden ratio(1 + √

5)/2. Keil and Gutwin [10] further improved this bound to
2π

3 cos(π/6)
≈ 2.42.

Das and Joseph [4] then showed that these constant dilation bounds were not
unusual; in fact such bounds hold for a wide variety of planar graph construction
algorithms, satisfying the following two simple conditions:

• Diamond property. There is some angleα < π , such that for any edgee in
a graph constructed by the algorithm, one of the two isosceles triangles with
e as a base and with apex angleα contains no other site. This property gets
its name because the two triangles together form a diamond shape, depicted
in Figure 1(a).

• Good polygon property. There is some constantd such that for each facef
of a graph constructed by the algorithm, and any two sitesu, v that are visible
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to each other across the face, one of the two paths aroundf from u to v has
dilation at mostd. Figure 1(b) depicts a graph violating the good polygon
property.

Intuitively, if one tries to connect two vertices by a path in a graph that passes
near the straight line segment between the two, there are two natural types of obstacle
one encounters. The line segment one is following may cross an edge of the graph,
or a face of the graph; in either case the path must go around these obstacles. The
two properties above imply that neither type of detour can force the dilation of the
pair of vertices to be high.

For a survey of further results on dilation, see [7]. Our interest here is in another
geometric graph, theβ-skeletons[11, 13], which have been of recent interest for their
use in finding edges guaranteed to take part in the minimum weight triangulation [1,
9, 14] As a special case,β = 1 gives theGabriel graph, a subgraph of the Delaunay
triangulation and the relative neighborhood graph, and a supergraph of the minimum
spanning tree. These graphs have a definition (given below) closely related to Das
and Joseph’s diamond property. The valueβ is a parameter that can be taken
arbitrarily close to zero; for any point set, as beta approaches zero, more and
more edges are added to theβ-skeleton until eventually one forms the complete
graph. Therefore it seems reasonable to guess that, for sufficiently smallβ, the
β-skeleton should have bounded dilation. Such a result would also fit well with
Kirkpatrick and Radke’s motivation for introducingβ-skeletons in the study of
“empirical networks”: problems such as modeling the probability of the existence
of a road between cities [11].

In this paper, we show that this is surprisingly not the case. For anyβ, we find
point sets for which theβ-skeleton has arbitrarily high dilation. Our construction
uses fractal curves closely related to the Koch snowflake. We show that the point
set can be chosen in such a way that theβ-skeleton forms a path with this fractal
shape; the fact that the curve has a fractal dimension greater than one then implies
that the graph shortest path between its endpoints has unbounded length.

2 Beta-skeletons

Theβ-skeleton [11, 13] of a set of points is a graph, defined to contain exactly those
edgesab such that no pointc forms an angleacbgreater than sin−1 1/β (if β > 1)
or π − sin−1 β (if β < 1).

Equivalently, ifβ > 1, theβ-skeleton can be defined in terms of the unionU
of two circles, each havingab as a chord and having diameterβ d(a, b). Edgeab
is included in this graph exactly whenU contains no points other thana andb.
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Figure 2. Empty regions for
√

2-skeleton, Gabriel graph, and 1/
√

2-skeleton.

If β = 1, an edgeab is included in theβ-skeleton exactly when the circle having
abas diameter contains no points other thana andb. The 1-skeleton is also known
as theGabriel graph[8].

If 0 < β < 1, there is a similar definition in terms of the intersectionI of
two circles, each havingab as a chord and having diameterd(a, b)/β. Edgeab is
included in theβ-skeleton exactly whenI contains no points other thana andb.

Figure 2 depicts these regions forβ = √
2 (union of circles),β = 1 (single

circle), andβ = 1/
√

2 (intersection of circles).
As noted above,β-skeletons were originally introduced for analyzing empirical

networks. Gabriel graphs andβ-skeletons have many other applications incom-
putational morphology(combinatorial methods of representating shapes). Gabriel
graphs can also be used to construct minimum spanning trees, since the gabriel graph
contains the MST as a subgraph. More recently, various researchers have shown
that β-skeletons (for certain values ofβ > 1) form subgraphs of the minimum
weight triangulation [1, 9, 14].

Su and Chang [12] have described a generalization of Gabriel graphs, thek-
Gabriel graphs, in which an edge is present if its diameter circle contains at most
k − 1 other points. One can similarly generalizeβ-skeletons tok-β-skeletons. Our
results can be made to hold as well for these generalizations as for the original graph
classes.
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Figure 3. Fractal curvesP(π/4, k) for k = 1, 2, 3.

Figure 4. Fractal curve is contained in a diamond.

3 Fractals and dilation

Our construction showing that beta-skeletons have unbounded dilation consists of
a fractal curve with a recursive definition similar to that of a Koch snowflake. For a
given angleθ define the polygonal pathP(θ, 1), by following a path of five equal-
length line segments: one horizontal, one at angleθ , a second horizontal, a segment
at angle−θ , and a third horizontal.

We then more generally define the graphP(θ, k) to be a path of 5k line segments,
formed by replacing the five segments ofP(θ, 1) with congruent copies ofP(θ, k−
1), scaled so that the two endpoints of the path are at distance one from each other.
Figure 3 shows three levels of this construction. In the drawing of Figure 3, the
orientations of the five copies ofP(θ, k−1) alternate along the overall path, so that
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the horizontal copies are in the same orientation as the overall path and the other
two copies are close to upside-down, but this choice of orientation is not essential
to our construction.

Note that, if we denote the length ofP(θ, k) by `k = `k(θ), then`1 > 1 and
`k = `k

1.

Lemma 1. P(θ, k) is contained within a diamond shape having the endpoints of
the path as its diagonal, and with angleθ at those two corners of the diamond.

Proof: This follows by induction, as shown in Figure 4, since the five such
diamonds containing the five copies ofP(θ, k − 1) fit within the larger diamond
defined by the Lemma.2

Lemma 2. If θ < (π − sin−1 β)/2, P(θ, k) is theβ-skeleton of its vertices.

Proof: We show that, ifa andb are non-adjacent vertices in the path, then there
is somec forming an angle of at leastπ − sin−1 β. We can assume thata and
b are in different copies ofP(θ, k − 1), since otherwise the result would hold by
induction. But no matter where one places two points in different copies of the
small diamonds containing the copies ofP(θ, k − 1) (depicted in Figure 4), we can
choose one of the three interior vertices ofP(θ, 1) as the third pointc forming an
angleacb≥ π − 2θ . The result follows from the assumed inequality relatingθ to
β. 2

For instance, the graphsP(π/4, k) depicted in Figure 3 are Gabriel graphs of
their vertices. A more careful analysis shows that larger values ofθ still result in
aβ-skeleton: if the orientations of the copies ofP(θ, k − 1) that formP(θ, k) are
chosen carefully,P(θ, k) is contained in only half the diamond of Lemma 1, and
angleacb in the proof above can be shown to be≥ π − 3θ/2.

Theorem 1. For anyβ > 0 there is ac > 0 such thatβ-skeletons ofn-point sets
have dilationÄ(nc).

Proof: We have seen that we can choose aθ such that the graphsP(θ, k) are
β-skeletons. Since the endpoints of the path are at distance one from each other,
the dilation ofP(θ, k) is `k = `k

1. Each such graph hasn = 5k + 1 vertices and
dilation`k

1 = nlog5 `1−o(1). Since`1 > 1, log5 `1 > 0. 2
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Figure 5. Tree of triangles and corresponding abstract tree.

4 Upper Bounds

We have shown a lower bound ofÄ(nc) for the dilation ofβ-skeletons, wherec
is a constant depending onβ, and approaching zero asβ approaches zero. This
behavior of having length a fractional power ofn is characteristic of fractal curves;
is it inherent inβ-skeletons or an artifact of our fractal construction? We now show
the former by proving an upper bound on dilation of the same form.

To do this, we define an algorithm for finding short paths inβ-skeletons. As a
first start towards such an algorithm, we use the following simple recursion: to find
a path froms to t , test whether edgest exists in theβ-skeleton. If so, use that edge
as path. If not, somer forms a large anglesrt; concatenate the results of recursively
finding paths froms to r andr to t .

For β ≤ 1, sr andr t are shorter thanst, so this algorithm always terminates;
we assume throughout the rest of the section thatβ ≤ 1. We can represent the path
it finds as a tree of triangles, all having an angle of at leastπ − sin−1 β, rooted at
trianglesrt (Figure 5). The hypotenuse of each triangle in this tree is equal to one of
the two shorter sides of its parent. Note that the triangles may overlap geometrically,
or even coincide; we avoid complications arising from this possibility by only using
the figure’s combinatorial tree structure. We will bound the length of the path found
by this algorithm by manipulating trees of this form. For any similarly defined tree
of triangles, we define theboundary lengthof the tree to be the following formula:

|T | = dist(s, t) +
∑
1∈T

(perim(1) − 2 · hypotenuse(1)).

In other words, we sum the lengths of all the short sides of the triangles, and subtract
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the lengths of all non-root hypotenuses. If the tree forms a non-self-intersecting
polygon, such as the one shown in the figure, this is distance froms to t “the long
way” around the polygon’s perimeter

Lemma 3. For the tree defined by the algorithm above,|T | is the length of the
path constructed by the algorithm.

Proof: This can be shown by induction using the fact that the path froms to t is
formed by concatenating the paths froms to r andr to t . 2

Our bound will depend on the number of leaves in the tree produced above.
However, this number may be very large, larger thann, because the same vertex of
our input point set may be involved in triangles in many unrelated parts of the tree.
Our first step is to prune the tree to produce one that still corresponds in a sense to
a path in theβ-skeleton, but with a good bound on the number of leaves.

Lemma 4. For anyβ ≤ 1, we can find a tree like the one described above, with
at most 2n leaves, for which|T | is the length of some path in theβ-skeleton from
s to t .

Proof: Define a “leaf vertex” to be the vertex opposite the hypotenuse of a leaf
triangle inT . We prune the tree one step at a time until each vertex appears at most
twice as a leaf vertex. At each step, the path corresponding toT (and with length
at most|T |) will visit all the leaf vertices in tree order (as well as possibly visiting
some other vertices coming from interior nodes of the tree).

Suppose some vertexv appears three or more times. Then we pruneT by
removing all subtrees descending from the path between the first and last appearance
of v (occurring between the two appearences in tree order), and we shorten the
corresponding path by removing the portion of it between these two appearances
of v. At each step, the change to|T | comes from subtracting some triangle short
side lengths corresponding to the subtrees removed fromT , as well as adding some
hypotenuses of triangles from the same subtrees. Each subtracted side length that is
not cancelled by an added hypotenuse corresponds to one of the edges removed from
the path, so the total reduction in|T | is at most as great as the total reduction in the
length of the path, and the invariant that|T | bounds the path length is maintained.
After this pruning, there will be no leaves between the two appearances ofv, and
no new leaves are created elsewhere in the tree, so the invariant that the path visits
the leaf vertices in order is also maintained.

This pruning process removes at least one appearance ofv, and so can be
repeated at most finitely many times before terminating.2
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Figure 6. Making single-leaf tree longer: subdivide triangles, increase angles, add children.

Figure 7. Logarithmic spiral formed by keeping fixed angle to destination point.

We use induction on the number of leaves to prove bounds on|T |. The following
lemma forms the base case:

Lemma 5. Let T be a tree of triangles, all having an angle of at leastθ > π/2
opposite the edge connecting to the parent in the tree, with exactly one leaf triangle,
and scaled so that the hypotenuse of the root triangle has length 1. Then|T | ≤
−1/ cosθ .

Proof: Since|T | does not depend on the ordering of tree nodes, we can assume
without loss of generality that each node’s child is on the left. For any such tree,
we can increase|T | by performing a sequence of the following steps: (1) If any
triangle has an angle greater thanθ , change it to one having an angle exactly equal
to θ , without changing any other triangle shapes. (2) If any triangle has a ratio of
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left to right side lengths less than some valueC, split it into two triangles by adding
a vertex on the right side. (3) Add a child to the leaf ofT . These steps are depicted
in Figure 6.

The result of this sequence of transformations is the concatenation of many
triangles with angles equal toθ , very short left sides, and right sides with length
close to that of the hypotenuse. In the limit we get a curve froms to t formed by
moving in a direction forming an angleπ − θ to t , namely thelogarithmic spiral
(Figure 7). Integrating the distance traveled on this spiral against the amount by
which the distance tot is reduced shows that it has the length formula claimed in
the lemma. Since we reach this limit by a monotonically increasing sequence of
tree lengths, starting with any finite one-leaf tree, any finite tree must have length
less than this limit.2

More generally, we have the following result.

Lemma 6. Let T be a tree of triangles, all having an angle of at leastθ > π/2
opposite the edge connecting to the parent in the tree, withk leaf triangles, and
scaled so that the hypotenuse of the root triangle has length 1. Then|T | ≤
(−1/ cosθ)1+blog2 kc.

Proof: We prove the result by induction onk; Lemma 5 forms the base case. If
there is more than one leaf inT , form a smaller treeT ′ by removing fromT each
path from a leaf to the nearest ancestor with more than one child. These paths are
disjoint, and each such removal replaces a subtree with one leaf by the edge at the
root of the subtree, so using Lemma 5 again shows that|T | ≤ −|T ′|/ cosθ . Each
leaf in T ′ has two leaf descendants inT , so the number of leaves inT is at most
k/2 and the result follows.2

This, finally, provides a bound onβ-skeleton dilation.

Theorem 2. For β <
√

3/2 ≈ 0.866025, anyβ-skeleton has dilationO(nc),
wherec < 1 is a constant depending onβ and going to zero in the limit asβ goes
to zero.

Proof: We have seen (Lemma 4) that we can connect any pair of vertices in the
skeleton by a path with length bounded by|T |, whereT is a tree of triangles in
which all angles are at leastπ − sin−1 β, and whereT has at most 2n leaves. By
Lemma 6, the length of such a tree is at most

(−1/ cos(π − sin−1 β))1+blog2 2nc = O
(
n

log2
−1

cos(π−sin−1 β)
) = O

(
n− 1

2 log2(1−β2)
)

which has the form specified in the statement of the theorem.2
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Figure 8. Exponent in the bound of Theorem 2, as a function ofβ.

Figure 8 shows the growth of the exponentc as a function ofβ. For
√

3/2 ≤
β ≤ 1, the theorem does not give the best bounds; a bound ofn − 1 on dilation can
be proven using the fact that the skeleton contains the minimum spanning tree.
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