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Minimum spanning tree problem

Input: Graph, each edge has weight

Output: Tree minimizing sum of edge weights

Many applications!



Parametric minimum spanning tree problem

Input: Graph, each edge has linear function λ 7→ weight
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Output: Minimum spanning trees at each value of the parameter λ



Why should we study this problem?

Because it helps us trade off two different optimization criteria!

For a graph with quantities auv and buv at each edge uv

Given any spanning tree T , consider their sums:

AT =
∑
uv∈T

auv BT =
∑
uv∈T

buv

Search for tree optimizing nonlinear combination f (AT ,BT )



Quasiconvex bicriterion problems

Special case of bicriterion minimum spanning tree seeking to
maximize f (AT ,BT ), where f is quasiconvex: all lower sets
{(x , y) | f (x , y) ≤ θ} are convex

Example: return on investment f (x , y) = x/y , with x , y > 0



Converting bicriterion to parametric problems

Each spanning tree T of the graph
⇒ a point (AT ,BT )

Max of quasiconvex function is a
vertex of their convex hull

Exponentially many spanning trees,
but convex hull is much smaller!

Its vertices are parametric
minimum and maximum spanning
trees weighted by λauv + buv

Optimize by finding all these trees
and testing which one is best



Some bicriterion-optimal tree problems

I Each edge has an eventual profit and investment cost; goal is
to maximize return on investment

Use two-criterion combination A/B

I Each edge has a normal distribution on weights, A and B are
its parameters, and the goal is to find a tree minimizing
A +
√
B with high probability of having weight below some

threshold

Use two-criterion combination A +
√
B

I Each edge has a cost and a failure probability (represented by
its log-likelihood), and we wish to minimize the cost-reliability
ratio

Use two-criterion combination AeB



What is known about parametric MST algorithms?

Two current fastest algorithms:

I O(mn log n) [Fernández-Baca et al. 1996]

I O(n2/3 logO(1) n) per tree [Agarwal et al. 1998]

To know which of these two algorithms is faster, we need to know
how many different trees a single instance can have

See also faster algorithms for planar graphs [Fernández-Baca and Slutzki
1997] or for some problems of finding a single optimal tree in a
parametric problem [Katoh and Tokuyama 2001; Chan 2005])



How many trees can there be?

In this example: n = 6, m = 9, # trees = 12
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What was known about the number of trees?

O(mn1/3) [Dey 1998]

Based on bounds on halving lines of point sets and their
generalization to matroids

Ω
(
mα(n)

)
[Eppstein 1998]

From conversion of lower envelope of line segments to graph with
many 3-edge paths



New result

Some graphs have Ω(m log n) parametric MSTs
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This example graph is an instance of our general construction



The graphs

Recursive construction

Repeatedly replace all edges by triangles



Replacements act like nonlinearly weighted edges

Within the larger graph, each triangle acts like an edge with weight
equal to the bottleneck path weight, smallest w such that ∃ path

of max weight ≤ w between the replaced edge’s endpoints

f3 = 3

f1 = λ – 1 f2 = 4 – λ

f2 = 4 – λ

f3 = 3
p q

r

path prq has
bottleneck f2

path prq has
bottleneck f1

path pq has
bottleneck f3

min(max(f1, f2), f3) = bottleneck
of MST path from p to q

f1 = λ – 1



Global structure of replacement weights

recursive

construction

recursive

construction

recursive
construction

Three copies of smaller construction (one for each edge of
replacement triangles), plus Θ(n) breakpoints where copies interact

3T (n/3) + Θ(n) ⇒ Θ(n log n)



From n log n to m log n (graph view)

Subdivide recursive-triangle graph so each edge ⇒ four-edge path

e1

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

e2 e3 e4

Pack many copies of subdivided graph into a single larger graph,
using disjoint sets of edges in interiors of paths



From n log n to m log n (weight view)

Shared parts of paths have small weight, always in MST

Interiors of subdivided paths form disjoint n log n constructions

Arrange so each subdivided path has a range of parameters within
which its bottlenecks control the MST

H0

H1 (a–b)

H1 (b–c) H3 (a–b)

H3 (b–c)

H2 (a–b) H2 (b–c)



A problem I didn’t solve

How many breakpoints
for a min/max formula
over n linear functions?

This is a bottleneck
shortest path on a
series-parallel graph

Parametric MST upper
bounds apply, but new
lower bounds do not

Known: Ω
(
nα(n)

)
[Eppstein 1998]



Conclusions and open problems

New Ω(m log n) bound on combinatorial complexity of the
parametric MST problem

Still far from the known O(mn1/3) upper bound,
but progress seems difficult

(closely related to notorious k-set problem in discrete geometry)

Previous Ω(mα(n)) bound also applied to parametric bottleneck
shortest path, but the new bound does not – is it also Ω(m log n)?
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