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Abstract

Let G be an undirected graph on n nodes, and let k£ be an integer
that divides n. A k-equipartition m of G is a partition of V(G) into
k equal-sized pieces Vi, ..., Vi. A pair V;, V; of distinct sets in 7 is
called a bad pair if there is at least one edge v; — v; of E(G) such
that v; € V; and v; € V;. The parameterized equipartition problem is:
given G and k, find an optimal k-equipartition of G, i.e., one with the
smallest possible number of bad pairs. More generally, a nontrivial
equipartition of G is a k-equipartition, for some proper divisor k of n.
The equipartition problem is: given G, find a nontrivial equipartition
with the minimum number of bad pairs, where the minimum is taken
over all divisors k of n and all k-equipartitions. We prove that there are
relatively sparse graphs all of whose equipartitions have the maximum
number of bad pairs (up to constant factors). We also prove that
the parameterized and unparameterized versions of the equipartition
problem are NP-hard.
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1 Introduction

Let G be an undirected graph on n nodes, and let k£ be an integer that divides
n. A k-equipartition 7 of G is a partition of V(G) into k equal-sized pieces V7,
..o Vi A pair V;, V; of distinct sets in 7 is called a bad pair if there is at least
one edge v; — v; of E(G) such that v; € V; and v; € V;. The parameterized
equipartition problem is: given G and k, find an optimal k-equipartition 7,
i.e., one with the smallest possible number of bad pairs. We use p(G, k) to
denote the number of bad pairs in an optimal k-equipartition and call it the
k-equipartition number of G.

More generally, an equipartition of G is a k-equipartition of GG, for some
k that divides n. A nontrivial equipartition is a k-equipartition in which 1 <
k < n. The equipartition problem is: given GG, find a nontrivial equipartition
of G with miny, p(G, k) bad pairs. We use p(G) to denote ming, p(G, k) and
call it the equipartition number of G.

The equipartition problem can be looked at as a hybrid of the classi-
cal graph-partitioning problem (see, e.g., the paper of Kernighan [6]) and
the classical graph-separator problem (see, e.g., the survey of Chung [1]).
In Section 2 below, we prove that there are relatively sparse graphs whose
equipartition number is as high as possible. In Section 3, we prove the NP-
hardness of both the parameterized and the unparameterized equipartition
problems.

2 Density

Consider the question of how bad p(G) can be. That is, are there relatively
sparse graphs G with large equipartition number?

If n = ¢?, where ¢ is prime, then the total number of pairs in any nontrivial
equipartition is (g) = Q(n); hence graphs with equipartition number 2(n)
are, to within constant factors, as bad as possible.

Theorem 2.1 There is an infinite family of graphs {G,} in which |V (G,)| =
n = ¢%, where q is prime, |E(G,)| = O(nlogn), and p(G,) = Q(n).

Proof:
We use a relatively straightforward random-graph argument. Let n = ¢2,
where ¢ is prime, and fix a nontrivial equipartition 7 = {V4,...,V,} of V, a
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set of n nodes. Let G be a uniformly-distributed random element of the set
of all labeled m-edge graphs on V. We estimate the probability that 7 is a
“good” equipartition of GG in the following sense.

Say that 7 is “bad for G” if at least 1/4 of the (g) possible bad pairs
are present; otherwise, say that = is “good for G.” To prove the theorem,
it suffices to show that, for all sufficiently large n, there is a G for which no
good 7 exists.

Let b= |1/4 (g)J Consider selecting a random G by sampling m edges
€1, ..., &, without replacement. If 7 is bad for GG, then there is some ©: < m
for which e; contributes the b bad pair. For 1 < j < i, the probability that
e; contributes a new bad pair is greater than 1/2. Thus, the probability that
fewer than b bad pairs are added during the m samples (i.e., the probability
that 7 is good for G) is less than the probability that fewer than b heads
occur in m fair coin tosses. The probability that some good partition exists
for G is upper bounded by the product of the total number of partitions and
the probability that a fixed partition is good, which in turn is less than

b (?) 9=m. (1)

Now, b < n/4, by definition, and m < n?, because it is the number of edges
is an m-node graph. So (1) is upper bounded by

b-n". nn/2 Lomm 2(3n/2+1)logn—m‘

As long as m > (3n/2 + 1) logn, this probability is less than 1; hence, there
is some G for which no good equipartition exists. |

Theorem 2.1 can be applied in the theory of lexicographic product graphs.!
The lexicographic product G[H| of graphs G and H has node set V(G)x V (H)
and edge set {(u,v) — (v/,v'): (u — v € E(G)) or (u=wv and v — V' €
E(H))}. More concretely, form the lexicographic product G[H]| by replacing
each node in G with a copy of H and drawing in all possible edges between ad-
jacent copies. (See Figure 1.) Graphs that cannot be written as lexicographic
products in which both factors have two or more nodes are called irreducible.
A minimal factorable extension of an irreducible graph G is a lexicographic

'For a thorough introduction to lexicographic product graphs and their applications in
computer science, see, e.g., [2, 4].



product graph H for which three conditions hold: G is a subgraph of H;
among all lexicographic product graphs of which G is a subgraph, H has
the fewest nodes; among all lexicographic product graphs satisfying the first
two conditions, H has the fewest edges. Note that, because K, = K, [K,],
a minimal factorable extension H of G has |V(H)| = |V(G)| if |V(G)| is
composite and |V (H)| = |V(G)| + 1 if |V(G)] is prime. Thus, the interesting
question is how dense H can be in relationship to G.

Feigenbaum has observed that there is an infinite family {G,} of irre-
ducible graphs with |V(G,)| = n = ¢*, where ¢ is prime, and |E(G,)| =
O(n*?logn) for which |V (H,)| = Q(n?); that is, the minimal factorable ex-
tensions H, of G, are as dense as possible [2]. The following corollary of
Theorem 2.1 improves this observation.

Corollary 2.1 There is an infinite family {G,} of irreducible graphs with
V(Gn)| = n and |E(G,)| = O(nlogn) such that any minimal factorable
extension H, of G, has |E(H,)| = Q(n?).

Proof: The family {G,,} of Theorem 2.1 suffices. Any factorable extension
H, of G, must be of the form H, = H![H?], where |V(H})| = |V (H?)| = q.
The ¢ disjoint copies of H? give a g-equipartition of H,. By Theorem 2.1,
any such equipartition has Q(n) bad pairs, and hence any lexicographically
factorable extension of G, has Q(n) adjacent copies. The contribution to
E(H,) of edges that connect adjacent copies of H2 is Q(n - ¢*) = Q(n?),
because each pair of adjacent copies contributes ¢? edges. Thus the graphs
G, are irreducible and their minimal factorable extensions are as dense as
possible. |

Equipartitions with |E(G)| < |[V(G)|log |V (G)| have not been fully an-
alyzed. In particular, we do not know tight bounds on the equipartition

numbers of graphs with a linear number of edges. We have the following two
partial results. The first is a generalization of Theorem 2.1.

Corollary 2.2 Suppose that 1 < f(n) < logn. Then there is an infinite
family of graphs {G,} in which |V(G,)| = n = ¢*, where q is prime,

)
E(G)| = O((nlogn)/F(n), and p(G) = Qn/(Fm))). In particular.
there is a family {G,} with |E(G,)| = O(n) and p(G,) = Q(n/(logn)?).

Proof: Let V = V(G,) be a set of n = ¢* nodes; split V into two sets, X
and Y, of sizes n/f(n) and n —n/f(n), respectively. Any g-equipartition 7
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of G,, induces a partition 7’ of X into ¢ sets, some of which may be empty.
(Note that distinct sets in 7" are contained in distinct sets in 7.) The sets
in 7’ of size less than ¢/2f(n) account for a total of at most n/2f(n) nodes,
leaving at least n/2f(n) nodes of X in sets of size at least ¢/2f(n). Each
such larger set can only cover g of these nodes, so there must be at least
n/2qf(n) = q/2f(n) such sets.

Thus, for any equipartition of G,,, there is an induced equipartition 7’
of a subgraph V' of V(G,,) consisting of q/2f(n) pieces, each of size exactly
q/2f(n) (if necessary, remove nodes from some of the sets discussed above).
Note that the probabilistic argument in Theorem 2.1 does not use the fact
that the number (and size) of sets in the equipartition is prime. Apply the
same argument, this time adding (n/f(n))logn random edges to V’; here it
gives a 7’ for V' (and therefore also a 7 for V') with O(n/(f(n)?)) bad pairs.
|

Our other result on equipartitions of graphs with |E(G)| = O(|V(G)|)
shows that, in at least one important case, optimal equipartitions can be
found in polynomial time.

Remark 2.1 If V(G,) = n = ¢*, where q is prime, and G, is planar,
then p(G,) = O(y/n). There is a polynomial-time algorithm that finds a
q-equipartition of G, with O(y/n) bad pairs.

Proof: Let G, be a planar graph. By a theorem of Yannakakis, G,, must
have a four-page book embedding [8]. Fix such an embedding, and assume
without loss of generality that the nodes of GG,, appear on the spine of the book
in the order 1,2,...,n. Let V;,...V, be the g-equipartition of G, in which
Vi ={(i—1)¢+1,...,i¢}. The induced graph with node-set {V1,...,V,} and
edge-set {V; — V;: Jv; € V; and v; € V; with v; — v; € E(G,)} has an
obvious four-page book embedding. Graphs with £ pages and ¢ nodes have
O(kq) edges. Hence, this g-equipartition of G,, shows that p(G,,) = O(y/n).
Furthermore, Yannakakis [8] gives a polynomial-time algorithm for finding a
four-page book embedding of a planar graph, and the same algorithm can
clearly be used here to find a g-equipartition with O(y/n) bad pairs. Finally,
note that the equipartition given by this algorithm is optimal (up to constant
factors), because any g-equipartition of a connected graph on n = ¢* nodes
has 2(y/n) bad pairs. 1



3 NP-Completeness

We now show that both the equipartition problem and the parameterized
equipartition problem are NP-hard (as defined in Chapter 5 of Garey and
Johnson [5]), which means that neither can be solved in polynomial time
unless P = NP. To do this, it suffices to show that the following decision
versions of the problems are NP-complete.

Parameterized Equipartition (PEP):
Input : A graph G and integers k and .
Question : Is there a k-equipartition of G with at most ¢t bad pairs?

Equipartition (EP):
Input : A graph G and an integer t.
Question : Is there an equipartition of G with at most ¢ bad pairs?

Theorem 3.1 The PEP problem is NP-complete.

Proof: PEP is obviously in NP: given a k-equipartition Vi, ..., Vi of G, it
is easy to check in polynomial time that at most ¢ pairs V;, V; have edges
between them. The proof of completeness is by many-to-one reduction from
the following problem.

3-Partition:

Input : A set A = {ay,...,as,} of 3n distinct elements and an integer weight
s(a) for each a € A, satisfying the conditions that > ,c4 s(a) = nB and
B/4 < s(a) < B/2, for all a € A.

Question : Is there a partition of A into disjoint sets {a;o, a;1, a2}, 1 <i <mn,
such that s(ai) + s(an) + s(a;2) = B, for each ?

The 3-Partition problem is NP-complete, even if the numbers s(a;) and
B are written in unary [5].

Let (A= {ai,...,as,},s, B) be an instance of 3-Partition. We construct
an equivalent instance of PEP as follows. For each element a; € A, let
C; = K4, be a clique on s(a;) nodes. Let Cy = Kp be a clique on B nodes.
The node set of the graph G in the PEP instance is just the disjoint union of
the node sets V(C;), 0 < i < 3n. The edge set of G consists of the disjoint
union of the edge sets F(C;), 0 < i < 3n, together with all possible edges
v — w such that v € V(Cp) and w &€ V(Cy). (See Figure 2.) Finally, let
k=n+1andt=n. So (G, k,t) is a yes-instance of PEP if and only if V(G)




can be partitioned into n + 1 sets, each containing B nodes, such that the
number of bad pairs of sets is at most n. It should now be clear why it is
important that the numbers in the 3-Partition instance be written in unary;
otherwise this reduction would entail an exponential blow-up in the size of
the instance.

If (A, s, B) is a yes-instance of 3-Partition, then (G,n + 1,n) is clearly a
yes-instance of PEP: if {ajg, a11,a12}, - .., {@no, an1,ane} is a partition of A
that witnesses the fact that (A, s, B) is a yes-instance, then V(Cp), V(Cio) U
V(C1) UV (Cha), ..., V(Cro) UV (Cpr1) UV(Ch2) is an (n + 1)-equipartition
of V(G) that witnesses the fact that (G,n + 1,n) is a yes-instance.

Conversely, suppose that (G,n + 1,n) is a yes-instance of PEP and that
Vo, - .., Vo is an (n + 1)-equipartition of V(G) that witnesses this fact. Let v
and w be distinct nodes in the large clique Cy. Then v and w must be in the
same set V;. Suppose, to the contrary, that v € V; and w € V;. Then Vy, V}
is a bad pair, V4, V;, is a bad pair, and V;, V; is a bad pair, for all 2 <17 < n.
Thus, the number of bad pairs is at least 2n — 1, which is greater than n and
thus contradicts the fact that (G,n + 1,n) is a yes-instance.

So we can assume without loss of generality that Vo = V(Cp). The nodes
of the remaining 3n cliques in V' (G) must be partitioned into V4, ..., V,,. Any
such equipartition causes each of the n pairs Vg, V;, 1 < i < n to be bad,
because each node in Cj is adjacent to each node in every other clique Cj.
Thus none of the pairs V;, V;, 1 < i < j < n, can be bad; this means that
each node set V(C;), 1 < i < n, is a subset of some V; in the equipartition.
No four such node sets can be in the same V;, because |V (C;)| = s(a;) > B/4,
and |V;| = B. The total number of sets V(C;) is 3n; hence, each V; contains
exactly three of them. If V; = V(Cjo) UV (Cj1) UV (Cj2), 1 < j < n, then
the corresponding partition {ajo,aj1, a2}, 1 < j < n of A satisfies

2

> slajp) = ;)\V(ij)\ = [Vil = B,

p=0

for each j and thus witnesses the fact that (A, s, B) is a yes-instance of 3-
Partition. 1

Theorem 3.2 The EP problem is NP-complete.

Proof: Once again, it is obvious that EP is in NP. We reduce 3-Partition
to EP. Let (A, s, B) be a 3-Partition instance. Let r be the smallest prime
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number such that » > n and R be the smallest prime number such that
R > (r+1)B. By a theorem of Chebyshev [7], we know that r < 2n and that
R < 2((r+1)B+1); hence, both can be found by trial division of successive
odd integers in time polynomial in nB. (Similar uses of Chebyshev’s theorem
in graph-theoretic problems can be found in [2, 3, 4].) The graph G of the
target EP instance is the disjoint union of 27+ 2n complete graphs: one copy
of Ky, for 1 <i<3n, a; € A, r —n copies of Kp, and r copies of Kr_p.
(See Figure 3.) The parameter ¢ of the EP instance can be taken to be 0.

If (A, s, B) is a yes-instance of 3-Partition, then (G,0) is easily seen to
be a yes-instance of EP; the r-equipartition of G with no bad pairs is shown
in Figure 4.

Conversely, suppose that G has a k-equipartition with no bad pairs. Be-
cause |V (G)| = rR, and both r and R are prime, either k = r or k = R. By
construction, R — B > r, and Kr_p is a subgraph of G. Thus V(G) cannot
be partitioned into R disjoint sets of size r with no bad pairs. Hence k = r.

Each of the copies of Kg_p must lie completely within one set in the -
equipartition. By construction, 2(R— B) > R, and so no two copies of Kr_p
can be in the same set. This implies that r —n of the sets in the equipartition
each consist of one copy of Kr_pg and one copy of Kg. Furthermore, the
remaining n sets each contain one copy of Kr_p and cliques of the form
K(a,); again, the entire clique K,(,,) must be contained in a single set of the
equipartition if there are to be no bad pairs. In each set, the number of nodes
contributed by cliques of the form K, is n. Because B/4 < s(a;) < B/2,
there must be exactly three such cliques in each set. Thus, they determine a
solution to the 3-Partition instance.

Finally, observe that, as in Theorem 3.1, it is important that the input
be given in unary for this reduction to be polynomial-time. |

Theorem 3.1 exhibits a many-to-one reduction from 3-Partition to PEP.
The fact that PEP is complete for NP under Turing reductions follows from
Theorem 3.2. The instance (G, t) of EP is a yes-instance if and only if (G, k, t)
is a yes-instance of PEP, for some nontrivial divisor & of |V (G)|. All of the
nontrivial divisors of |V (G)| can be found by trial division in time polynomial
in |V (G)]; hence there is an obvious Turing reduction from EP to PEP.

If we relax the definitions of the equipartition problems so that the sets
in the partition are allowed to differ in size by one, then EP and PEP are
apparently different in complexity. Suppose that a solution to the PEP



instance (G, k,t) were allowed to have j sets of size ||V(G)|/k| and k — j
sets of size [|V(G)|/k]. Then, this apparently easier problem would still be
NP-complete, because it contains the original PEP problem, in which all yes-
instances satisfy k | |V(G)|, as a special case. In the EP problem instance
(G,t), on the other hand, if the sets in a solution were allowed to differ in
size by one, then every instance in which ¢ > 1 would be a yes instance: we
could partition V(G) into two sets, one of size ||V(G)|/2] and one of size
[1V(G)|/2], and have only one bad pair.
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Figure 1: The lexicographic product of a three-node chain
and a triangle.
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Figure 2: PEP instance corresponding to the 3-Partition instance
(s(a1) = s(ag) = s(az) = s(aqg) = 1,s(as) = s(ag) = 2, B =4),
as in the proof of Theorem 3.1.
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Figure 3: EP instance corresponding to the 3-Partition instance
(s(a1) = s(ag) = s(az) = s(asg) = 1,s(as) = s(ag) = 2, B =4),
as in the proof of Theorem 3.2.
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Figure 4: Witness that the target instance is in EP if the domain instance
is in 3-Partition, as in the proof of Theorem 3.2.

14



