
The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

The Skip Quadtree:
A Simple Dynamic Data Structure

For Multidimensional Data

David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun

Univ. of California, Irvine
Donald Bren School of Information and Computer Sciences



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

The Problem:

Organize a set of many low-dimensional input points

Handle (approximate) range listing queries, nearest neighbor queries, etc

Typical solutions:

Recursively subdivide space into a hierarchy of nested convex cells
at each level, split cells by lines into smaller cells

until all leaf cells have at most one point each

Handle queries by top-down search:
if current cell is out of range, backtrack

else recursively search its children

But how to choose splits?



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

Quadtree

All cells are squares

To subdivide:

split into four equal squares

Problems:

Superlogarithmic depth

Superlinear size

No guaranteed query time
(recursion too deep)



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

Compressed Quadtree

Keep only interesting
squares from quadtree 

Square is interesting
if root or has >1 nonempty child

Problems:

Superlogarithmic depth

No guaranteed query time
(recursion too deep)

Unclear how to dynamize



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

kD-tree

All cells are rectangles

To subdivide:

split at median coordinate
alternating horizontal
and vertical

Problems:

High aspect ratio cells

No guaranteed query time
(too many cells in range)

Dynamization is amortized
(with approx median splits)



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

BAR-tree

All cells have ≤ 6 sides
horizontal, vertical, slope 1

Bounded aspect ratio guaranteed

To subdivide:

split at median point
choose best of 3 split slopes

Problems:

Complex implementation

Dynamization is amortized
(with approx median splits)



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

Skip Quadtree

Key idea:

Impose extra sampling hierarchy (analogous to skiplist)
on top of compressed quadtree

Keeps the advantages as compressed quadtree...

Simple structure

Well shaped cells

...but allows logarithmic-time searches and updates

Basic version is randomized

Time bounds are high probability and expected)

But deterministic also possible (with same time bounds)



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

New Results

O(log n) time:

Insert or delete a point from input set

Locate query point in compressed quadtree

O(eps1-d + log n) time:

(1+epsilon)-approximate fat range query

Approximation to range is decomposed into
O(eps1-d) compressed quadtree cells

O(eps1-d (log n + log 1/eps)) time

(1+epsilon)-approximate nearest neighbor query

(like spherical range query with unknown radius)



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

The skip quadtree

Assign a non-negative integer level to each input point
probability 21-i of being assigned level i 

For each i, build a compressed quadtree Q i of points with levels ≤ i

Each interesting square stores seven pointers: 

next larger interesting square in Q i (if not root)

four children (smaller squares or solitary points)

same square in Q i-1 (always exists unless i = 0)
same square in Q i+1 (if it exists)



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

The skip quadtree, visually



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

To locate a query point in a skip quadtree:

Start at the last nonempty level

Repeat:

if current square has a child containing query, move to it
else move to same square in next lower level

until finding smallest square containing query point in Q0

In expectation, O(1) steps within each level
so O(log n) steps overall



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

To insert a new point into a skip quadtree:

Assign a level to the point

Locate the point
(finds smallest interesting square containing it in all levels)

Perform O(1) local changes in each modified level

To delete a point from a skip quadtree:

Same as insertion in reverse



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

To perform range queries:

Simulate standard subdivision-data-structure search in Q0:
repeatedly replace squares by children intersecting range
until remaining squares approximately cover the range

Problem:
long chain of replacements of square by one child

Instead, use skip structure to find descendant at end of chain
like point location, O(log n) time using skip structure

To perform nearest neighbor queries:

Similar to range query

Use priority queue to keep track of which square to expand



The skip quadtree Eppstein, Goodrich, & Sun, SoCG 2005

Conclusions

New data structure combines quadtree and skiplist

All advantages of similar subdivision-based structures:

easy to implement
fast updates and queries

well shaped cells
generalizes to arbitrary dimension

Future work

Distributed version (to appear at PODC)


