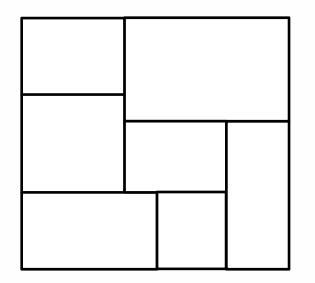
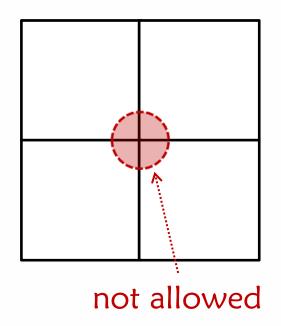
Area-Universal Rectangular Layouts

David Eppstein
University of California, Irvine

Elena Mumford, Bettina Speckmann, and Kevin Verbeek
TU Eindhoven

Rectangular layout



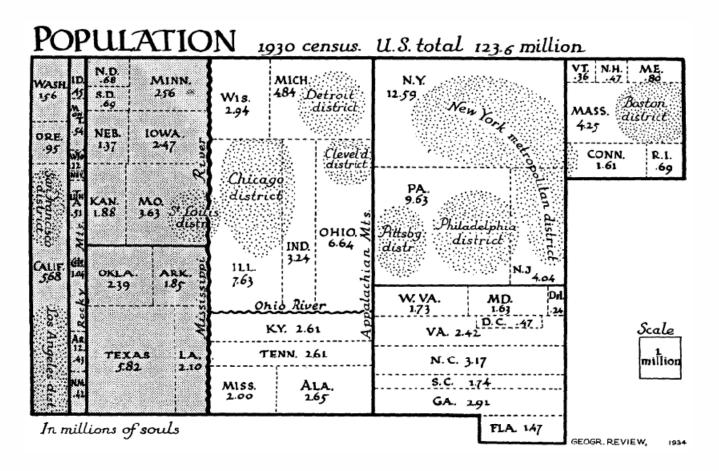


Rectangular layout

partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in one point.

Applications: floor planning

Applications: rectangular cartograms



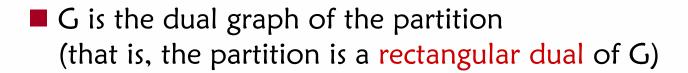
Rectangular Cartograms [Raisz 1934]

- visualize statistical data about sets of regions; regions are rectangles;
- area proportional to some geographic variable

Rectangular cartograms

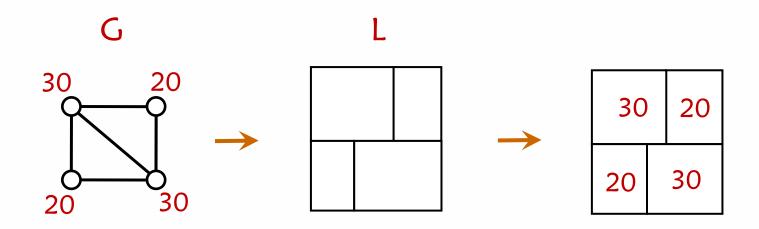
Given a plane triangulated graph G = (V,E) and a positive weight for each vertex.

Construct a partition of a rectangle into rectangular regions





Constructing a cartogram



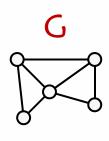
- 1. Find a rectangular dual L for G
- 2. Give rectangles correct areas

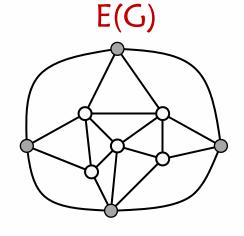
Rectangular dual

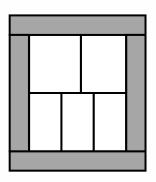
[Kozminski & Kinnen '85]

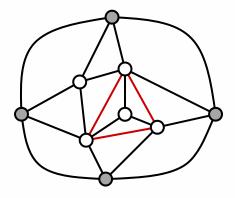
A planar graph G has a rectangular dual \Leftrightarrow we can complete with four outer vertices to obtain a graph E(G) s.t.

- 1. every interior face of E(G) is a triangle
- 2. the exterior face of E(G) is a quadrangle
- 3. E(G) has no separating triangles

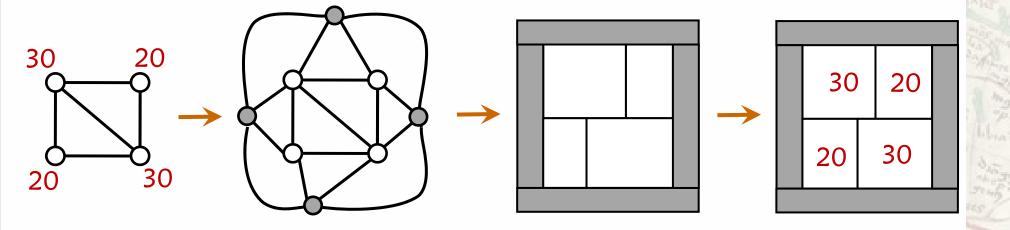






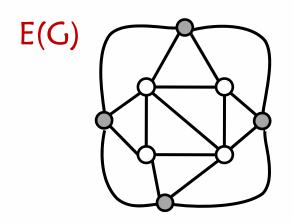


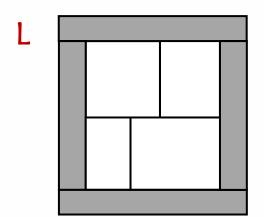
Constructing a cartogram

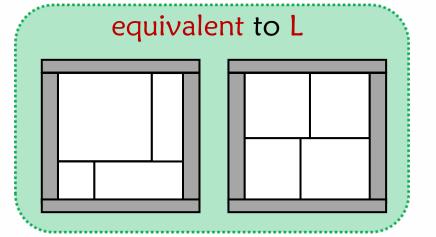


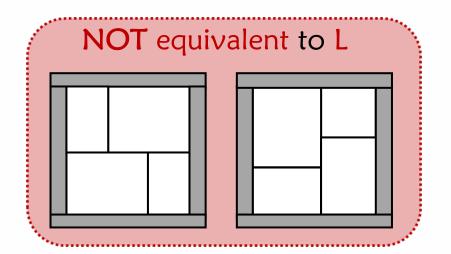
- 1. Find a rectangular dual L for G
- 2. Give rectangles correct areas = turn it into an equivalent layout whose regions have given areas

Equivalent layouts





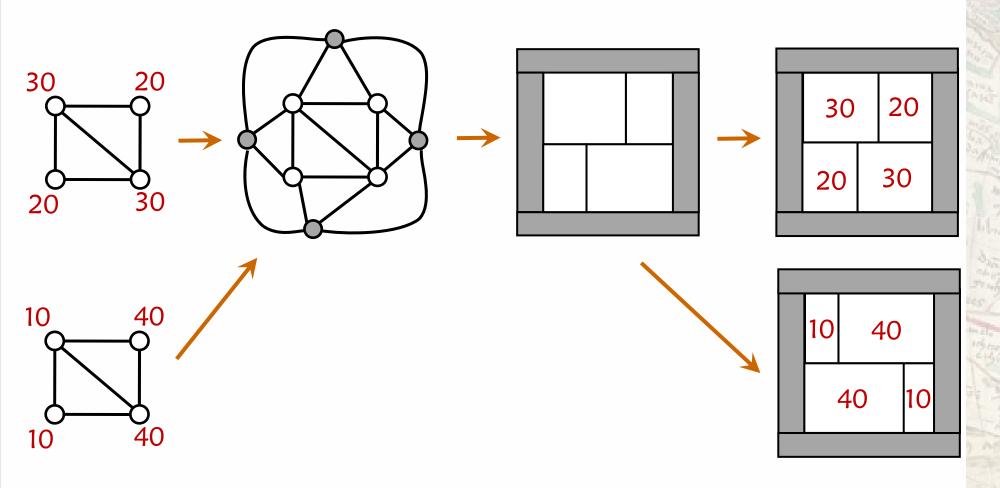




Equivalent layout

a rectangular dual of L such that the adjacencies of the regions have the same orientations

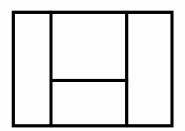
Constructing a cartogram

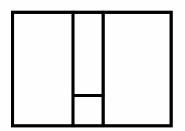


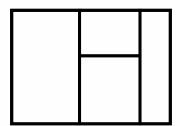
Solution does not always exist When it does it is unique [Wimer, Koren, and Cederbaum '88]

Finding a suitable layout

- There are potentially exponentially many rectangular duals for a given graph
- There are layouts that "work" for any set of weights:







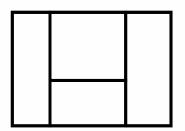
Area-universal layout L

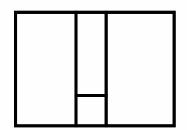
for every choice of weights for the regions of L there is a layout L'equivalent to L such that the areas of rectangles in L'are equal to the given weights.

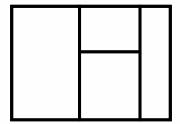
Finding a suitable layout

Theorem

A layout is area-universal, if an only if it is one-sided.



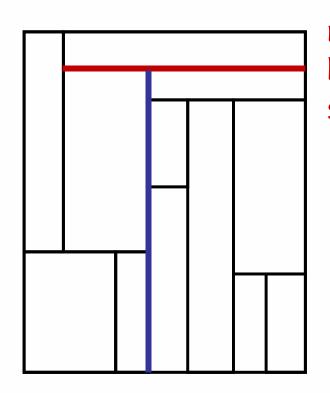




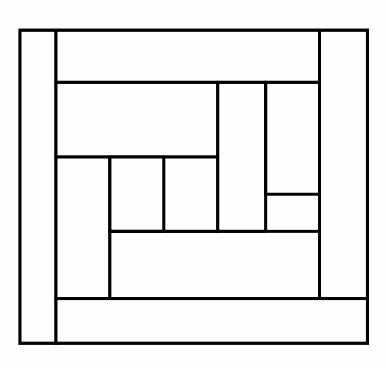
Area-universal layout L

for every choice of weights for the regions of L there is a layout L'equivalent to L such that the areas of rectangles in L'are equal to the given weights.

One-sided layouts



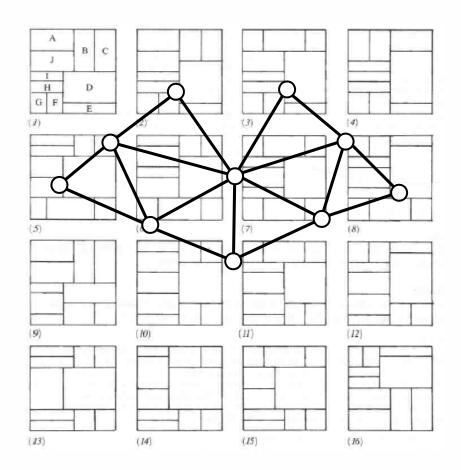
maximal horizontal segment



maximal vertical segment

One-sided layout L: every maximal line segment of L must be the side of a least one rectangle

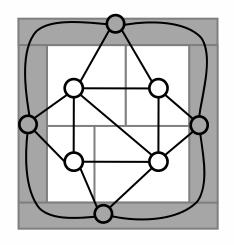
One-sided duals

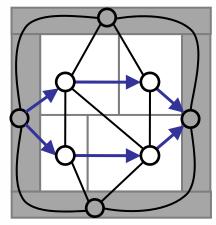


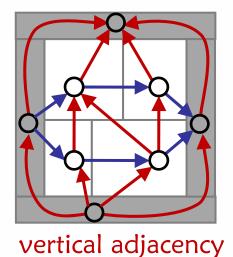
[Rinsma '87]

There exists an outer-planar triangulated graph that does have rectangular duals, but no one-sided dual.

Regular edge labelings

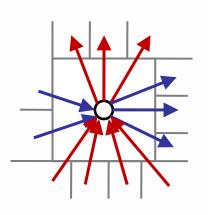


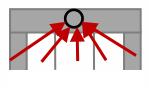




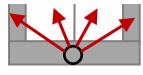
Regular edge labeling [Kant and He'97]

inner vertex



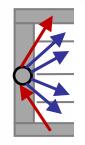


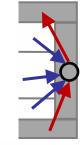
top vertex



bottom vertex

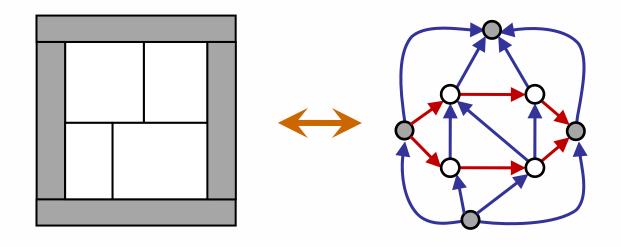
outer vertices





right vertex

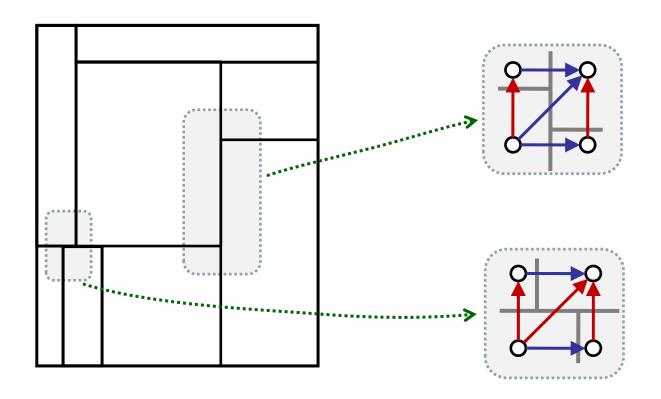
Regular edge labelings



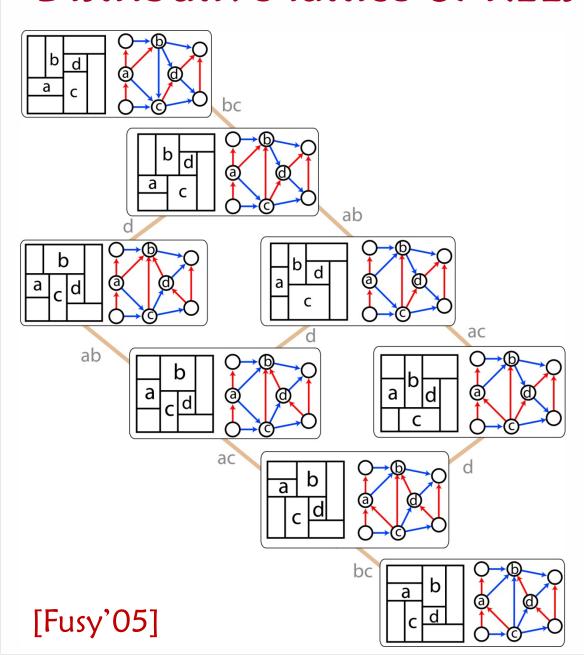
Theorem [Kant and He'97]

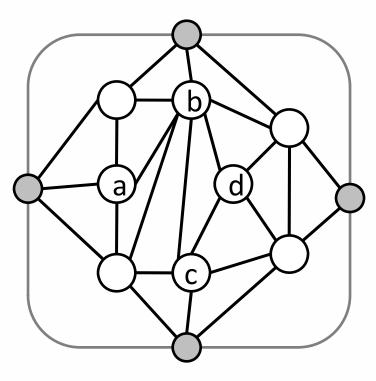
Every rectangular dual for E(G) corresponds to a regular edge labeling of E(G) and vice versa.

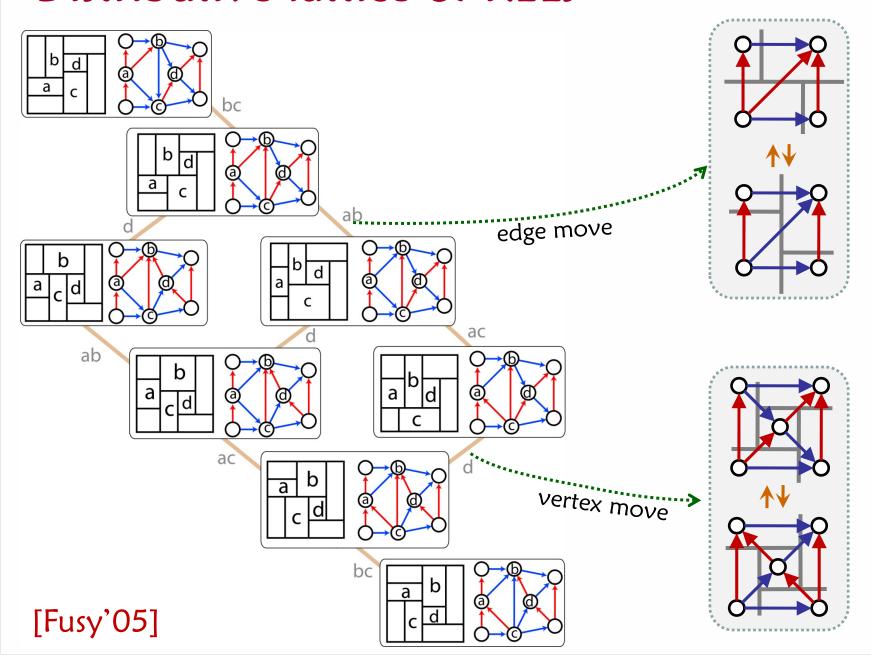
Non-one-sided layouts

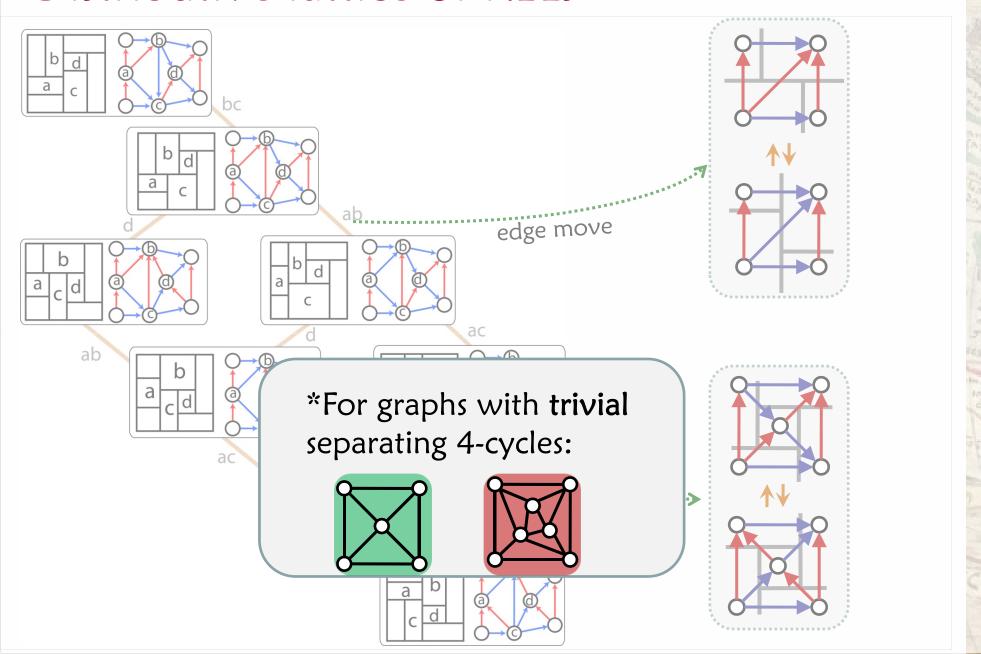


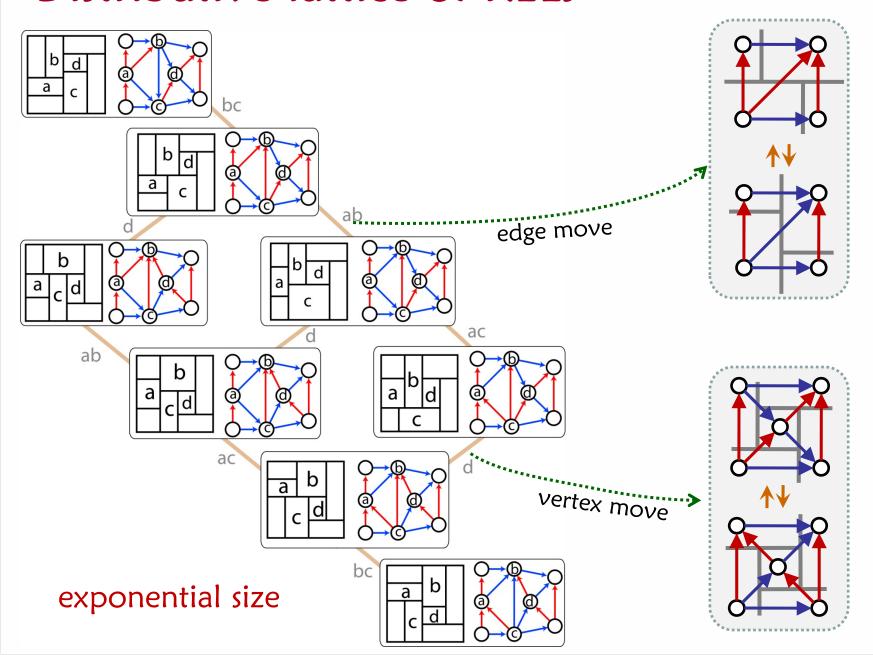
Look for RELs without the patterns above



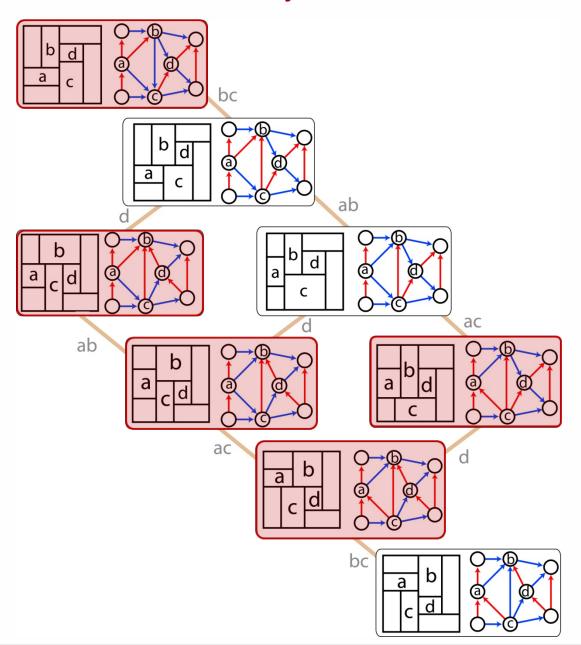




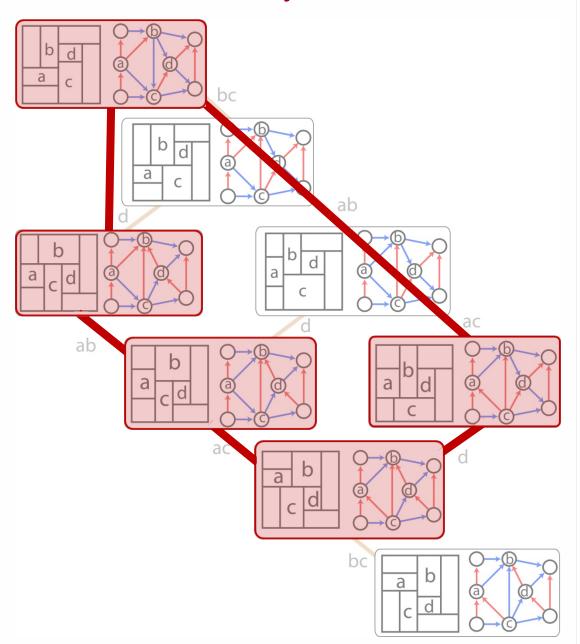


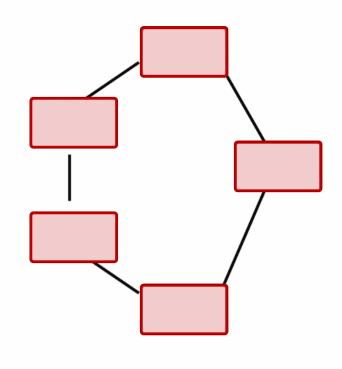


Birkhoff's representation theorem

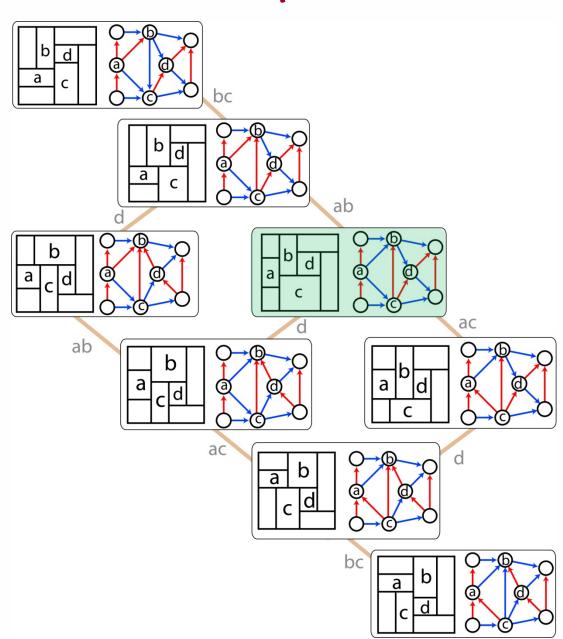


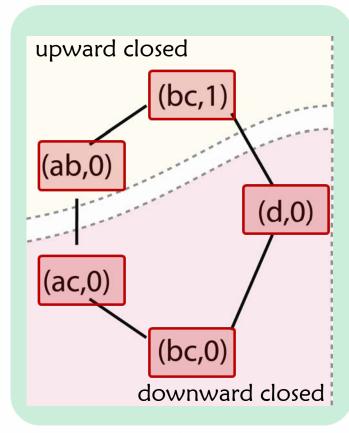
Birkhoff's representation theorem





Birkhoff's representation theorem



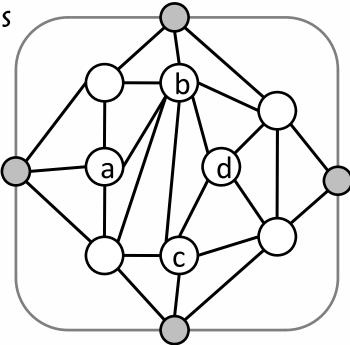


O(n²) size can be constructed in polynomial time

Finding area-universal layouts

Fixed parameter tractable algorithm that runs in $O(2^{O(K^2)} n^{O(1)})$ time

K = number of degree-four vertices in the graph E(G)



Summary

Results

- We can find an area-universal layout in $O(2^{O(K^2)} n^{O(1)})$ time
- Perimeter cartograms
- Area-universal layouts for dual spanning trees in O(n) time

Open problems

- Is there a polynomial algorithm for area-universal layouts?
- Can we efficiently find a layout that realizes a given area assignment in case when a graph has no area-universal layout?