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Rectangular layout

not allowed

Rectangular layout
partition of a rectangle into finitely many interior-disjoint
rectangles, such that no four rectangles meet in one point.



L4

s aw
W
—_— mﬂdﬁ
vw _T m
LI
8 M=
| (B
mut

ing

ATV

: floor plann

Applications



Applications: rectangular cartograms
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Rectangular Cartograms [Raisz 1934]
visualize statistical data about sets of regions;
regions are rectangles;
area proportional to some geographic variable



Rectangular cartograms

Given a plane triangulated graph G = (V,E)
and a positive weight for each vertex.

Construct a partition of a rectangle ‘1’

into rectangular regions i

14

B G is the dual graph of the partition
(that is, the partition is a rectangular dual of G)

B The area of each region = the weight of the corresponding vertex



Constructing a cartogram
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1. Find a rectangular dual L for G

2. Give rectangles correct areas
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Rectangular dual

[Kozminski & Kinnen '85]

A planar graph G has a rectangular dual < we can complete
with four outer vertices to obtain a graph E(G) s.t.

1. every interior face of E(G) is a triangle
2. the exterior face of E(G) is a quadrangle
3. E(G) has no separating triangles
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Constructing a cartogram
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1. Find a rectangular dual L for G

2. Give rectangles correct areas = turn it into an equivalent layout
whose regions have given areas



Equivalent layouts
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Equivalent layout
a rectangular dual of L such that the adjacencies of
the regions have the same orientations



Constructing a cartogram
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Solution does not always exist
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When it does it is unique [Wimer, Koren, and Cederbaum ‘88]




Finding a suitable layout

B There are potentially exponentially many rectangular duals
for a given graph

B There are layouts that “work” for any set of weights:

Area-universal layout L
for every choice of weights for the regions of L there is a layout L’
equivalent to L such that the areas of rectangles in L’ are equal to
the given weights.



Finding a suitable layout

Theorem
A layout is area-universal, if an only if it is one-sided.

Area-universal layout L
for every choice of weights for the regions of L there is a layout L’
equivalent to L such that the areas of rectangles in L’ are equal to
the given weights.



One-sided layouts

maximal
horizontal
segment

maximal vertical
segment

One-sided layout L: every maximal line segment of L must be
the side of a least one rectangle



Finding one-sided layouts



One-sided duals
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[Rinsma '87]
There exists an outer-planar triangulated graph that does
have rectangular duals, but no one-sided dual.



Regular edge labelings
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Regular edge labelings

Theorem [Kant and He’97]

Every rectangular dual for E(G) corresponds to a
regular edge labeling of E(G) and vice versa.



Non-one-sided layouts

Look for RELs without the patterns above



Distributive lattice of RELs
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Distributive lattice of RELs
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Distributive lattice of RELs
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Distributive lattice of RELs
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Birkhoff’s representation theorem
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Birkhoff’s representation theorem
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Birkhoff’s representation theorem
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Finding area-universal layouts

B Fixed parameter tractable algorithm
that runs in O(ZO(KZ) n°0) time

K = number of degree-four vertices
in the graph E(G)




Summary

Results

. . : 2 :
B We can find an area-universal layout in O(2°) nOM) time

B Perimeter cartograms

B Area-universal layouts for dual spanning trees in O(n) time

Open problems
B [s there a polynomial algorithm for area-universal layouts?

B Can we efficiently find a layout that realizes a given area
assignment in case when a graph has no area-universal layout?
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