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Abstract

Social studies researchers use graphs to model group activ-
ities in social networks. An important property in this con-
text is the centrality of a vertex: the inverse of the average
distance to each other vertex. We describe a randomized ap-
proximation algorithm for centrality in weighted graphs. For
graphs exhibiting the small world phenomenon, our method
estimates the centrality of all vertices with high probability
within a (1 + ε) factor in near-linear time.

1 Introduction

In social network analysis, the vertices of a graph represent
agents in a group and the edges represent relationships, such
as communication or friendship. The idea of applying graph
theory to analyze the connection between the structural cen-
trality and group process was introduced by Bavelas [4]. Var-
ious measurement of centrality [7, 14, 15] have been pro-
posed for analyzing communication activity, control, or in-
dependence within a social network.

We are particularly interested in closeness centrality [5,
6, 24], which is used to measure the independence and effi-
ciency of an agent [14, 15]. Beauchamp [6] defined the close-
ness centrality of agent aj as

n− 1∑n
i=1 d(i, j)

where d(i, j) is the distance between agents i and j.1 We are
interested in computing centrality values for all agents. To
compute the centrality for each agent, it is sufficient to solve
the all-pairs shortest-paths (APSP) problem. No faster exact
method is known.

The APSP problem can be solved by various algorithms
in time O(nm + n2 log n) [13, 19], O(n3) [12], or more
quickly using fast matrix multiplication techniques [2, 11,
25, 26]. Faster specialized algorithms are known for graph
classes such as interval graphs [3, 9, 23] and chordal graphs
[8, 17], and the APSP problem can be solved in average-
case in time O(n2 log n) for various types of random graph
[10, 16, 20, 22]. Because these results are slow, specialized,
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1This should be distinguished from another common concept of graph
centrality, in which the most central vertices minimize the maximum dis-
tance to another vertex.

or (with fast matrix multiplication) complicated and imprac-
tical, and because recent applications of social network the-
ory to the internet may involve graphs with millions of ver-
tices, it is of interest to consider faster approximations. Aing-
worth et al. [1] proposed an algorithm with an additive er-
ror of 2 for the unweighted APSP problem that runs in time
O(n2.5√log n). However this is still slow and does not pro-
vide a good approximation when the distances are small.

In this paper, we consider a method for fast approxi-
mation of centrality. We apply a random sampling tech-
nique to approximate the inverse centrality of all vertices in
a weighted graph to within an additive error of ε∆ with high
probability in timeO( log n

ε2 (n log n+m)), where ε is any fixed
constant and ∆ is the diameter of the graph.

It has been observed empirically that many social net-
works exhibit the small world phenomenon [21]: their di-
ameter is bounded by a constant, or, equivalently, the ratio
between the minimum and maximum distance is bounded.
For such networks, the inverse centrality at any vertex is
Ω(∆) and our method provides a near-linear time (1 + ε)-
approximation to the centrality of all vertices.

2 The Algorithm

We now describe a randomized approximation algorithm
RAND for estimating centrality. RAND randomly chooses
k sample vertices and computes single-source shortest-paths
(SSSP) from each sample vertex to all other vertices. The es-
timated centrality of a vertex is defined in terms of the aver-
age distance to the sample vertices.

Algorithm RAND:

1. Let k be the number of iterations needed to obtain the
desired error bound.

2. In iteration i, pick vertex vi uniformly at random from G
and solve the SSSP problem with vi as the source.

3. Let

ĉu = 1/
k∑

i=1

n d(vi, u)
k(n− 1)

be the centrality estimator for vertex u.

It is not hard to see that, for any k and u, the expected
value of 1/ĉu is equal to 1/cu.
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LEMMA 2.1. (HOEFFDING [18]) If x1, x2, . . . , xk are inde-
pendent, ai ≤ xi ≤ bi, and µ = E[

∑
xi/k] is the expected

mean, then for ξ > 0

Pr
{
|
∑k

i=1 xi

k
− µ| ≥ ξ

}
≤ 2e−2k2ξ2/

∑k
i=1

(bi−ai)
2
.

We need to bound the probability that the error in esti-
mating the inverse centrality of any vertex u is at most ξ. This
is done by applying Hoeffding’s bound with xi = d(i,u)n

(n−1) ,

µ = 1
cu

, ai = 0, and bi = n∆
n−1 . Thus the probability that

the difference between the estimated inverse centrality 1/ĉu

and the actual inverse centrality 1/cu is more than ξ is

Pr
{
| 1

ĉu
− 1

cu
| ≥ ξ

}
≤ 2 · e−2k2ξ2/

∑k
i=1

(bi−ai)
2

= 2 · e−2k2ξ2/k( n∆
n−1 )2

= 2 · e−Ω(kξ2/∆2)

For ξ = ε∆, using Θ( log n
ε2 ) samples will cause the probability

of error at any vertex to be bounded above by e.g. 1/n2,
giving at most 1/n probability of having greater than ε∆ error
anywhere in the graph.

The total running time of algorithm is O(k · m) for un-
weighted graphs andO(k(n log n + m)) for weighted graphs.
Thus, for k = Θ( log n

ε2 ), we have an O( log n
ε2 (n log n + m))

algorithm for approximating centrality within an inverse ad-
ditive error of ε∆ with high probability.
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