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Abstract

Social studies researchers use graphs to model group activ-
ities in social networks. An important property in this con-
text is the centrality of a vertex: the inverse of the average
distance to each other vertex. We describe a randomized ap-
proximation algorithm for centrality in weighted graphs. For
graphs exhibiting the small world phenomenon, our method
estimates the centrality of all vertices with high probability
within a (1 + €) factor in near-linear time.

1 Introduction

In socia network analysis, the vertices of a graph represent
agents in agroup and the edges represent rel ationships, such
as communication or friendship. Theidea of applying graph
theory to analyze the connection between the structural cen-
trality and group processwasintroduced by Bavelas[4]. Var-
ious measurement of centrality [7, 14, 15] have been pro-
posed for analyzing communication activity, control, or in-
dependence within asocia network.

We are particularly interested in closeness centrality [5,
6, 24], which is used to measure the independence and effi-
ciency of an agent [14, 15]. Beauchamp [6] defined the close-
ness centrality of agent g as
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where d(i, j) is the distance between agentsi and j.! We are
interested in computing centrality values for all agents. To
compute the centrality for each agent, it is sufficient to solve
the all-pairs shortest-paths (APSP) problem. No faster exact
method is known.

The APSP problem can be solved by various agorithms
in time O(nm + n?logn) [13, 19], O(n®) [12], or more
quickly using fast matrix multiplication techniques [2, 11,
25, 26]. Faster specialized agorithms are known for graph
classes such asinterval graphs[3, 9, 23] and chordal graphs
[8, 17], and the APSP problem can be solved in average-
case in time O(n?logn) for various types of random graph
[10, 16, 20, 22]. Because these results are slow, specialized,
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1This should be distinguished from another common concept of graph
centrality, in which the most central vertices minimize the maximum dis-
tance to another vertex.
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or (with fast matrix multiplication) complicated and imprac-
tical, and because recent applications of social network the-
ory to the internet may involve graphs with millions of ver-
tices, itisof interest to consider faster approximations. Aing-
worth et a. [1] proposed an algorithm with an additive er-
ror of 2 for the unweighted APSP problem that runsin time
O(n>5,/logn). However thisis still slow and does not pro-
vide a good approximation when the distances are small.

In this paper, we consider a method for fast approxi-
mation of centrality. We apply a random sampling tech-
nigue to approximate the inverse centrality of al verticesin
aweighted graph to within an additive error of eA with high
probability intimeO('c%(nlog n+m)), wheree isany fixed
constant and A is the diameter of the graph.

It has been observed empirically that many socia net-
works exhibit the small world phenomenon [21]: their di-
ameter is bounded by a constant, or, equivalently, the ratio
between the minimum and maximum distance is bounded.
For such networks, the inverse centrality at any vertex is
Q(A) and our method provides a near-linear time (1 + ¢)-
approximation to the centrality of all vertices.

2 TheAlgorithm

We now describe a randomized approximation algorithm
RAND for estimating centrality. RAND randomly chooses
k sample vertices and computes single-source shortest-paths
(SSSP) from each samplevertex to all other vertices. Thees-
timated centrality of avertex is defined in terms of the aver-
age distance to the sample vertices.

Algorithm RAND:

1. Let k be the number of iterations needed to obtain the

desired error bound.

Initerationi, pick vertex v; uniformly at random from G
and solve the SSSP problem with v; as the source.

Let

be the centrality estimator for vertex u.

It is not hard to see that, for any k and u, the expected
value of 1/&, isequd to 1/cy.



LEMMA 2.1. (HOEFFDING [18]) If X1, Xo, ..., Xk are inde-
pendent, & < % < by, and u = E[>_ xi/K] is the expected
mean, then for £ > 0
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We need to bound the probability that the error in esti-
mating theinverse centrality of any vertex uisat most£. This
is done by applying Hoeffding's bound with x = dd:@n

(n—1)’
p=g,a =0adb = M. Thusthe probability that

n-1-
the difference between the estimated inverse centrality 1/€,

and the actual inverse centrality 1/c, ismorethan ¢ is
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For{ = €A, using @("’%) sampleswill causethe probability
of error a any vertex to be bounded above by eg. 1/n?,
giving at most 1/n probability of having greater than eA error
anywhere in the graph.

The total running time of algorithm is O(k - m) for un-
weighted graphs and O (k(nlog n+ m)) for weighted graphs.
Thus, for k = @('%”), we have an O("’g%(nlogn + m))
agorithm for approximating centrality within an inverse ad-
ditive error of eA with high probability.
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