
Interface Exploration for Reduced Power in Core-Based Systems
Tony Givargis, Frank Vahid

Department of Computer Science and Engineering
University of California
Riverside, CA 92521

{givargis,vahid}@cs.ucr.edu
http://dalton.ucr.edu

Abstract
Reducing power dissipation is becoming more important in the design
of embedded systems. Core-based system design opens up the
opportunity for exploring different bus interfaces in order to optimize
for reduced power. We give a first approach for exploring a range of
possible bus configurations, such as width and coding schemes, for a
given set of communication channels. Our approach uses power
estimation formulas, for fast performance. We use this approach to
explore different bus interfaces for a real GPS navigation system in
order to select the optimal bus interface for minimum power
consumption.

1. Introduction
 In recent years, embedded system designers have been faced with the
need to reduce power consumption. A system’s power can be broken
into two components. The first component is internal circuit
capacitance times the average internal circuit transitions, while the
second component is external bus capacitance times the average
external bus transitions. The distribution of power among these two
components is anywhere between 10% bus I/O [11] to 80% bus I/O
[12], depending on the nature of application, implementation
technology, etc. On the average, the I/O and system busses in a typical
IC consume half of the total chip power [7, 13]. Much has been done in
reducing the internal circuit power, but buses, often considered highly
rigid and unalterable, have not been greatly optimized for power.
Recent trends in technology have made it possible to explore buses for
reduced power.

 In the past, most IC components had a fixed number of I/O
pins and required a pre-determined communication protocol. Today,
increase in chip capacities has made it possible to integrate an entire
system on a single chip in what is known as system-on-chip design. To
increase efficiency, designers interconnect pre-designed cores,
(description of components,) to implement a system. Cores are flexible
and their interfaces can often be parameterized. This flexibility makes
it possible to consider different bus sizes, partitions and encoding
schemes for interconnecting components.

 As an added incentive for designing buses for reduced power,
with sub-micron technology, wires will consume most of a system’s
power when compared to transistors [9], hence reducing wires at the
cost of increasing transistors will reduce overall power consumption.

 In this paper, we give an approach for exploring different bus
interfaces for reduced power. In section 2, we give a summary of
related work. In section 3, we define the bus model that we focus on in
the rest of the paper. In section 4, we give an algorithm for exploring
different bus interfaces. In section 5, we define power cost functions or
approximation formulas. In section 6, we apply our algorithm on a real
GPS navigation system. In the remainder of the paper, we state future
work and give our conclusion.

2. Previous Work
Much work has been done in modeling and estimating power in IC
design at a high-level [3, 8]. These modeling and estimation techniques
assume one average circuit capacitance for both internal and external
power computations. We separate these two components, in our
estimations, to account for buses with much larger capacitance
compared to the internal circuits. Other work has looked at partitioning
a circuit on the functional level in order to reduce total communication
among various components [14]. Functional partitioning will reduce
total power, including bus power. Once the partitioning is performed,
exploring different bus widths and encoding schemes can further reduce
bus power.

One such encoding scheme is bus-invert. Bus-invert coding
has been a significant contribution in reducing bus power [9]. This
method uses an extra control line and extra circuit logic to compute the
Hamming distance (bit transitions) between two consecutive data items.
If the Hamming distance is greater than ½ the bus width, then the
control line is asserted and the inverted data is sent over the bus.
According to [9], bus-invert can save up to 25% of total bus transitions.

By using more than one extra control line, as used in bus-
invert, a generalized scheme, called limited-weight codes [1, 2], can be
used to encode data items for reduced average transitions. For instance,
imagine a 4-bit channel transmitting on a 16-bit bus, where each data
value corresponds to one of the 16 lines being asserted. Here, only 2
transitions are required to send a new data item, one for deactivating the
old asserted signal for the old data item, and one for activating a new
signal for the new data time.

In [4, 5, 6], techniques have been developed to automate
interfacing of components. These techniques explore bus sizes and
partitions among buses with the goal of trading off size and
performance. We focus on optimizing for power only. These
techniques can be combined with our work, to generate optimal bus
performance, power and size.

3. Problem Formulation
We begin by defining the bus model used throughout this paper. A
communication channel is an abstract link used by one device to
send/receive data to/from another device. We denote an item to be a
single data value sent or received over a communication channel. We
associate with each communication channel a data-size, number of bits
in an item, and a transfer-rate, number of items sent/received per
second. We distinguish a set of homogeneous communication channels
all having equal data size from a set of heterogeneous communication
channels with mixed data sizes. All communication channels share a
single bus. This model is commonly used in micro-controllers having a
processor surrounded by a number of peripheral devices. Further, we
assume a synchronous bus structure where ordering of data transfer
between different channels is fixed. Figure 1 depicts a sample bus
structure. Given f , the switching frequency of the bus, and C , the

capacitance of the bus, power is computed using the following formula
[9]:

fVCPower ⋅⋅= 2

In our calculations we exclude
2

V , bus voltage, assuming that it is
invariant.

Given the above model, we would like to devise an algorithm
to explore total bus power for any possible bus width and encoding
scheme. We consider the following encoding schemes:

• Bus-invert
• Equal-split
• Don’t-care-padding

Bus-invert was discussed in the previous work section. We define
equal-split and don’t-care-padding next.

In sending an item whose size is greater than the bus width,
time-multiplexed communication is used, i.e., the data item is split and
sent in pieces. One way to do this splitting is to send as much of the
data as possible each time using all available bus lines, plus a possible
last transmission of the remaining bits. Using equal-split an item is
broken into equal sized pieces for time-multiplexed transmission. To
illustrate how equal-split works, imagine sending an 8-bit data item
over a 5-bit bus without equal-splitting the data. Here, two transfers are
required to send all 8 bits. The first transfer will send 5 out of 8 bits and
the second transfer will carry the remaining 3 bits with 2 bits forced to
0, for a total of 10 transmitted bits, an average of 5 transitions/item.
The equal-split technique breaks the 8 bit data into two equal sizes for
time-multiplexed transmission, 4 in this case, for a total of 8 transmitted
bits, an average of 4 transitions/item.

In sending an item or a piece of an item (note: the paper
currently says item, but this applies to pieces also) whose size is less
than the bus width, we must decide on how to set the remaining unused
bus lines. One way to do it is to set these to logic 0. Using Don’t-care-
padding, these extra bus lines are unchanged by the sending device and
ignored by the receiving device. To illustrate how don’t-care-padding
works, consider sending an 8-bit data item followed by a 4-bit data item
over an 8-bit bus. Without don’t-care-padding, after sending the first
item, the 4 most significant lines of the bus are forced to 0 and the
second item is transmitted resulting in an average of 4 transitions/item.
With don’t-care-padding the 4 most significant lines of the bus are
unchanged when the second item is transmitted resulting in 2
transitions/item.

4. Exploration Algorithm
Given a set of communication channels 1, 2…p , the corresponding

data sizes pnnn ,,, 21 L , and the transfer rates, pmmm ,,, 21 L , the

following general algorithm explores all possible bus configurations and

selects the optimal bus in terms of power. Specifically, the algorithm
takes as input a set of communication channels and returns a bus width,
and a combination of bus-invert, equal-split, and don’t-care-padding
that is optimal for low power.

In the above algorithm, for every possible bus configuration, two
functions, BusPower, a cost function calculating power consumed by
the bus, and ExtraPower, a cost function calculating power consumed
by the extra circuit required to implement the given encoding scheme,
are called to get the total power. The bus width and encoding scheme
with the minimum power consumption is outputted as the optimal bus
configuration. The complexity of the above algorithm is:

))()(()2(ExtraPowerTBusPowerT
c

kO +⋅⋅

where k is the maximum bus width, and c is the number of encoding
techniques. In this algorithm, c is 3 (bus-invert, equal-split, and don’t-
care-padding), and T(BusPower) and T(ExtraPower) are time
complexities of the corresponding cost functions. These cost functions
are based on reading a trace file or are estimated via a formula. In the
former case, the time complexity of these cost functions is on the order
of the size of the trace file. In the latter case the cost function has a
constant time complexity. We discuss these cost functions next.

5. Calculating Bus Power

5.1 Homogeneous Channel – Random
Consider a set of communication channels with equal data-size, i.e., one
or more devices transferring data of size n bits, across a bus of size k
bits, with a combined transfer rate of m items/second. Assuming that
the sent and received data is random in nature [10], we can estimate

Input : { C1, C2, C3 … CP };
Output: bus_width, bus_invert,
 equal_split, no_care_padding;

ComputeOptimalBus {

CommunicationChannelSet ccs = { C1, C2, …, CP };

for(m_power=INF, width=1; width<MAXW; width++) {
 for bus_invert ∈ { true, false }

 for equal_split ∈ { true, false }
 for no_care_padding ∈ { true, false }

 power = BusPower(ccs, width,
 bus_invert,
 equal_split,
 no_care_padding) +
 ExtraPower(ccs, width,
 bus_invert,
 equal_split,
 no_care_padding);

 if(power < m_power) {

 m_power = power;
 m_width = width;
 m_bus_invert = bus_invert;
 m_equal_split = equal_split;
 m_no_care_padding = no_care_padding;
 }
 }
 return <m_width, m_bus_invert,
 m_equal_split, m_no_care_padding>;
}

send, receive
Micro-Processor

bus

device2
send, receive

device3
send, receive

device1
send, receive

4 8 12

Figure 1. Sample bus structure.

power, or more precisely bus transitions/second for different bus widths
with different bus configurations. First we calculate power for a
standard bus with bus-size equal to data size, i.e., k = n:

()()()

()()() /sectransition
2

1

/bittransition
2

1

bit/itemitem/sec

nmC

nmCP

bus

busbus

=








=

By extending this formula for a bus with narrower size, i.e., k ≤ n, we
get:

() ()

()

() ()() /sectransition
2

1

/bittransition
2

1
ditem/secon

erbit/transftemtransfer/i

mk
k

n
C

m

k
k

n
CP

bus

busbus





=


















=

In the above formula, more power is consumed when k does not divide
n equally, i.e.:

 knPknP busbus mod0mod0 ≠∀<=∀

Thus, for a homogenous set of communication channels, the bus width
should be selected such that the data size is a multiple of the bus size.
In the case of equal-split, the following formula is used to estimate bus
power.

()

()

() ()() /sectransition
2

1

/bittransition
2

1
item/sec

temtransfer/i

bit/item
temtransfer/i

mnC

m

k

n

n

k

n
CP

bus

busbus

=








































=

Note that the number of transitions is independent of the bus width
when equal-split is used. In reality, sending data over a smaller bus is
slower and requires extra circuit. However, a narrower bus may have
less capacitance compared to a wider bus. Thus it is not clear what bus
width will result in minimum power unless all these factors are
considered. We examine these other factors later in this paper.

We now extend our formulas for a bus implemented using
bus-invert. Here we assume that the bus is k+1 lines wide. (One extra
line for the bus-invert control signal.) Let us first assume that the bus
size is equal to data size, i.e., k = n:

()

() /sectransition

22
2

2
1

2

1+n

2

1+n

2

1+n

1

m

n
CPI

n

n

nnbusbus





























⋅
















++⋅







+⋅







= L

The term in the big bracket computes the average transitions per item.
The terms in the summation are the probability of 1, 2, …, n/2
transitions times the corresponding power. We now extend this formula
for a bus with narrower size, i.e., k ≤ n:

()

() /sectransition

22
2

2
1

2

1+k

2

1+k

2

1+k

1

m

k

k

n
CPI

k

k

kkbusbus



































⋅



















++⋅







+⋅

















=







L

Again, evaluating this formula for k values that divided n equally will
result in lower power than k values that don’t divide n equally. Using
similar arguments that we made earlier, equal-split will reduce the
above formula to:

()

() /sectransition

22
2

2
1

2

1+n

2

1+n

2

1+n

1

m

n
CPI

n

n

nnbusbus





























⋅
















++⋅







+⋅







= L

Here too, the number of transitions is independent from the bus width.
But, extra circuit power and different capacitance for different bus
widths must be considered for accurate power estimation. We examine
these later in this paper.

Using the formulas presented in this section, bus power for a
homogenous set of channels with random data can be estimated in
constant time. In the next section we give cost functions for a
heterogeneous set of communication channels.

5.2 Heterogeneous Channels – Random
Let us now consider a set of heterogeneous communication channels,
i.e., a number of devices with different data sizes, communicating over
a single bus with size k bits, in a pre-determined order. For each
channel 1, 2, …, p , we are given the corresponding data sizes

pnnn ,,, 21 L as well as the transfer rates, pmmm ,,, 21 L . We assume

that when bus width k is larger than data size n, only n out of the k lines
of the bus are used and the rest are ignored, i.e., we use don’t-care-
padding. To estimate power for a heterogeneous set of channels,
assuming random data as before, we use our standard power formula
(no bus invert) used for homogeneous set of channels as follows:

∑
=

≤

>





=
p

i

nkkmnP

nknmnP
bus

iiibus

iiiibus

kP
1

),,(

),,(
)(

When bus-invert is used, all channels that have data size n ≤ k, will take
less and less advantage of bus-invert, because bus invert saves bus
transitions only when more than k/2 bits change value. When n ≤ k/2,

bus-invert will have no advantage at all. To compensate for this, we use
the following formula:

∑
=

≤

>















≤<
−

⋅−

+
−

⋅
=

p

i

k
nnmnP

knkmnPI

i
i

ibus

i
iiibus

bus

iiiibus

iiibus

kn
k

k

nk
kmkPI

k

nk
nmnP

kP
1

2
),,(

),,(
2

)21)(,,(

)2)(,,(
)(

Looking closely at the formula, for n ≤ k/2, bus-invert will not be
utilized at all; therefore we use the non bus-invert power function. For,
n > k, bus-invert will be fully utilized, thus we use the bus-invert power
function. For all n in between these two extremes we take a weighted-
average of the two bus power functions. When n = k, the standard bus
power function is weighted with 0 and the bus-invert power function is
weighted with 1. Conversely, when n = ½, the standard bus power is
weighted with 1 and the bus-invert power function is weighted with 0.

We have given formulas to estimate power consumed by a
bus. These formulas can be implemented in software with a constant
running time. In the next section we look at using a trace file to
manually count the number of bus transitions.

 5.3 Trace File – Non-Random
So far, all our formulas have been based on the assumption that the
items communicated over the bus are random in nature. This, although
a good approximation in general, may not be the case. For example,
consider a single channel where device A is sending 8 bit ASCII text
characters to device B over an 8-bit bus at a rate of 10,000
items/second. Assuming no bus-invert, our power function will
compute power to be:

()()()

()()()
()() /sectransition000,40

8000,10
2

1
=

2

1

bus

bus

busbus

C

C

nmCP

=

=

In reality, we know that most text characters use the lower 7 bits for text
encoding, thus the probability of the most significant bit changing in
value from item to item is closer to 0. With this knowledge, we can
compute a better power estimate:

()()()

()()()
()() /sectransition000,35

7000,10
2

1
=

2

1

bus

bus

busbus

C

C

nmCP

=

=

Here, our power formula over estimated the power by 14%, a
significant quantity. In this case, if the bus width is changed to 4, the
above correlation is destroyed when the text characters are broken into
half for time-multiplexed communication. In actuality, much
correlation like that may exist among the data and will be neglected
when the random estimation model is used.

When a trace file, a listing of all items send/received over a
bus, is available, one can write a program to simulate a bus of size k and
calculate the actual number of transitions. This brute-force method will
be costly but can serve as a very accurate estimation technique. Trace
files can be obtained by simulating the VHDL description of a system

and recording data transmission among the VHDL processes that use a
given bus (signals vectors).

Calculating bus transitions using a trace file will be more
accurate than using an estimation formula, but will require linear time,
O(size of the file). This may not be feasible, when the exploration
space is large, because for each bus configuration, the above trace file
must be processed.

5.4 Bus-logic Power Estimation
Thus far we have looked at bus power in terms of bus transitions times
bus capacitance. We have assumed that the bus is implemented using
one or more combinations of bus-invert, equal-split and don’t-care-
padding techniques. Moreover, when the bus width is less than the data
size, time-multiplexed communication circuits are added. The power
consumed by these extra circuits must be considered. Based on [9], an
upper bound on power for the extra circuit needed to implement bus-
invert is given by:

() ()() /sectransitionlog mkk
k

n
CPI extraextra ⋅









≈

In the case of equal-split and don’t-care-padding, an upper bound on
power is given by:

() ()() /sectransitionmk
k

n
CPED extraextra 









≈

An upper-bound is sufficient in most cases, because extraC << busC .

Moreover, an exact calculation will depend on the implementation used.
Next, we need to consider the difference in capacitance for various bus-
widths.

5.5 Bus Power and Capacitance
We will further revise our bus power functions to consider bus
capacitance as a function of the internal capacitance and bus width.

()()extrabus CkC ⋅+≈ βα

Here, α is the ratio between internal and external capacitance and β is

the additional amount of capacitance for a new added bus line. Our
capacitance formula is inexact, but it serves as a good first attempt to
model all aspects of bus design for reduced power. Let us now define
total power to be:

extrabus PPPower +=

Putting it all together, by combining the above power
formulas for bus and extra circuits, one can explore different bus widths
for a given communication channels by selecting appropriate α and β
values. We demonstrate this in the next section.

6. Results - GPS Navigation System
We have applied the exploration algorithm given in this paper to a set of
homogeneous communication channels with 8-bit data sizes. Our data
was randomly generated and consisted of 20,000 samples corresponding
to 1-second simulation time. We first calculated the estimated power
consumed by the bus for a given bus configuration. Later, we estimated
power consumed by the extra circuit required to implement the given
bus configuration. The sum of these two estimates gives the total power
consumption. A bus configuration consists of a permutation of the 3

optimization methods studied in this paper (equal-split, don’t-care-
padding, bus-invert.) Tables 1 and 2 give the total bus power, as
percent improvement over a standard 8-bit bus using α = 500, β = 5 and
α = 100, β = 1 respectively. Negative values correspond to an increase
in power consumption while positive values correspond to a decrease in
power consumption when compared to a standard 8-bit bus with no
optimization. In these tables, the rows correspond to different bus
widths while the columns correspond to the different bus
configurations.

Size Std Eq NoC Eq,
NoC

Inv Inv,
Eq

Inv,
NoC

Inv,
Eq,
NoC

1 0 0 0 0 0 0 0 0
2 2 2 2 2 26 27 26 28
3 -9 1 1 1 18 26 28 26
4 2 2 2 1 26 26 27 25
5 -23 0 0 0 8 25 28 24
6 -49 0 0 -1 -12 24 25 24
7 -75 -2 -2 -2 -32 24 24 22
8 0 0 0 0 24 24 26 27

Table 1. Simulated System – Total power-usage improvement (%) with α=500,
β=5.

Size Std Eq NoC Eq,
NoC

Inv Inv,
Eq

Inv,
NoC

Inv,
Eq,
NoC

1 -21 -23 -23 -25 -21 -23 -23 -25
2 -8 -9 -9 -11 15 15 13 14
3 -18 -8 -8 -10 7 13 16 11
4 -2 -4 -4 -6 19 18 19 15
5 -29 -7 -7 -10 0 15 17 11
6 -56 -10 -10 -13 -22 12 13 10
7 -84 -14 -14 -17 -44 9 9 4
8 0 0 0 -2 22 20 22 21

Table 2. Simulated System – Total power-usage improvement (%) with α=100,
β=1.

Using the approach given in this paper, we explored some
possible bus configuration for an automobile navigation system
composed of 4 communication channels connecting 9 devices to a
microprocessor using a single bus. Figure 2 depicts the navigation
system’s bus structure. In short, our test case involves the following
parameters:

604,3003,8642,701

12
4

,10
3

,8
2

,4
1

====

====

mmmm

nnnn

Tables 3 and 4 give percent improvement of bus power over the original
standard 8-bit bus for two different α and β values. Here, negative
values imply an increase in power consumption while positive values
imply a decrease in power consumption.

Size Std Eq NoC Eq,
NoC

Inv Inv,
Eq

Inv,
NoC

Inv,
Eq,
NoC

1 20 20 20 20 20 20 20 20
2 21 20 20 20 43 43 45 43
3 8 20 20 20 33 47 45 46
4 15 19 19 19 39 44 47 46
5 15 19 19 19 39 44 47 46
6 -12 18 18 17 17 42 41 44
7 -32 17 17 16 26 42 43 40
8 0 17 17 16 26 42 43 40
9 -13 16 16 15 1 40 43 43
10 -4 15 15 15 23 42 42 45
11 -15 14 14 14 -9 39 42 42
12 -21 14 14 13 10 39 40 40

Table 3. Navigation System - Total power-usage improvement (%) over a
standard 8-bit bus with α=1000, β=10.

Size Std Eq NoC Eq,
NoC

Inv Inv,
Eq

Inv,
NoC

Inv,
Eq,
NoC

1 4 3 3 2 4 3 3 2
2 11 10 10 9 35 34 36 33
3 0 11 11 10 25 38 37 36
4 9 13 13 12 33 38 40 39
5 0 13 13 12 17 37 42 36
6 -17 12 12 11 11 36 35 37
7 -37 11 11 10 -10 36 40 34
8 -1 15 15 14 23 38 40 36
9 -13 14 14 13 0 37 40 39
10 -2 16 16 15 23 41 40 42
11 -12 16 16 14 -8 38 41 39
12 -17 16 16 15 11 38 40 39

Table 4. Navigation System - Total power-usage improvement (%) over a
standard 8-bit bus with α=200, β=1/10.

Exploring possible bus configuration and selecting the
optimal bus, in the case of the GPS navigation example as well as the
random data set, resulted in an estimated power improvement of 22 to
47%. Moreover, the optimal bus was not seemingly an obvious choice.

7. Future Work
Future work can integrate the above bus power estimation algorithms
with algorithms for calculating latency and throughput as well as extra
circuit area for buses with various width and configurations. This is
essential for meeting speed and area constraints while reducing bus
power dissipation.

For a given set of communication channels, one can examine
multiple bus partitions as well as segmented bus structures to find an
optimal solution for reduced power. Such exploration will likely result
in an exponential number of possible bus configurations. The
partitioning problem is NP-complete, thus, heuristics must be
formulated to solve the problem in a reasonable amount of time.
Likewise, reordering of the sent and received data, i.e., communication
scheduling, can also lead to reduced switching and power consumption,
but like partitioning, this approach will require advanced heuristics.

It is desirable to have tools that can generate the extra circuits
that are required to implement a given bus configuration. These tools
should be capable of automatically generating circuits for bus-invert,
equal-split, time-multiplexing and any other coding scheme. Ideally,
core integration will use an abstract send and receive protocol and allow
these tools to implement the low-level details of communication.

Micro-Processor

GPS Modem X-acc. Z-acc.Y-acc.

X-gyr. Z-gyr.Y-gyr.PWM

10101088

4 12 12 12

Figure 2. Bus structure for GPS Navigation System.

Finally, research should focus on gaining a better
understanding of the relative ratios of internal vs. external capacitance.
However, these ratios are likely to be very implementation specific. We
continue to combine bus parameterization, power estimation and
capacitance modeling with the idea of reference-design in an ongoing
project called Dalton.

8. Conclusion
We have demonstrated the large power-optimization potential now
possible due to the use of on-chip cores, whose interfaces are flexible.
Variations in capacitance among different technologies cause the
optimal bus to differ even for the same application. We also showed
that effects of bus configuration parameters, such as bus width, bus-
invert, equal-splitting and don’t-care padding, also varies greatly.
Therefore, future investigation of new bus configuration parameters and
of bus synthesis heuristics can yield significant optimization potential.

9. Acknowledgement
A Design Automation Conference Graduate Scholarship and a
NSF grant No CCR9811164 supported this research. We are
grateful for their support.

References
[1] Mircea R. Stan, Wayne P. Burleson, “Limited-weight codes for low-
power I/O,” Int. Workshop on Low Power Design, April 1994.

[2] Mircea R. Stan, Wayne P. Burleson, “Coding a Terminated Bus for
Low Power,” Great Lakes Symp. on VLSI, pp. 70-73, March 1995.

[3] P. Vuillod, L. Benini, G. Micheli, Re-mapping for low power under
tight timing constraints,” Low Power Electronics and Design , 1997.

[4] Pai Chou, Ross B. Ortega, Gaetano Borriello, “Interface Co-
Synthesis Techniques for Embedded Systesm,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 280-287,
November 1995.

[5] Michael Gasteier, Manfred Glenser, “Bus-Based Communication
Synthesis on System-Level,” in Proceedings of the ISSS, pp. 65-70,
November 1996.

[6] Sanjiv Narayan and Daniel D. Gajski, “Synthesis of System-Level
Bus Interfaces,” in Proceedings of the EDAC, 1994.

[7] W. Tan, T. Meng, “Low-power Polygon Renderer for Computer
Graphics,” Int. Conf. on A.S.A.P., pp. 200-213, 1993.

[8] Enrico Macii, Massoud Pedram, Fabio Somenzi, “High-Level Power
Modeling, Estimation and Optimization,” in Proceedings of DAC, pp.
504-511, 1997.

[9] Mircea R. Stan, Wayne P. Burleson, “Bus-Invert Coding for Low
Power I/O,” IEEE Transactions on VLSI, March 1995.

[10] A. Shen, A. Ghosh, S. Devadas, K. Keutzer, “On Average Power
Dissipation and Random Pattern Testability,” ICCAD-92, pp. 402-407,
Nov. 1992

[11] D. Dobberpuhl et al. “A 200-MHz 64-bit Dual-Issue CMOS
Microprocessor,” IEEE Journal of Solid-State Circuits, pp. 1555-1567,
Nov. 1992.

[12] C. A. Neugebauer, R. O. Carlson, “Comparison of Wafer Scale
Integration with VLSI Packaging Approaches,” IEEE Transactions on
Components, Hybrids, and Manufacturing Technology, pp. 184-189,
June 1987.
[13] R. Wilson, “Low power and Paradox,” Electronic Engineering
Times, pp. 38, Nov. 1, 1993.

[14] E. Hwang, F. Vahid, Y. Hsu, “Functional Partitioning for Reduced
Power,” Submitted to ICCAD, 1998.

